import torch from PIL import Image from modelscope import dataset_snapshot_download from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput pipe = QwenImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint", origin_file_pattern="model.safetensors"), ], tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), ) dataset_snapshot_download( dataset_id="DiffSynth-Studio/example_image_dataset", local_dir="./data/example_image_dataset", allow_file_pattern="inpaint/*.jpg" ) prompt = "a cat with sunglasses" controlnet_image = Image.open("./data/example_image_dataset/inpaint/image_1.jpg").convert("RGB").resize((1328, 1328)) inpaint_mask = Image.open("./data/example_image_dataset/inpaint/mask.jpg").convert("RGB").resize((1328, 1328)) image = pipe( prompt, seed=0, input_image=controlnet_image, inpaint_mask=inpaint_mask, blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image, inpaint_mask=inpaint_mask)], num_inference_steps=40, ) image.save("image.jpg")