Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- pt
|
| 4 |
+
license: cc-by-nc-nd-4.0
|
| 5 |
+
tags:
|
| 6 |
+
- text-segmentation
|
| 7 |
+
- topic-segmentation
|
| 8 |
+
- bert
|
| 9 |
+
- next-sentence-prediction
|
| 10 |
+
- document-segmentation
|
| 11 |
+
- meeting-minutes
|
| 12 |
+
library_name: transformers
|
| 13 |
+
base_model:
|
| 14 |
+
- neuralmind/bert-base-portuguese-cased
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# NSP-CouncilSeg: Linear Text Segmentation for Municipal Meeting Minutes
|
| 18 |
+
|
| 19 |
+
## Model Description
|
| 20 |
+
|
| 21 |
+
**NSP-CouncilSeg** is a fine-tuned BERT model specialized in Text Segmentation for municipal council meeting minutes. The model uses Next Sentence Prediction (NSP) to identify topic boundaries in long-form documents, making it particularly effective for segmenting administrative and governmental meeting minutes.
|
| 22 |
+
|
| 23 |
+
**Try out the model**: [Hugging Face Space Demo](https://huggingface.co/spaces/anonymous15135/nsp-councilseg-demo)
|
| 24 |
+
|
| 25 |
+
### Key Features
|
| 26 |
+
|
| 27 |
+
- 🎯 **Specialized for Meeting Minutes**: Fine-tuned on Portuguese municipal council meeting minutes
|
| 28 |
+
- ⚡ **Fast Inference**: Efficient BERT-base architecture for real-time segmentation
|
| 29 |
+
- 📊 **High Accuracy**: Achieves BED F-measure score of 0.79 on CouncilSeg dataset
|
| 30 |
+
- 🔄 **Sentence-Level Segmentation**: Identifies topic boundaries at sentence granularity
|
| 31 |
+
|
| 32 |
+
## Model Details
|
| 33 |
+
|
| 34 |
+
- **Base Model**: `neuralmind/bert-base-portuguese-cased`
|
| 35 |
+
- **Architecture**: BERT with Next Sentence Prediction head
|
| 36 |
+
- **Parameters**: 110M
|
| 37 |
+
- **Max Sequence Length**: 512 tokens
|
| 38 |
+
- **Fine-tuning Dataset**: CouncilSeg (Portuguese Municipal Meeting Minutes)
|
| 39 |
+
- **Fine-tuning Method**: Focal Loss with boundary-aware weighting
|
| 40 |
+
- **Training Framework**: PyTorch + Transformers
|
| 41 |
+
|
| 42 |
+
## How It Works
|
| 43 |
+
|
| 44 |
+
The model predicts whether two consecutive sentences belong to the same topic (label 0: "is_next") or represent a topic transition (label 1: "not_next"). By applying this classifier sequentially across all sentence pairs in a document, it identifies topic boundaries.
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
Sentence A: "Pelo Senhor Presidente foi presente a reunião a ata n.º 28 de 20.12.2023."
|
| 48 |
+
Sentence B: "Ponderado e analisado o assunto o Executivo Municipal deliberou por unanimidade aprovar a ata n.º 28 de 20.12.2023."
|
| 49 |
+
→ Prediction: Same Topic (confidence: 76%)
|
| 50 |
+
|
| 51 |
+
Sentence A: "Ponderado e analisado o assunto o Executivo Municipal deliberou por unanimidade aprovar a ata n.º 28 de 20.12.2023."
|
| 52 |
+
Sentence B: "Não houve processos e requerimentos diversos a apresentar."
|
| 53 |
+
→ Prediction: Topic Boundary (confidence: 82%)
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
## Usage
|
| 57 |
+
|
| 58 |
+
### Quick Start with Transformers
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
from transformers import AutoTokenizer, AutoModelForNextSentencePrediction
|
| 62 |
+
import torch
|
| 63 |
+
|
| 64 |
+
# Load model and tokenizer
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained("anonymous15135/nsp-councilseg")
|
| 66 |
+
model = AutoModelForNextSentencePrediction.from_pretrained("anonymous15135/nsp-councilseg")
|
| 67 |
+
|
| 68 |
+
# Prepare input
|
| 69 |
+
sentence_a = "Pelo Senhor Presidente foi presente a reunião a ata n.º 28 de 20.12.2023."
|
| 70 |
+
sentence_b = "Ponderado e analisado o assunto o Executivo Municipal deliberou por unanimidade aprovar a ata n.º 28 de 20.12.2023."
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Tokenize
|
| 74 |
+
inputs = tokenizer(sentence_a, sentence_b, return_tensors="pt")
|
| 75 |
+
|
| 76 |
+
# Predict
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
outputs = model(**inputs)
|
| 79 |
+
logits = outputs.logits
|
| 80 |
+
probs = torch.softmax(logits, dim=1)
|
| 81 |
+
|
| 82 |
+
# Interpret results
|
| 83 |
+
is_next_prob = probs[0][0].item()
|
| 84 |
+
not_next_prob = probs[0][1].item()
|
| 85 |
+
|
| 86 |
+
print(f"Is Next (same topic): {is_next_prob:.3f}")
|
| 87 |
+
print(f"Not Next (topic boundary): {not_next_prob:.3f}")
|
| 88 |
+
|
| 89 |
+
if not_next_prob > 0.5:
|
| 90 |
+
print("🔴 Topic boundary detected!")
|
| 91 |
+
else:
|
| 92 |
+
print("🟢 Same topic continues")
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
## Limitations
|
| 97 |
+
|
| 98 |
+
- **Domain Specificity**: Best performance on administrative/governmental meeting minutes
|
| 99 |
+
- **Language**: Optimized for Portuguese; English performance may vary
|
| 100 |
+
- **Document Length**: Designed for documents with 10-50 segments
|
| 101 |
+
- **Context Window**: Limited to 512 tokens per sentence pair
|
| 102 |
+
- **Ambiguous Boundaries**: May struggle with subtle topic transitions
|
| 103 |
+
|
| 104 |
+
## Model Card Contact
|
| 105 |
+
|
| 106 |
+
For questions or feedback, please open an issue in the [model repository](https://huggingface.co/anonymous15135/nsp-councilseg/discussions).
|
| 107 |
+
|
| 108 |
+
## License
|
| 109 |
+
|
| 110 |
+
This model is released under the Attribution-NonCommercial-NoDerivatives 4.0 International
|