--- tags: - transcriptomics - dimensionality-reduction - classical - TRACERx - UMAP - PCA license: mit --- # Classical Models (PCA + UMAP) - transcriptome mode - 64D Pre-trained PCA and UMAP models for transcriptomic data compression. **UMAP models support transform()** - new data can be projected into the same embedding space. ## Details - **Mode**: transcriptome-centric compression - **Dimensions**: 64 - **Training data**: TRACERx lung cancer transcriptomics - **Created**: 2026-01-13T17:03:21.452424 - **UMAP transform**: Enabled (low_memory=False) ## Usage ```python import joblib from huggingface_hub import snapshot_download # Download model local_dir = snapshot_download("jruffle/classical_transcriptome_64d") model = joblib.load(f"{local_dir}/model.joblib") # Model contains: 'pca', 'umap', 'robust_scaler', 'gene_order' # Use UMAP transform on new data: new_embeddings = model['umap'].transform(preprocessed_new_data) ```