File size: 16,681 Bytes
1880e8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
from llm2vec import LLM2Vec
from peft import PeftModel
from transformers import (
AutoConfig,
PretrainedConfig,
AutoTokenizer,
)
import torch
import logging
import json
import os
logger = logging.getLogger(__name__)
class LLM2VecWrapper(LLM2Vec):
def __init__(self, *args, **kwargs):
super(LLM2VecWrapper, self).__init__(*args, **kwargs)
def to(self, device_or_dtype):
"""Override to method to ensure all modules are properly moved."""
result = super().to(device_or_dtype)
# Ensure latent attention pooling is also moved
if hasattr(result, 'latent_attn') and result.latent_attn is not None:
result.latent_attn = result.latent_attn.to(device_or_dtype)
return result
def prepare_for_tokenization(self, text):
text = (
"<|start_header_id|>user<|end_header_id|>\n\n"
+ text.strip()
+ "<|eot_id|>"
)
return text
def encode_text(self, text, max_length=None):
"""
Encode text to embeddings with proper embed_mask handling.
Args:
text (str or list): Text(s) to encode
max_length (int, optional): Maximum sequence length
Returns:
torch.Tensor: Text embeddings
"""
if max_length is None:
max_length = getattr(self, 'max_length', 512)
inputs = self.tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
)
# Add embed_mask (same as attention_mask for simple text encoding)
inputs["embed_mask"] = inputs["attention_mask"].clone()
# Move to same device as model
import torch
model_device = next(self.parameters()).device
inputs = {k: v.to(model_device) for k, v in inputs.items()}
with torch.no_grad():
embeddings = self(inputs)
return embeddings
def tokenize_with_separator(self, texts, max_length=None, separator='!@#$%^&*()'):
"""
Tokenize texts with special handling for separator-based splitting.
This is useful for instruction-following tasks.
Args:
texts (list): List of texts to tokenize
max_length (int, optional): Maximum sequence length
separator (str): Separator to split instruction from text
Returns:
dict: Tokenized inputs with attention masks and embed masks
"""
if max_length is None:
max_length = getattr(self, 'max_length', 512)
texts_2 = []
original_texts = []
for text in texts:
parts = text.split(separator)
texts_2.append(parts[1] if len(parts) > 1 else "")
original_texts.append("".join(parts))
# Tokenize original texts
tokenized = self.tokenizer(
original_texts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length,
)
# Create embedding masks for the separated parts
import torch
embed_mask = None
for t_i, t in enumerate(texts_2):
ids = self.tokenizer(
[t],
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length,
add_special_tokens=False,
)
e_m = torch.zeros_like(tokenized["attention_mask"][t_i])
if len(ids["input_ids"][0]) > 0:
e_m[-len(ids["input_ids"][0]):] = torch.ones(len(ids["input_ids"][0]))
if embed_mask is None:
embed_mask = e_m.unsqueeze(0)
else:
embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)
tokenized["embed_mask"] = embed_mask
return tokenized
def encode_with_instruction(self, texts, max_length=None, separator='!@#$%^&*()'):
"""
Encode texts with instruction-following using separator-based processing.
Args:
texts (list): List of texts with instructions separated by separator
max_length (int, optional): Maximum sequence length
separator (str): Separator between instruction and text
Returns:
torch.Tensor: Text embeddings
"""
tokenized = self.tokenize_with_separator(texts, max_length, separator)
# Move to same device as model
import torch
model_device = next(self.parameters()).device
tokenized = {k: v.to(model_device) for k, v in tokenized.items()}
with torch.no_grad():
embeddings = self(tokenized)
return embeddings
def encode_with_separator(self, texts, device=None, max_length=None, separator='!@#$%^&*()'):
"""
Encode texts with special separator-based handling for instruction/text pairs.
Args:
texts (list): List of texts to encode (with separator for instruction/text pairs)
device: Device to run on (auto-detect if None)
max_length: Maximum sequence length (use model default if None)
separator: Separator string for instruction/text pairs
Returns:
torch.Tensor: Embeddings for the texts
"""
if device is None:
device = next(self.parameters()).device
if max_length is None:
max_length = 512
# Ensure model is on the right device
self = self.to(device)
# Process texts with separator
texts_2 = []
original_texts = []
for text in texts:
parts = text.split(separator)
texts_2.append(parts[1] if len(parts) > 1 else "")
original_texts.append("".join(parts))
# Tokenize original texts
tokenized = self.tokenizer(
original_texts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length,
)
# Create embedding masks
embed_mask = None
for t_i, t in enumerate(texts_2):
ids = self.tokenizer(
[t],
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length,
add_special_tokens=False,
)
e_m = torch.zeros_like(tokenized["attention_mask"][t_i])
if len(ids["input_ids"][0]) > 0:
e_m[-len(ids["input_ids"][0]):] = torch.ones(len(ids["input_ids"][0]))
if embed_mask is None:
embed_mask = e_m.unsqueeze(0)
else:
embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)
tokenized["embed_mask"] = embed_mask
# Move to device and compute embeddings
tokenized = {k: v.to(device) for k, v in tokenized.items()}
tokenized = {k: v.to(self.model.dtype) if v.dtype.is_floating_point else v
for k, v in tokenized.items()}
with torch.no_grad():
embeddings = self(tokenized)
return embeddings
def compute_similarities(self, query_text, candidate_texts, device=None, separator='!@#$%^&*()'):
"""
Compute similarity scores between a query text and candidate texts.
Args:
query_text (str): The query text (with separator for instruction/text pairs)
candidate_texts (list): List of candidate texts to compare against
device: Device to run on (auto-detect if None)
separator: Separator string for instruction/text pairs
Returns:
torch.Tensor: Similarity scores for each candidate
"""
import torch.nn.functional as F
if device is None:
device = next(self.parameters()).device
# Combine query and candidates
all_texts = [query_text] + candidate_texts
# Get embeddings
embeddings = self.encode_with_separator(all_texts, device=device, separator=separator)
# Compute similarities between query (first embedding) and candidates
similarities = F.cosine_similarity(embeddings[0], embeddings[1:], dim=1)
return similarities
def _load_latent_attention_weights(self, model_path, use_safetensors=True):
"""
Automatically load latent attention weights from model files.
Args:
model_path: Path to model (local directory or HuggingFace repo)
use_safetensors: Whether to use safetensors format
"""
import os
if os.path.isdir(model_path):
# Local directory - try pytorch_model.bin first
pytorch_model_path = os.path.join(model_path, "pytorch_model.bin")
if os.path.exists(pytorch_model_path):
print(f"Loading latent attention weights from {pytorch_model_path}")
try:
import torch
state_dict = torch.load(pytorch_model_path, weights_only=True)
latent_attn_weights = {k: v for k, v in state_dict.items() if k.startswith('latent_attn.')}
if latent_attn_weights:
missing_keys, unexpected_keys = self.latent_attn.load_state_dict(
{k.replace('latent_attn.', ''): v for k, v in latent_attn_weights.items()},
strict=False
)
if not missing_keys and not unexpected_keys:
print(f"✅ Successfully loaded {len(latent_attn_weights)} latent attention weights")
else:
print(f"⚠️ Partial loading: missing={missing_keys}, unexpected={unexpected_keys}")
else:
print("⚠️ No latent attention weights found in the model file")
except Exception as e:
print(f"❌ Error loading latent attention weights: {e}")
else:
# HuggingFace repository - load from safetensors
if use_safetensors:
print("Loading latent attention weights from HuggingFace safetensors...")
try:
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
# Download the safetensors file
safetensors_path = hf_hub_download(repo_id=model_path, filename="model.safetensors")
# Load weights from safetensors
safetensors_weights = load_file(safetensors_path)
# Extract latent attention weights
latent_attn_weights = {k: v for k, v in safetensors_weights.items() if k.startswith('latent_attn.')}
if latent_attn_weights:
print(f"Found {len(latent_attn_weights)} latent attention weights in safetensors")
# Load the weights into the latent attention module
missing_keys, unexpected_keys = self.latent_attn.load_state_dict(
{k.replace('latent_attn.', ''): v for k, v in latent_attn_weights.items()},
strict=False
)
if not missing_keys and not unexpected_keys:
print(f"✅ Successfully loaded {len(latent_attn_weights)} latent attention weights from safetensors")
else:
print(f"⚠️ Partial loading: missing={missing_keys}, unexpected={unexpected_keys}")
else:
print("⚠️ No latent attention weights found in safetensors file")
except Exception as e:
print(f"❌ Error loading latent attention weights from safetensors: {e}")
@classmethod
def from_pretrained(
cls,
base_model_name_or_path,
peft_model_name_or_path=None,
merge_peft=False,
enable_bidirectional=True,
extra_model_name_or_path=None,
**kwargs,
):
# pop out encoder args
keys = ["pooling_mode", "max_length", "doc_max_length", "skip_instruction"]
encoder_args = {
key: kwargs.pop(key, None) for key in keys if kwargs.get(key) is not None
}
tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
config = AutoConfig.from_pretrained(base_model_name_or_path)
config_class_name = config.__class__.__name__
model_class = cls._get_model_class(
config_class_name, enable_bidirectional=enable_bidirectional
)
model = model_class.from_pretrained(base_model_name_or_path, **kwargs)
if os.path.isdir(base_model_name_or_path) and os.path.exists(
f"{base_model_name_or_path}/config.json"
):
with open(f"{base_model_name_or_path}/config.json", "r") as fIn:
config_dict = json.load(fIn)
config = PretrainedConfig.from_dict(config_dict)
model.config._name_or_path = config._name_or_path
# For special case where config.json and adapter weights are in the same directory
if hasattr(model, "peft_config"):
model = PeftModel.from_pretrained(
model,
base_model_name_or_path,
)
model = model.merge_and_unload()
if peft_model_name_or_path is not None:
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
)
if merge_peft:
model = model.merge_and_unload()
if extra_model_name_or_path is not None:
logger.info(f"Loading extra model from {extra_model_name_or_path}")
if not merge_peft:
model = model.merge_and_unload()
if isinstance(extra_model_name_or_path, str):
model = PeftModel.from_pretrained(
model,
extra_model_name_or_path,
)
model = model.merge_and_unload()
elif isinstance(extra_model_name_or_path, list):
for extra_model in extra_model_name_or_path:
model = PeftModel.from_pretrained(
model,
extra_model,
)
peft_model_name_or_path = extra_model
model = model.merge_and_unload()
else:
raise ValueError(
f"extra_model_name_or_path should be a string or a list of strings."
)
config = {}
config_addr = (
peft_model_name_or_path
if peft_model_name_or_path is not None
else base_model_name_or_path
)
if os.path.exists(f"{config_addr}/llm2vec_config.json"):
with open(f"{config_addr}/llm2vec_config.json", "r") as fIn:
llm2vec_config = json.load(fIn)
config.update(llm2vec_config)
for key, value in encoder_args.items():
config[key] = value
llm2vec_model = cls(model=model, tokenizer=tokenizer, **config)
# Auto-load latent attention weights if using latent_attention pooling
if (hasattr(llm2vec_model, 'latent_attn') and
llm2vec_model.latent_attn is not None and
llm2vec_model.pooling_mode == "latent_attention"):
llm2vec_model._load_latent_attention_weights(base_model_name_or_path, kwargs.get('use_safetensors', True))
# Ensure the entire model is converted to the requested dtype
if 'torch_dtype' in kwargs and kwargs['torch_dtype'] is not None:
llm2vec_model = llm2vec_model.to(kwargs['torch_dtype'])
return llm2vec_model |