Image_Net / app.py
malihoseini's picture
Update app.py
d67d257 verified
import gradio as gr
import numpy as np
import tensorflow as tf
import json
from os.path import dirname, realpath, join
import matplotlib.pyplot as plt
current_dir = dirname(realpath(__file__))
with open(join(current_dir), 'image_labels.json') as labels_file:
labels=json.load(labels_file)
mobile_net = tf.keras.applications.MobileNetV2()
def image_classifier(img):
arr = np.expand_dims(img, axis=0)
arr = tf.keras.applications.mobilenet.preprocess_input(arr)
prediction = mobile_net.prediction(arr).flatten()
return {labels[i]:float(prediction[i]) for i in range(1000)}
iface = gr.Interface(
image_classifier,
gr.inputs.Image(height=224, width=224),
gr.outputs.Label(num_top_classes=3),
capture_session=True,
interpretation='default',
)
if __name__ == '__main__':
iface.launch(share=True)