File size: 923 Bytes
87d3e12 5f7b33f 87d3e12 5f7b33f 87d3e12 5f7b33f 87d3e12 5f7b33f 87d3e12 5f7b33f 2982cd6 5f7b33f 87d3e12 5f7b33f 87d3e12 5f7b33f 87d3e12 5f7b33f 87d3e12 5f7b33f 87d3e12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
tags:
- transcriptomics
- dimensionality-reduction
- classical
- TRACERx
- UMAP
- PCA
license: mit
---
# Classical Models (PCA + UMAP) - samples mode - 2D
Pre-trained PCA and UMAP models for transcriptomic data compression.
**UMAP models support transform()** - new data can be projected into the same embedding space.
## Details
- **Mode**: samples-centric compression
- **Dimensions**: 2
- **Training data**: TRACERx lung cancer transcriptomics
- **Created**: 2026-01-13T16:58:02.481982
- **UMAP transform**: Enabled (low_memory=False)
## Usage
```python
import joblib
from huggingface_hub import snapshot_download
# Download model
local_dir = snapshot_download("jruffle/classical_samples_2d")
model = joblib.load(f"{local_dir}/model.joblib")
# Model contains: 'pca', 'umap', 'robust_scaler', 'gene_order'
# Use UMAP transform on new data:
new_embeddings = model['umap'].transform(preprocessed_new_data)
```
|