Upload folder using huggingface_hub
Browse files- README.md +285 -0
- __init__.py +5 -0
- config.json +217 -0
- configuration_mplug_owl2.py +334 -0
- modeling_attn_mask_utils.py +275 -0
- modeling_llama2.py +861 -0
- modeling_mplug_owl2_huggingface.py +571 -0
- preprocessor_config.json +18 -0
- pytorch_model-00001-of-00004.bin +3 -0
- pytorch_model-00002-of-00004.bin +3 -0
- pytorch_model-00003-of-00004.bin +3 -0
- pytorch_model-00004-of-00004.bin +3 -0
- pytorch_model.bin.index.json +869 -0
- runs/Jun19_10-38-29_antfcutrn-kmaker-033145119198/events.out.tfevents.1750300731.antfcutrn-kmaker-033145119198.18341.0 +3 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +42 -0
- trainer_state.json +2010 -0
- training_args.bin +3 -0
- visual_encoder.py +1019 -0
README.md
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- image-quality-assessment
|
| 7 |
+
- document-quality
|
| 8 |
+
- mplug-owl2
|
| 9 |
+
- vision-language
|
| 10 |
+
- document-analysis
|
| 11 |
+
- sharpness
|
| 12 |
+
- blur-detection
|
| 13 |
+
- IQA
|
| 14 |
+
pipeline_tag: image-to-text
|
| 15 |
+
library_name: transformers
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# DeQA-Doc-Sharpness: Document Image Sharpness Assessment
|
| 19 |
+
|
| 20 |
+
**DeQA-Doc-Sharpness** is a vision-language model specialized in assessing the **sharpness and clarity** of document images. It evaluates focus quality, blur levels, and text legibility in scanned or photographed documents.
|
| 21 |
+
|
| 22 |
+
## Model Family
|
| 23 |
+
|
| 24 |
+
This model is part of the **DeQA-Doc** family, which includes three specialized models:
|
| 25 |
+
|
| 26 |
+
| Model | Description | HuggingFace |
|
| 27 |
+
|-------|-------------|-------------|
|
| 28 |
+
| **DeQA-Doc-Overall** | Overall document quality | [mapo80/DeQA-Doc-Overall](https://huggingface.co/mapo80/DeQA-Doc-Overall) |
|
| 29 |
+
| **DeQA-Doc-Color** | Color quality assessment | [mapo80/DeQA-Doc-Color](https://huggingface.co/mapo80/DeQA-Doc-Color) |
|
| 30 |
+
| **DeQA-Doc-Sharpness** | Sharpness/clarity assessment (this model) | [mapo80/DeQA-Doc-Sharpness](https://huggingface.co/mapo80/DeQA-Doc-Sharpness) |
|
| 31 |
+
|
| 32 |
+
## Quick Start
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
import torch
|
| 36 |
+
from transformers import AutoModelForCausalLM
|
| 37 |
+
from PIL import Image
|
| 38 |
+
|
| 39 |
+
# Load the model
|
| 40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
"mapo80/DeQA-Doc-Sharpness",
|
| 42 |
+
trust_remote_code=True,
|
| 43 |
+
torch_dtype=torch.float16,
|
| 44 |
+
device_map="auto",
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# Score an image
|
| 48 |
+
image = Image.open("document.jpg").convert("RGB")
|
| 49 |
+
score = model.score([image])
|
| 50 |
+
print(f"Sharpness Score: {score.item():.2f} / 5.0")
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
## What Does Sharpness Quality Measure?
|
| 54 |
+
|
| 55 |
+
The sharpness score evaluates:
|
| 56 |
+
|
| 57 |
+
- **Focus Quality**: How well the document is in focus
|
| 58 |
+
- **Motion Blur**: Absence of blur from camera/scanner movement
|
| 59 |
+
- **Text Clarity**: Sharpness of text edges and characters
|
| 60 |
+
- **Detail Preservation**: Fine details are visible and crisp
|
| 61 |
+
- **Resolution Quality**: Adequate resolution for the content
|
| 62 |
+
|
| 63 |
+
## Score Interpretation
|
| 64 |
+
|
| 65 |
+
| Score Range | Quality Level | Typical Issues |
|
| 66 |
+
|-------------|---------------|----------------|
|
| 67 |
+
| 4.5 - 5.0 | **Excellent** | Perfectly sharp, crisp text |
|
| 68 |
+
| 3.5 - 4.5 | **Good** | Slight softness, still very readable |
|
| 69 |
+
| 2.5 - 3.5 | **Fair** | Noticeable blur, readable with effort |
|
| 70 |
+
| 1.5 - 2.5 | **Poor** | Significant blur, hard to read |
|
| 71 |
+
| 1.0 - 1.5 | **Bad** | Severe blur, text illegible |
|
| 72 |
+
|
| 73 |
+
## Batch Processing
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
images = [
|
| 77 |
+
Image.open("doc1.jpg").convert("RGB"),
|
| 78 |
+
Image.open("doc2.jpg").convert("RGB"),
|
| 79 |
+
Image.open("doc3.jpg").convert("RGB"),
|
| 80 |
+
]
|
| 81 |
+
|
| 82 |
+
scores = model.score(images)
|
| 83 |
+
for i, score in enumerate(scores):
|
| 84 |
+
print(f"Document {i+1} Sharpness: {score.item():.2f} / 5.0")
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
## Use Cases
|
| 88 |
+
|
| 89 |
+
- **OCR Preprocessing**: Filter blurry images before OCR to improve accuracy
|
| 90 |
+
- **Document Capture QA**: Real-time feedback for mobile document scanning
|
| 91 |
+
- **Archive Quality Control**: Identify documents needing re-scanning
|
| 92 |
+
- **Blur Detection**: Automatic detection of out-of-focus captures
|
| 93 |
+
- **Scanner Maintenance**: Detect scanner focus issues
|
| 94 |
+
|
| 95 |
+
## Example: OCR Quality Gate
|
| 96 |
+
|
| 97 |
+
```python
|
| 98 |
+
import torch
|
| 99 |
+
from transformers import AutoModelForCausalLM
|
| 100 |
+
from PIL import Image
|
| 101 |
+
|
| 102 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 103 |
+
"mapo80/DeQA-Doc-Sharpness",
|
| 104 |
+
trust_remote_code=True,
|
| 105 |
+
torch_dtype=torch.float16,
|
| 106 |
+
device_map="auto",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
def check_ocr_readiness(image_path, min_sharpness=3.5):
|
| 110 |
+
"""Check if document is sharp enough for reliable OCR."""
|
| 111 |
+
img = Image.open(image_path).convert("RGB")
|
| 112 |
+
score = model.score([img]).item()
|
| 113 |
+
|
| 114 |
+
if score >= min_sharpness:
|
| 115 |
+
return True, score, "Ready for OCR"
|
| 116 |
+
elif score >= 2.5:
|
| 117 |
+
return False, score, "May produce OCR errors - consider rescanning"
|
| 118 |
+
else:
|
| 119 |
+
return False, score, "Too blurry for OCR - rescan required"
|
| 120 |
+
|
| 121 |
+
ready, score, message = check_ocr_readiness("scan.jpg")
|
| 122 |
+
print(f"Sharpness: {score:.2f}/5.0 - {message}")
|
| 123 |
+
|
| 124 |
+
if ready:
|
| 125 |
+
# Proceed with OCR
|
| 126 |
+
pass
|
| 127 |
+
else:
|
| 128 |
+
# Request rescan
|
| 129 |
+
pass
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
## Example: Batch Quality Sorting
|
| 133 |
+
|
| 134 |
+
```python
|
| 135 |
+
import torch
|
| 136 |
+
from transformers import AutoModelForCausalLM
|
| 137 |
+
from PIL import Image
|
| 138 |
+
from pathlib import Path
|
| 139 |
+
|
| 140 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 141 |
+
"mapo80/DeQA-Doc-Sharpness",
|
| 142 |
+
trust_remote_code=True,
|
| 143 |
+
torch_dtype=torch.float16,
|
| 144 |
+
device_map="auto",
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
def sort_by_sharpness(image_folder):
|
| 148 |
+
"""Sort documents into quality buckets based on sharpness."""
|
| 149 |
+
results = {"excellent": [], "good": [], "fair": [], "poor": [], "bad": []}
|
| 150 |
+
|
| 151 |
+
for img_path in Path(image_folder).glob("*.jpg"):
|
| 152 |
+
img = Image.open(img_path).convert("RGB")
|
| 153 |
+
score = model.score([img]).item()
|
| 154 |
+
|
| 155 |
+
if score >= 4.5:
|
| 156 |
+
results["excellent"].append((img_path, score))
|
| 157 |
+
elif score >= 3.5:
|
| 158 |
+
results["good"].append((img_path, score))
|
| 159 |
+
elif score >= 2.5:
|
| 160 |
+
results["fair"].append((img_path, score))
|
| 161 |
+
elif score >= 1.5:
|
| 162 |
+
results["poor"].append((img_path, score))
|
| 163 |
+
else:
|
| 164 |
+
results["bad"].append((img_path, score))
|
| 165 |
+
|
| 166 |
+
return results
|
| 167 |
+
|
| 168 |
+
# Usage
|
| 169 |
+
quality_report = sort_by_sharpness("scanned_docs/")
|
| 170 |
+
print(f"Excellent: {len(quality_report['excellent'])} documents")
|
| 171 |
+
print(f"Need rescan: {len(quality_report['poor']) + len(quality_report['bad'])} documents")
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
## Multi-Dimensional Quality Assessment
|
| 175 |
+
|
| 176 |
+
Combine with other DeQA-Doc models for comprehensive assessment:
|
| 177 |
+
|
| 178 |
+
```python
|
| 179 |
+
import torch
|
| 180 |
+
from transformers import AutoModelForCausalLM
|
| 181 |
+
from PIL import Image
|
| 182 |
+
|
| 183 |
+
# Load all three models
|
| 184 |
+
models = {
|
| 185 |
+
"overall": AutoModelForCausalLM.from_pretrained(
|
| 186 |
+
"mapo80/DeQA-Doc-Overall", trust_remote_code=True,
|
| 187 |
+
torch_dtype=torch.float16, device_map="auto"
|
| 188 |
+
),
|
| 189 |
+
"color": AutoModelForCausalLM.from_pretrained(
|
| 190 |
+
"mapo80/DeQA-Doc-Color", trust_remote_code=True,
|
| 191 |
+
torch_dtype=torch.float16, device_map="auto"
|
| 192 |
+
),
|
| 193 |
+
"sharpness": AutoModelForCausalLM.from_pretrained(
|
| 194 |
+
"mapo80/DeQA-Doc-Sharpness", trust_remote_code=True,
|
| 195 |
+
torch_dtype=torch.float16, device_map="auto"
|
| 196 |
+
),
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
def full_quality_report(image_path):
|
| 200 |
+
img = Image.open(image_path).convert("RGB")
|
| 201 |
+
|
| 202 |
+
scores = {}
|
| 203 |
+
for name, model in models.items():
|
| 204 |
+
scores[name] = model.score([img]).item()
|
| 205 |
+
|
| 206 |
+
return scores
|
| 207 |
+
|
| 208 |
+
report = full_quality_report("document.jpg")
|
| 209 |
+
print(f"Overall: {report['overall']:.2f}/5.0")
|
| 210 |
+
print(f"Color: {report['color']:.2f}/5.0")
|
| 211 |
+
print(f"Sharpness: {report['sharpness']:.2f}/5.0")
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
+
## Model Architecture
|
| 215 |
+
|
| 216 |
+
- **Base Model**: mPLUG-Owl2 (LLaMA2-7B + ViT-L Vision Encoder)
|
| 217 |
+
- **Vision Encoder**: CLIP ViT-L/14 (1024 visual tokens via Visual Abstractor)
|
| 218 |
+
- **Language Model**: LLaMA2-7B
|
| 219 |
+
- **Training**: Full fine-tuning on document sharpness quality datasets
|
| 220 |
+
- **Input Resolution**: Images are resized to 448x448 (with aspect ratio preservation)
|
| 221 |
+
|
| 222 |
+
## Technical Details
|
| 223 |
+
|
| 224 |
+
| Property | Value |
|
| 225 |
+
|----------|-------|
|
| 226 |
+
| Model Size | ~16 GB (float16) |
|
| 227 |
+
| Parameters | ~7.2B |
|
| 228 |
+
| Input | RGB images (any resolution) |
|
| 229 |
+
| Output | Sharpness quality score (1.0 - 5.0) |
|
| 230 |
+
| Inference | ~2-3 seconds per image on A100 |
|
| 231 |
+
|
| 232 |
+
## Hardware Requirements
|
| 233 |
+
|
| 234 |
+
| Setup | VRAM Required | Recommended |
|
| 235 |
+
|-------|---------------|-------------|
|
| 236 |
+
| Full precision (fp32) | ~32 GB | A100, H100 |
|
| 237 |
+
| Half precision (fp16) | ~16 GB | A100, A40, RTX 4090 |
|
| 238 |
+
| With CPU offload | ~8 GB GPU + RAM | RTX 3090, RTX 4080 |
|
| 239 |
+
|
| 240 |
+
## Installation
|
| 241 |
+
|
| 242 |
+
```bash
|
| 243 |
+
pip install torch transformers accelerate pillow sentencepiece protobuf
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
**Note**: Use `transformers>=4.36.0` for best compatibility.
|
| 247 |
+
|
| 248 |
+
## Comparison with Traditional Methods
|
| 249 |
+
|
| 250 |
+
| Method | Pros | Cons |
|
| 251 |
+
|--------|------|------|
|
| 252 |
+
| **Laplacian Variance** | Fast, simple | Only measures edge intensity |
|
| 253 |
+
| **FFT-based** | Frequency analysis | Sensitive to image content |
|
| 254 |
+
| **Gradient-based** | Good for text | Requires tuning |
|
| 255 |
+
| **DeQA-Doc-Sharpness** | Content-aware, trained on documents | Requires GPU |
|
| 256 |
+
|
| 257 |
+
DeQA-Doc-Sharpness understands document context and can differentiate between intentionally smooth backgrounds and unintentional blur.
|
| 258 |
+
|
| 259 |
+
## Limitations
|
| 260 |
+
|
| 261 |
+
- Optimized for document images (text, forms, letters)
|
| 262 |
+
- May not generalize well to natural photos
|
| 263 |
+
- Requires GPU with sufficient VRAM for efficient inference
|
| 264 |
+
- Sharpness assessment is relative to training data distribution
|
| 265 |
+
|
| 266 |
+
## Citation
|
| 267 |
+
|
| 268 |
+
```bibtex
|
| 269 |
+
@misc{deqa-doc-sharpness-2024,
|
| 270 |
+
title={DeQA-Doc-Sharpness: Document Image Sharpness Assessment},
|
| 271 |
+
author={mapo80},
|
| 272 |
+
year={2024},
|
| 273 |
+
publisher={HuggingFace},
|
| 274 |
+
url={https://huggingface.co/mapo80/DeQA-Doc-Sharpness}
|
| 275 |
+
}
|
| 276 |
+
```
|
| 277 |
+
|
| 278 |
+
## License
|
| 279 |
+
|
| 280 |
+
Apache 2.0
|
| 281 |
+
|
| 282 |
+
## Related Models
|
| 283 |
+
|
| 284 |
+
- [DeQA-Doc-Overall](https://huggingface.co/mapo80/DeQA-Doc-Overall) - Overall quality assessment
|
| 285 |
+
- [DeQA-Doc-Color](https://huggingface.co/mapo80/DeQA-Doc-Color) - Color quality assessment
|
__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .configuration_mplug_owl2 import MPLUGOwl2Config
|
| 2 |
+
from .modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
| 3 |
+
from .modeling_mplug_owl2_huggingface import MPLUGOwl2LlamaForCausalLM
|
| 4 |
+
|
| 5 |
+
__all__ = ["MPLUGOwl2Config", "MPLUGOwl2LlamaForCausalLM"]
|
config.json
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MPLUGOwl2LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_mplug_owl2.MPLUGOwl2Config",
|
| 8 |
+
"AutoModel": "modeling_mplug_owl2_huggingface.MPLUGOwl2LlamaForCausalLM",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_mplug_owl2_huggingface.MPLUGOwl2LlamaForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"attention_bias": false,
|
| 12 |
+
"attention_dropout": 0.0,
|
| 13 |
+
"binary_rating_loss": "fidelity",
|
| 14 |
+
"bos_token_id": 1,
|
| 15 |
+
"closeset_rating_loss": true,
|
| 16 |
+
"continuous_rating_loss": true,
|
| 17 |
+
"detach_pred_std": true,
|
| 18 |
+
"eos_token_id": 2,
|
| 19 |
+
"freeze_vision_model": false,
|
| 20 |
+
"hidden_act": "silu",
|
| 21 |
+
"hidden_size": 4096,
|
| 22 |
+
"image_aspect_ratio": "pad",
|
| 23 |
+
"image_grid_pinpoints": null,
|
| 24 |
+
"initializer_range": 0.02,
|
| 25 |
+
"intermediate_size": 11008,
|
| 26 |
+
"level_ids": [
|
| 27 |
+
15129,
|
| 28 |
+
1781,
|
| 29 |
+
6534,
|
| 30 |
+
6460,
|
| 31 |
+
4319
|
| 32 |
+
],
|
| 33 |
+
"level_prefix": [
|
| 34 |
+
11029,
|
| 35 |
+
310,
|
| 36 |
+
278,
|
| 37 |
+
1967,
|
| 38 |
+
338
|
| 39 |
+
],
|
| 40 |
+
"max_position_embeddings": 2048,
|
| 41 |
+
"model_type": "mplug_owl2",
|
| 42 |
+
"num_attention_heads": 32,
|
| 43 |
+
"num_hidden_layers": 32,
|
| 44 |
+
"num_key_value_heads": 32,
|
| 45 |
+
"pretraining_tp": 1,
|
| 46 |
+
"rms_norm_eps": 1e-06,
|
| 47 |
+
"rope_scaling": null,
|
| 48 |
+
"rope_theta": 10000.0,
|
| 49 |
+
"softkl_loss": true,
|
| 50 |
+
"tie_word_embeddings": false,
|
| 51 |
+
"torch_dtype": "bfloat16",
|
| 52 |
+
"transformers_version": "4.36.1",
|
| 53 |
+
"tune_visual_abstractor": true,
|
| 54 |
+
"use_cache": true,
|
| 55 |
+
"use_fix_std": true,
|
| 56 |
+
"visual_abstractor_lr": null,
|
| 57 |
+
"visual_config": {
|
| 58 |
+
"visual_abstractor": {
|
| 59 |
+
"_name_or_path": "",
|
| 60 |
+
"add_cross_attention": false,
|
| 61 |
+
"architectures": null,
|
| 62 |
+
"attention_probs_dropout_prob": 0.0,
|
| 63 |
+
"bad_words_ids": null,
|
| 64 |
+
"begin_suppress_tokens": null,
|
| 65 |
+
"bos_token_id": null,
|
| 66 |
+
"chunk_size_feed_forward": 0,
|
| 67 |
+
"cross_attention_hidden_size": null,
|
| 68 |
+
"decoder_start_token_id": null,
|
| 69 |
+
"diversity_penalty": 0.0,
|
| 70 |
+
"do_sample": false,
|
| 71 |
+
"early_stopping": false,
|
| 72 |
+
"encoder_hidden_size": 1024,
|
| 73 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 74 |
+
"eos_token_id": null,
|
| 75 |
+
"exponential_decay_length_penalty": null,
|
| 76 |
+
"finetuning_task": null,
|
| 77 |
+
"forced_bos_token_id": null,
|
| 78 |
+
"forced_eos_token_id": null,
|
| 79 |
+
"grid_size": 32,
|
| 80 |
+
"hidden_size": 1024,
|
| 81 |
+
"id2label": {
|
| 82 |
+
"0": "LABEL_0",
|
| 83 |
+
"1": "LABEL_1"
|
| 84 |
+
},
|
| 85 |
+
"initializer_range": 0.02,
|
| 86 |
+
"intermediate_size": 2816,
|
| 87 |
+
"is_decoder": false,
|
| 88 |
+
"is_encoder_decoder": false,
|
| 89 |
+
"label2id": {
|
| 90 |
+
"LABEL_0": 0,
|
| 91 |
+
"LABEL_1": 1
|
| 92 |
+
},
|
| 93 |
+
"layer_norm_eps": 1e-06,
|
| 94 |
+
"length_penalty": 1.0,
|
| 95 |
+
"max_length": 20,
|
| 96 |
+
"min_length": 0,
|
| 97 |
+
"model_type": "mplug_owl_visual_abstract",
|
| 98 |
+
"no_repeat_ngram_size": 0,
|
| 99 |
+
"num_attention_heads": 16,
|
| 100 |
+
"num_beam_groups": 1,
|
| 101 |
+
"num_beams": 1,
|
| 102 |
+
"num_hidden_layers": 6,
|
| 103 |
+
"num_learnable_queries": 64,
|
| 104 |
+
"num_return_sequences": 1,
|
| 105 |
+
"output_attentions": false,
|
| 106 |
+
"output_hidden_states": false,
|
| 107 |
+
"output_scores": false,
|
| 108 |
+
"pad_token_id": null,
|
| 109 |
+
"prefix": null,
|
| 110 |
+
"problem_type": null,
|
| 111 |
+
"pruned_heads": {},
|
| 112 |
+
"remove_invalid_values": false,
|
| 113 |
+
"repetition_penalty": 1.0,
|
| 114 |
+
"return_dict": true,
|
| 115 |
+
"return_dict_in_generate": false,
|
| 116 |
+
"sep_token_id": null,
|
| 117 |
+
"suppress_tokens": null,
|
| 118 |
+
"task_specific_params": null,
|
| 119 |
+
"temperature": 1.0,
|
| 120 |
+
"tf_legacy_loss": false,
|
| 121 |
+
"tie_encoder_decoder": false,
|
| 122 |
+
"tie_word_embeddings": true,
|
| 123 |
+
"tokenizer_class": null,
|
| 124 |
+
"top_k": 50,
|
| 125 |
+
"top_p": 1.0,
|
| 126 |
+
"torch_dtype": null,
|
| 127 |
+
"torchscript": false,
|
| 128 |
+
"transformers_version": "4.28.1",
|
| 129 |
+
"typical_p": 1.0,
|
| 130 |
+
"use_bfloat16": false
|
| 131 |
+
},
|
| 132 |
+
"visual_model": {
|
| 133 |
+
"_name_or_path": "",
|
| 134 |
+
"add_cross_attention": false,
|
| 135 |
+
"architectures": null,
|
| 136 |
+
"attention_dropout": 0.0,
|
| 137 |
+
"bad_words_ids": null,
|
| 138 |
+
"begin_suppress_tokens": null,
|
| 139 |
+
"bos_token_id": null,
|
| 140 |
+
"chunk_size_feed_forward": 0,
|
| 141 |
+
"cross_attention_hidden_size": null,
|
| 142 |
+
"decoder_start_token_id": null,
|
| 143 |
+
"diversity_penalty": 0.0,
|
| 144 |
+
"do_sample": false,
|
| 145 |
+
"early_stopping": false,
|
| 146 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 147 |
+
"eos_token_id": null,
|
| 148 |
+
"exponential_decay_length_penalty": null,
|
| 149 |
+
"finetuning_task": null,
|
| 150 |
+
"forced_bos_token_id": null,
|
| 151 |
+
"forced_eos_token_id": null,
|
| 152 |
+
"hidden_act": "quick_gelu",
|
| 153 |
+
"hidden_size": 1024,
|
| 154 |
+
"id2label": {
|
| 155 |
+
"0": "LABEL_0",
|
| 156 |
+
"1": "LABEL_1"
|
| 157 |
+
},
|
| 158 |
+
"image_size": 448,
|
| 159 |
+
"initializer_factor": 1.0,
|
| 160 |
+
"initializer_range": 0.02,
|
| 161 |
+
"intermediate_size": 4096,
|
| 162 |
+
"is_decoder": false,
|
| 163 |
+
"is_encoder_decoder": false,
|
| 164 |
+
"label2id": {
|
| 165 |
+
"LABEL_0": 0,
|
| 166 |
+
"LABEL_1": 1
|
| 167 |
+
},
|
| 168 |
+
"layer_norm_eps": 1e-06,
|
| 169 |
+
"length_penalty": 1.0,
|
| 170 |
+
"max_length": 20,
|
| 171 |
+
"min_length": 0,
|
| 172 |
+
"model_type": "mplug_owl_vision_model",
|
| 173 |
+
"no_repeat_ngram_size": 0,
|
| 174 |
+
"num_attention_heads": 16,
|
| 175 |
+
"num_beam_groups": 1,
|
| 176 |
+
"num_beams": 1,
|
| 177 |
+
"num_channels": 3,
|
| 178 |
+
"num_hidden_layers": 24,
|
| 179 |
+
"num_return_sequences": 1,
|
| 180 |
+
"output_attentions": false,
|
| 181 |
+
"output_hidden_states": false,
|
| 182 |
+
"output_scores": false,
|
| 183 |
+
"pad_token_id": null,
|
| 184 |
+
"patch_size": 14,
|
| 185 |
+
"prefix": null,
|
| 186 |
+
"problem_type": null,
|
| 187 |
+
"projection_dim": 768,
|
| 188 |
+
"pruned_heads": {},
|
| 189 |
+
"remove_invalid_values": false,
|
| 190 |
+
"repetition_penalty": 1.0,
|
| 191 |
+
"return_dict": true,
|
| 192 |
+
"return_dict_in_generate": false,
|
| 193 |
+
"sep_token_id": null,
|
| 194 |
+
"suppress_tokens": null,
|
| 195 |
+
"task_specific_params": null,
|
| 196 |
+
"temperature": 1.0,
|
| 197 |
+
"tf_legacy_loss": false,
|
| 198 |
+
"tie_encoder_decoder": false,
|
| 199 |
+
"tie_word_embeddings": true,
|
| 200 |
+
"tokenizer_class": null,
|
| 201 |
+
"top_k": 50,
|
| 202 |
+
"top_p": 1.0,
|
| 203 |
+
"torch_dtype": null,
|
| 204 |
+
"torchscript": false,
|
| 205 |
+
"transformers_version": "4.28.1",
|
| 206 |
+
"typical_p": 1.0,
|
| 207 |
+
"use_bfloat16": false,
|
| 208 |
+
"use_flash_attn": false
|
| 209 |
+
}
|
| 210 |
+
},
|
| 211 |
+
"vocab_size": 32000,
|
| 212 |
+
"weight_desp": 1.0,
|
| 213 |
+
"weight_in_level": null,
|
| 214 |
+
"weight_next_token": 0.01,
|
| 215 |
+
"weight_rank": 1.0,
|
| 216 |
+
"weight_softkl": 1.0
|
| 217 |
+
}
|
configuration_mplug_owl2.py
ADDED
|
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
import copy
|
| 6 |
+
import os
|
| 7 |
+
from typing import Union
|
| 8 |
+
|
| 9 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 10 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
from transformers.models.auto import CONFIG_MAPPING
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class LlamaConfig(PretrainedConfig):
|
| 16 |
+
r"""
|
| 17 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
| 18 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 19 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
| 20 |
+
|
| 21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 22 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 27 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
| 28 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
| 29 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 30 |
+
Dimension of the hidden representations.
|
| 31 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 32 |
+
Dimension of the MLP representations.
|
| 33 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 34 |
+
Number of hidden layers in the Transformer decoder.
|
| 35 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 36 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 37 |
+
num_key_value_heads (`int`, *optional*):
|
| 38 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 39 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 40 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 41 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 42 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 43 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 44 |
+
`num_attention_heads`.
|
| 45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 46 |
+
The non-linear activation function (function or string) in the decoder.
|
| 47 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 48 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
| 49 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
| 50 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 51 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 52 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 53 |
+
The epsilon used by the rms normalization layers.
|
| 54 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 55 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 56 |
+
relevant if `config.is_decoder=True`.
|
| 57 |
+
pad_token_id (`int`, *optional*):
|
| 58 |
+
Padding token id.
|
| 59 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 60 |
+
Beginning of stream token id.
|
| 61 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 62 |
+
End of stream token id.
|
| 63 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 64 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 65 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
| 66 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 67 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 68 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 69 |
+
Whether to tie weight embeddings
|
| 70 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 71 |
+
The base period of the RoPE embeddings.
|
| 72 |
+
rope_scaling (`Dict`, *optional*):
|
| 73 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 74 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 75 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 76 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 77 |
+
these scaling strategies behave:
|
| 78 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 79 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 80 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 81 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
| 86 |
+
|
| 87 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
| 88 |
+
>>> configuration = LlamaConfig()
|
| 89 |
+
|
| 90 |
+
>>> # Initializing a model from the llama-7b style configuration
|
| 91 |
+
>>> model = LlamaModel(configuration)
|
| 92 |
+
|
| 93 |
+
>>> # Accessing the model configuration
|
| 94 |
+
>>> configuration = model.config
|
| 95 |
+
```"""
|
| 96 |
+
model_type = "llama"
|
| 97 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 98 |
+
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
vocab_size=32000,
|
| 102 |
+
hidden_size=4096,
|
| 103 |
+
intermediate_size=11008,
|
| 104 |
+
num_hidden_layers=32,
|
| 105 |
+
num_attention_heads=32,
|
| 106 |
+
num_key_value_heads=None,
|
| 107 |
+
hidden_act="silu",
|
| 108 |
+
max_position_embeddings=2048,
|
| 109 |
+
initializer_range=0.02,
|
| 110 |
+
rms_norm_eps=1e-6,
|
| 111 |
+
use_cache=True,
|
| 112 |
+
pad_token_id=None,
|
| 113 |
+
bos_token_id=1,
|
| 114 |
+
eos_token_id=2,
|
| 115 |
+
pretraining_tp=1,
|
| 116 |
+
tie_word_embeddings=False,
|
| 117 |
+
rope_theta=10000.0,
|
| 118 |
+
rope_scaling=None,
|
| 119 |
+
attention_bias=False,
|
| 120 |
+
attention_dropout=0.0,
|
| 121 |
+
**kwargs,
|
| 122 |
+
):
|
| 123 |
+
self.vocab_size = vocab_size
|
| 124 |
+
self.max_position_embeddings = max_position_embeddings
|
| 125 |
+
self.hidden_size = hidden_size
|
| 126 |
+
self.intermediate_size = intermediate_size
|
| 127 |
+
self.num_hidden_layers = num_hidden_layers
|
| 128 |
+
self.num_attention_heads = num_attention_heads
|
| 129 |
+
|
| 130 |
+
# for backward compatibility
|
| 131 |
+
if num_key_value_heads is None:
|
| 132 |
+
num_key_value_heads = num_attention_heads
|
| 133 |
+
|
| 134 |
+
self.num_key_value_heads = num_key_value_heads
|
| 135 |
+
self.hidden_act = hidden_act
|
| 136 |
+
self.initializer_range = initializer_range
|
| 137 |
+
self.rms_norm_eps = rms_norm_eps
|
| 138 |
+
self.pretraining_tp = pretraining_tp
|
| 139 |
+
self.use_cache = use_cache
|
| 140 |
+
self.rope_theta = rope_theta
|
| 141 |
+
self.rope_scaling = rope_scaling
|
| 142 |
+
self._rope_scaling_validation()
|
| 143 |
+
self.attention_bias = attention_bias
|
| 144 |
+
self.attention_dropout = attention_dropout
|
| 145 |
+
|
| 146 |
+
super().__init__(
|
| 147 |
+
pad_token_id=pad_token_id,
|
| 148 |
+
bos_token_id=bos_token_id,
|
| 149 |
+
eos_token_id=eos_token_id,
|
| 150 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 151 |
+
**kwargs,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
def _rope_scaling_validation(self):
|
| 155 |
+
"""
|
| 156 |
+
Validate the `rope_scaling` configuration.
|
| 157 |
+
"""
|
| 158 |
+
if self.rope_scaling is None:
|
| 159 |
+
return
|
| 160 |
+
|
| 161 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 162 |
+
raise ValueError(
|
| 163 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
| 164 |
+
f"got {self.rope_scaling}"
|
| 165 |
+
)
|
| 166 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 167 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
| 168 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 171 |
+
)
|
| 172 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
| 173 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class MplugOwlVisionConfig(PretrainedConfig):
|
| 177 |
+
r"""
|
| 178 |
+
This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate
|
| 179 |
+
a
|
| 180 |
+
mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 181 |
+
configuration defaults will yield a similar configuration to that of the mPLUG-Owl
|
| 182 |
+
[x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.
|
| 183 |
+
|
| 184 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 185 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 186 |
+
|
| 187 |
+
Args:
|
| 188 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 189 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 190 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 191 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 192 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 193 |
+
Number of hidden layers in the Transformer encoder.
|
| 194 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 195 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 196 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 197 |
+
The size (resolution) of each image.
|
| 198 |
+
patch_size (`int`, *optional*, defaults to 32):
|
| 199 |
+
The size (resolution) of each patch.
|
| 200 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
| 201 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 202 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
| 203 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
| 204 |
+
The epsilon used by the layer normalization layers.
|
| 205 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 206 |
+
The dropout ratio for the attention probabilities.
|
| 207 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 208 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 209 |
+
initializer_factor (`float`, *optional*, defaults to 1):
|
| 210 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
| 211 |
+
testing).
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
```"""
|
| 215 |
+
|
| 216 |
+
model_type = "mplug_owl_vision_model"
|
| 217 |
+
|
| 218 |
+
def __init__(
|
| 219 |
+
self,
|
| 220 |
+
hidden_size=1024,
|
| 221 |
+
intermediate_size=4096,
|
| 222 |
+
projection_dim=768,
|
| 223 |
+
num_hidden_layers=24,
|
| 224 |
+
num_attention_heads=16,
|
| 225 |
+
num_channels=3,
|
| 226 |
+
image_size=1024,
|
| 227 |
+
patch_size=14,
|
| 228 |
+
hidden_act="quick_gelu",
|
| 229 |
+
layer_norm_eps=1e-6,
|
| 230 |
+
attention_dropout=0.0,
|
| 231 |
+
initializer_range=0.02,
|
| 232 |
+
initializer_factor=1.0,
|
| 233 |
+
use_flash_attn=False,
|
| 234 |
+
**kwargs,
|
| 235 |
+
):
|
| 236 |
+
super().__init__(**kwargs)
|
| 237 |
+
self.hidden_size = hidden_size
|
| 238 |
+
self.intermediate_size = intermediate_size
|
| 239 |
+
self.projection_dim = projection_dim
|
| 240 |
+
self.num_hidden_layers = num_hidden_layers
|
| 241 |
+
self.num_attention_heads = num_attention_heads
|
| 242 |
+
self.num_channels = num_channels
|
| 243 |
+
self.patch_size = patch_size
|
| 244 |
+
self.image_size = image_size
|
| 245 |
+
self.initializer_range = initializer_range
|
| 246 |
+
self.initializer_factor = initializer_factor
|
| 247 |
+
self.attention_dropout = attention_dropout
|
| 248 |
+
self.layer_norm_eps = layer_norm_eps
|
| 249 |
+
self.hidden_act = hidden_act
|
| 250 |
+
self.use_flash_attn = use_flash_attn
|
| 251 |
+
|
| 252 |
+
@classmethod
|
| 253 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 254 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 255 |
+
|
| 256 |
+
# get the vision config dict if we are loading from MplugOwlConfig
|
| 257 |
+
if config_dict.get("model_type") == "mplug-owl":
|
| 258 |
+
config_dict = config_dict["vision_config"]
|
| 259 |
+
|
| 260 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 261 |
+
logger.warning(
|
| 262 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 263 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
class MplugOwlVisualAbstractorConfig(PretrainedConfig):
|
| 270 |
+
model_type = "mplug_owl_visual_abstract"
|
| 271 |
+
|
| 272 |
+
def __init__(
|
| 273 |
+
self,
|
| 274 |
+
num_learnable_queries=64,
|
| 275 |
+
hidden_size=1024,
|
| 276 |
+
num_hidden_layers=6,
|
| 277 |
+
num_attention_heads=16,
|
| 278 |
+
intermediate_size=2816,
|
| 279 |
+
attention_probs_dropout_prob=0.,
|
| 280 |
+
initializer_range=0.02,
|
| 281 |
+
layer_norm_eps=1e-6,
|
| 282 |
+
encoder_hidden_size=1024,
|
| 283 |
+
grid_size=None,
|
| 284 |
+
**kwargs,
|
| 285 |
+
):
|
| 286 |
+
super().__init__(**kwargs)
|
| 287 |
+
self.hidden_size = hidden_size
|
| 288 |
+
self.num_learnable_queries = num_learnable_queries
|
| 289 |
+
self.num_hidden_layers = num_hidden_layers
|
| 290 |
+
self.num_attention_heads = num_attention_heads
|
| 291 |
+
self.intermediate_size = intermediate_size
|
| 292 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 293 |
+
self.initializer_range = initializer_range
|
| 294 |
+
self.layer_norm_eps = layer_norm_eps
|
| 295 |
+
self.encoder_hidden_size = encoder_hidden_size
|
| 296 |
+
self.grid_size = grid_size if grid_size else 73
|
| 297 |
+
|
| 298 |
+
@classmethod
|
| 299 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 300 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 301 |
+
|
| 302 |
+
# get the visual_abstractor config dict if we are loading from MplugOwlConfig
|
| 303 |
+
if config_dict.get("model_type") == "mplug-owl":
|
| 304 |
+
config_dict = config_dict["abstractor_config"]
|
| 305 |
+
|
| 306 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 307 |
+
logger.warning(
|
| 308 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 309 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
DEFAULT_VISUAL_CONFIG = {
|
| 317 |
+
"visual_model": MplugOwlVisionConfig().to_dict(),
|
| 318 |
+
"visual_abstractor": MplugOwlVisualAbstractorConfig().to_dict()
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
class MPLUGOwl2Config(LlamaConfig):
|
| 322 |
+
model_type = "mplug_owl2"
|
| 323 |
+
def __init__(self, visual_config=None, **kwargs):
|
| 324 |
+
if visual_config is None:
|
| 325 |
+
self.visual_config = DEFAULT_VISUAL_CONFIG
|
| 326 |
+
else:
|
| 327 |
+
self.visual_config = visual_config
|
| 328 |
+
|
| 329 |
+
super().__init__(
|
| 330 |
+
**kwargs,
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
if __name__ == "__main__":
|
| 334 |
+
print(MplugOwlVisionConfig().to_dict())
|
modeling_attn_mask_utils.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import List, Optional, Tuple, Union
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class AttentionMaskConverter:
|
| 20 |
+
"""
|
| 21 |
+
A utility attention mask class that allows one to:
|
| 22 |
+
- Create a causal 4d mask
|
| 23 |
+
- Create a causal 4d mask with slided window
|
| 24 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
| 25 |
+
key_value_length) that can be multiplied with attention scores
|
| 26 |
+
|
| 27 |
+
Parameters:
|
| 28 |
+
is_causal (`bool`):
|
| 29 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
| 30 |
+
|
| 31 |
+
sliding_window (`int`, *optional*):
|
| 32 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
| 36 |
+
self.is_causal = is_causal
|
| 37 |
+
self.sliding_window = sliding_window
|
| 38 |
+
|
| 39 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
| 40 |
+
raise ValueError(
|
| 41 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
def to_causal_4d(
|
| 45 |
+
self,
|
| 46 |
+
batch_size: int,
|
| 47 |
+
query_length: int,
|
| 48 |
+
key_value_length: int,
|
| 49 |
+
dtype: torch.dtype = torch.float32,
|
| 50 |
+
device: Union[torch.device, "str"] = "cpu",
|
| 51 |
+
) -> torch.Tensor:
|
| 52 |
+
"""
|
| 53 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
| 54 |
+
bias to upper right hand triangular matrix (causal mask).
|
| 55 |
+
"""
|
| 56 |
+
if not self.is_causal:
|
| 57 |
+
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
|
| 58 |
+
|
| 59 |
+
# If shape is not cached, create a new causal mask and cache it
|
| 60 |
+
input_shape = (batch_size, query_length)
|
| 61 |
+
past_key_values_length = key_value_length - query_length
|
| 62 |
+
|
| 63 |
+
# create causal mask
|
| 64 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 65 |
+
causal_4d_mask = None
|
| 66 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
| 67 |
+
causal_4d_mask = self._make_causal_mask(
|
| 68 |
+
input_shape,
|
| 69 |
+
dtype,
|
| 70 |
+
device=device,
|
| 71 |
+
past_key_values_length=past_key_values_length,
|
| 72 |
+
sliding_window=self.sliding_window,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
return causal_4d_mask
|
| 76 |
+
|
| 77 |
+
def to_4d(
|
| 78 |
+
self,
|
| 79 |
+
attention_mask_2d: torch.Tensor,
|
| 80 |
+
query_length: int,
|
| 81 |
+
key_value_length: Optional[int] = None,
|
| 82 |
+
dtype: torch.dtype = torch.float32,
|
| 83 |
+
) -> torch.Tensor:
|
| 84 |
+
"""
|
| 85 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
| 86 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
| 87 |
+
causal, a causal mask will be added.
|
| 88 |
+
"""
|
| 89 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
| 90 |
+
|
| 91 |
+
# create causal mask
|
| 92 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 93 |
+
causal_4d_mask = None
|
| 94 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
| 95 |
+
if key_value_length is None:
|
| 96 |
+
raise ValueError(
|
| 97 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
past_key_values_length = key_value_length - query_length
|
| 101 |
+
causal_4d_mask = self._make_causal_mask(
|
| 102 |
+
input_shape,
|
| 103 |
+
dtype,
|
| 104 |
+
device=attention_mask_2d.device,
|
| 105 |
+
past_key_values_length=past_key_values_length,
|
| 106 |
+
sliding_window=self.sliding_window,
|
| 107 |
+
)
|
| 108 |
+
elif self.sliding_window is not None:
|
| 109 |
+
raise NotImplementedError("Sliding window is currently only implemented for causal masking")
|
| 110 |
+
|
| 111 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 112 |
+
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
|
| 113 |
+
attention_mask_2d.device
|
| 114 |
+
)
|
| 115 |
+
expanded_4d_mask = expanded_attn_mask if causal_4d_mask is None else expanded_attn_mask + causal_4d_mask
|
| 116 |
+
|
| 117 |
+
return expanded_4d_mask
|
| 118 |
+
|
| 119 |
+
@staticmethod
|
| 120 |
+
def _make_causal_mask(
|
| 121 |
+
input_ids_shape: torch.Size,
|
| 122 |
+
dtype: torch.dtype,
|
| 123 |
+
device: torch.device,
|
| 124 |
+
past_key_values_length: int = 0,
|
| 125 |
+
sliding_window: Optional[int] = None,
|
| 126 |
+
):
|
| 127 |
+
"""
|
| 128 |
+
Make causal mask used for bi-directional self-attention.
|
| 129 |
+
"""
|
| 130 |
+
bsz, tgt_len = input_ids_shape
|
| 131 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
| 132 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 133 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 134 |
+
|
| 135 |
+
mask = mask.to(dtype)
|
| 136 |
+
|
| 137 |
+
if past_key_values_length > 0:
|
| 138 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 139 |
+
|
| 140 |
+
# add lower triangular sliding window mask if necessary
|
| 141 |
+
if sliding_window is not None:
|
| 142 |
+
diagonal = past_key_values_length - sliding_window + 1
|
| 143 |
+
|
| 144 |
+
context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal)
|
| 145 |
+
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
|
| 146 |
+
|
| 147 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 148 |
+
|
| 149 |
+
@staticmethod
|
| 150 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 151 |
+
"""
|
| 152 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 153 |
+
"""
|
| 154 |
+
bsz, src_len = mask.size()
|
| 155 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 156 |
+
|
| 157 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 158 |
+
|
| 159 |
+
inverted_mask = 1.0 - expanded_mask
|
| 160 |
+
|
| 161 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def _prepare_4d_causal_attention_mask(
|
| 165 |
+
attention_mask: Optional[torch.Tensor],
|
| 166 |
+
input_shape: Union[torch.Size, Tuple, List],
|
| 167 |
+
inputs_embeds: torch.Tensor,
|
| 168 |
+
past_key_values_length: int,
|
| 169 |
+
sliding_window: Optional[int] = None,
|
| 170 |
+
):
|
| 171 |
+
"""
|
| 172 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 173 |
+
`(batch_size, key_value_length)`
|
| 174 |
+
|
| 175 |
+
Args:
|
| 176 |
+
attention_mask (`torch.Tensor` or `None`):
|
| 177 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
| 178 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
| 179 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
| 180 |
+
inputs_embeds (`torch.Tensor`):
|
| 181 |
+
The embedded inputs as a torch Tensor.
|
| 182 |
+
past_key_values_length (`int`):
|
| 183 |
+
The length of the key value cache.
|
| 184 |
+
sliding_window (`int`, *optional*):
|
| 185 |
+
If the model uses windowed attention, a sliding window should be passed.
|
| 186 |
+
"""
|
| 187 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
| 188 |
+
|
| 189 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
| 190 |
+
|
| 191 |
+
# 4d mask is passed through the layers
|
| 192 |
+
if attention_mask is not None:
|
| 193 |
+
attention_mask = attn_mask_converter.to_4d(
|
| 194 |
+
attention_mask, input_shape[-1], key_value_length, dtype=inputs_embeds.dtype
|
| 195 |
+
)
|
| 196 |
+
else:
|
| 197 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
| 198 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
return attention_mask
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 205 |
+
"""
|
| 206 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 207 |
+
`(batch_size, key_value_length)`
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
mask (`torch.Tensor` or `None`):
|
| 211 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
| 212 |
+
dtype (`torch.dtype`):
|
| 213 |
+
The torch dtype the created mask shall have.
|
| 214 |
+
tgt_len (`int`):
|
| 215 |
+
The target length or query length the created mask shall have.
|
| 216 |
+
"""
|
| 217 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def _create_4d_causal_attention_mask(
|
| 221 |
+
input_shape: Union[torch.Size, Tuple, List],
|
| 222 |
+
dtype: torch.dtype,
|
| 223 |
+
device: torch.device,
|
| 224 |
+
past_key_values_length: int = 0,
|
| 225 |
+
sliding_window: Optional[int] = None,
|
| 226 |
+
):
|
| 227 |
+
"""
|
| 228 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
| 232 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
| 233 |
+
dtype (`torch.dtype`):
|
| 234 |
+
The torch dtype the created mask shall have.
|
| 235 |
+
device (`int`):
|
| 236 |
+
The torch device the created mask shall have.
|
| 237 |
+
sliding_window (`int`, *optional*):
|
| 238 |
+
If the model uses windowed attention, a sliding window should be passed.
|
| 239 |
+
"""
|
| 240 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
| 241 |
+
|
| 242 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
| 243 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
| 244 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
return attention_mask
|
| 248 |
+
|
| 249 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(
|
| 250 |
+
attention_mask: Optional[torch.Tensor],
|
| 251 |
+
input_shape: Union[torch.Size, Tuple, List],
|
| 252 |
+
inputs_embeds: torch.Tensor,
|
| 253 |
+
past_key_values_length: int,
|
| 254 |
+
sliding_window: Optional[int] = None,
|
| 255 |
+
):
|
| 256 |
+
"""
|
| 257 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 258 |
+
`(batch_size, key_value_length)` for SDPA (Scaled Dot Product Attention).
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
attention_mask (`torch.Tensor` or `None`):
|
| 262 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
| 263 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
| 264 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
| 265 |
+
inputs_embeds (`torch.Tensor`):
|
| 266 |
+
The embedded inputs as a torch Tensor.
|
| 267 |
+
past_key_values_length (`int`):
|
| 268 |
+
The length of the key value cache.
|
| 269 |
+
sliding_window (`int`, *optional*):
|
| 270 |
+
If the model uses windowed attention, a sliding window should be passed.
|
| 271 |
+
"""
|
| 272 |
+
# For SDPA, we use the same implementation as the regular causal attention mask
|
| 273 |
+
return _prepare_4d_causal_attention_mask(
|
| 274 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length, sliding_window
|
| 275 |
+
)
|
modeling_llama2.py
ADDED
|
@@ -0,0 +1,861 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import warnings
|
| 3 |
+
from functools import partial
|
| 4 |
+
from typing import List, Optional, Tuple, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torch.utils.checkpoint
|
| 9 |
+
from torch import nn
|
| 10 |
+
from torch.nn import CrossEntropyLoss
|
| 11 |
+
from transformers.cache_utils import Cache
|
| 12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 13 |
+
from transformers.utils import logging
|
| 14 |
+
from transformers.models.llama.modeling_llama import (
|
| 15 |
+
LlamaRotaryEmbedding,
|
| 16 |
+
LlamaLinearScalingRotaryEmbedding,
|
| 17 |
+
LlamaDynamicNTKScalingRotaryEmbedding,
|
| 18 |
+
apply_rotary_pos_emb,
|
| 19 |
+
repeat_kv,
|
| 20 |
+
LlamaMLP,
|
| 21 |
+
LlamaRMSNorm,
|
| 22 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
import copy
|
| 28 |
+
import os
|
| 29 |
+
import sys
|
| 30 |
+
|
| 31 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
| 32 |
+
sys.path.insert(0, dir_path)
|
| 33 |
+
|
| 34 |
+
import transformers
|
| 35 |
+
from transformers.models.llama.modeling_llama import *
|
| 36 |
+
|
| 37 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 38 |
+
from transformers.utils import logging
|
| 39 |
+
|
| 40 |
+
from .modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
| 41 |
+
from .configuration_mplug_owl2 import LlamaConfig
|
| 42 |
+
|
| 43 |
+
def _get_unpad_data(attention_mask):
|
| 44 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 45 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 46 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 47 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 48 |
+
return (
|
| 49 |
+
indices,
|
| 50 |
+
cu_seqlens,
|
| 51 |
+
max_seqlen_in_batch,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class MultiwayNetwork(nn.Module):
|
| 56 |
+
|
| 57 |
+
def __init__(self, module_provider, num_multiway=2):
|
| 58 |
+
super(MultiwayNetwork, self).__init__()
|
| 59 |
+
|
| 60 |
+
self.multiway = torch.nn.ModuleList([module_provider() for _ in range(num_multiway)])
|
| 61 |
+
|
| 62 |
+
def forward(self, hidden_states, multiway_indices):
|
| 63 |
+
|
| 64 |
+
if len(self.multiway) == 1:
|
| 65 |
+
return self.multiway[0](hidden_states)
|
| 66 |
+
|
| 67 |
+
output_hidden_states = torch.empty_like(hidden_states)
|
| 68 |
+
|
| 69 |
+
for idx, subway in enumerate(self.multiway):
|
| 70 |
+
local_indices = multiway_indices.eq(idx).nonzero(as_tuple=True)
|
| 71 |
+
hidden = hidden_states[local_indices].unsqueeze(1).contiguous()
|
| 72 |
+
if hidden.numel():
|
| 73 |
+
output = subway(hidden)
|
| 74 |
+
if isinstance(output, tuple):
|
| 75 |
+
output = output[0]
|
| 76 |
+
output = output.squeeze(1)
|
| 77 |
+
output_hidden_states[local_indices] = output
|
| 78 |
+
|
| 79 |
+
return output_hidden_states.contiguous()
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class LlamaAttention(nn.Module):
|
| 83 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 84 |
+
|
| 85 |
+
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.config = config
|
| 88 |
+
self.layer_idx = layer_idx
|
| 89 |
+
if layer_idx is None:
|
| 90 |
+
logger.warning_once(
|
| 91 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 92 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 93 |
+
"when creating this class."
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
self.attention_dropout = config.attention_dropout
|
| 97 |
+
self.hidden_size = config.hidden_size
|
| 98 |
+
self.num_heads = config.num_attention_heads
|
| 99 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 100 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 101 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 102 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 103 |
+
self.rope_theta = config.rope_theta
|
| 104 |
+
self.is_causal = True
|
| 105 |
+
|
| 106 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 107 |
+
raise ValueError(
|
| 108 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 109 |
+
f" and `num_heads`: {self.num_heads})."
|
| 110 |
+
)
|
| 111 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
| 112 |
+
self.k_proj = MultiwayNetwork(module_provider=partial(
|
| 113 |
+
nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 114 |
+
)
|
| 115 |
+
self.v_proj = MultiwayNetwork(module_provider=partial(
|
| 116 |
+
nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 117 |
+
)
|
| 118 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
| 119 |
+
self._init_rope()
|
| 120 |
+
|
| 121 |
+
def _init_rope(self):
|
| 122 |
+
if self.config.rope_scaling is None:
|
| 123 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
| 124 |
+
self.head_dim,
|
| 125 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 126 |
+
base=self.rope_theta,
|
| 127 |
+
)
|
| 128 |
+
else:
|
| 129 |
+
scaling_type = self.config.rope_scaling["type"]
|
| 130 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
| 131 |
+
if scaling_type == "linear":
|
| 132 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
| 133 |
+
self.head_dim,
|
| 134 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 135 |
+
scaling_factor=scaling_factor,
|
| 136 |
+
base=self.rope_theta,
|
| 137 |
+
)
|
| 138 |
+
elif scaling_type == "dynamic":
|
| 139 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
| 140 |
+
self.head_dim,
|
| 141 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 142 |
+
scaling_factor=scaling_factor,
|
| 143 |
+
base=self.rope_theta,
|
| 144 |
+
)
|
| 145 |
+
else:
|
| 146 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 147 |
+
|
| 148 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 149 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 150 |
+
|
| 151 |
+
def forward(
|
| 152 |
+
self,
|
| 153 |
+
hidden_states: torch.Tensor,
|
| 154 |
+
modality_indicators: torch.Tensor,
|
| 155 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 156 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 157 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 158 |
+
output_attentions: bool = False,
|
| 159 |
+
use_cache: bool = False,
|
| 160 |
+
padding_mask: Optional[torch.LongTensor] = None,
|
| 161 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 162 |
+
bsz, q_len, _ = hidden_states.size()
|
| 163 |
+
|
| 164 |
+
query_states = self.q_proj(hidden_states, )
|
| 165 |
+
key_states = self.k_proj(hidden_states, modality_indicators)
|
| 166 |
+
value_states = self.v_proj(hidden_states, modality_indicators)
|
| 167 |
+
|
| 168 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 169 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 170 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 171 |
+
|
| 172 |
+
kv_seq_len = key_states.shape[-2]
|
| 173 |
+
if past_key_value is not None:
|
| 174 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 175 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 176 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 177 |
+
|
| 178 |
+
if past_key_value is not None:
|
| 179 |
+
# reuse k, v, self_attention
|
| 180 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 181 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 182 |
+
|
| 183 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 184 |
+
|
| 185 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 186 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 187 |
+
|
| 188 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 189 |
+
|
| 190 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 191 |
+
raise ValueError(
|
| 192 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 193 |
+
f" {attn_weights.size()}"
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
if attention_mask is not None:
|
| 197 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 198 |
+
raise ValueError(
|
| 199 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 200 |
+
)
|
| 201 |
+
attn_weights = attn_weights + attention_mask
|
| 202 |
+
|
| 203 |
+
# upcast attention to fp32
|
| 204 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 205 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 206 |
+
|
| 207 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 208 |
+
raise ValueError(
|
| 209 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 210 |
+
f" {attn_output.size()}"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 214 |
+
|
| 215 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 216 |
+
|
| 217 |
+
attn_output = self.o_proj(attn_output)
|
| 218 |
+
|
| 219 |
+
if not output_attentions:
|
| 220 |
+
attn_weights = None
|
| 221 |
+
|
| 222 |
+
return attn_output, attn_weights, past_key_value
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
class LlamaFlashAttention2(LlamaAttention):
|
| 226 |
+
"""
|
| 227 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
| 228 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 229 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 230 |
+
"""
|
| 231 |
+
|
| 232 |
+
def __init__(self, *args, **kwargs):
|
| 233 |
+
super().__init__(*args, **kwargs)
|
| 234 |
+
|
| 235 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 236 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 237 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 238 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 239 |
+
|
| 240 |
+
def forward(
|
| 241 |
+
self,
|
| 242 |
+
hidden_states: torch.Tensor,
|
| 243 |
+
modality_indicators: torch.Tensor,
|
| 244 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 245 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 246 |
+
past_key_value: Optional[Cache] = None,
|
| 247 |
+
output_attentions: bool = False,
|
| 248 |
+
use_cache: bool = False,
|
| 249 |
+
**kwargs,
|
| 250 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 251 |
+
# LlamaFlashAttention2 attention does not support output_attentions
|
| 252 |
+
if "padding_mask" in kwargs:
|
| 253 |
+
warnings.warn(
|
| 254 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# overwrite attention_mask with padding_mask
|
| 258 |
+
attention_mask = kwargs.pop("padding_mask")
|
| 259 |
+
|
| 260 |
+
output_attentions = False
|
| 261 |
+
|
| 262 |
+
bsz, q_len, _ = hidden_states.size()
|
| 263 |
+
|
| 264 |
+
query_states = self.q_proj(hidden_states)
|
| 265 |
+
key_states = self.k_proj(hidden_states, modality_indicators)
|
| 266 |
+
value_states = self.v_proj(hidden_states, modality_indicators)
|
| 267 |
+
|
| 268 |
+
# Flash attention requires the input to have the shape
|
| 269 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 270 |
+
# therefore we just need to keep the original shape
|
| 271 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 272 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 273 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 274 |
+
|
| 275 |
+
kv_seq_len = key_states.shape[-2]
|
| 276 |
+
if past_key_value is not None:
|
| 277 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 278 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 279 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 280 |
+
|
| 281 |
+
if past_key_value is not None:
|
| 282 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 283 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 284 |
+
|
| 285 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 286 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 287 |
+
query_states = query_states.transpose(1, 2)
|
| 288 |
+
key_states = key_states.transpose(1, 2)
|
| 289 |
+
value_states = value_states.transpose(1, 2)
|
| 290 |
+
|
| 291 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
| 292 |
+
|
| 293 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 294 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 295 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 296 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 297 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
| 298 |
+
|
| 299 |
+
input_dtype = query_states.dtype
|
| 300 |
+
if input_dtype == torch.float32:
|
| 301 |
+
if torch.is_autocast_enabled():
|
| 302 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 303 |
+
# Handle the case where the model is quantized
|
| 304 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 305 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 306 |
+
else:
|
| 307 |
+
target_dtype = self.q_proj.weight.dtype
|
| 308 |
+
|
| 309 |
+
logger.warning_once(
|
| 310 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 311 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 312 |
+
f" {target_dtype}."
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
query_states = query_states.to(target_dtype)
|
| 316 |
+
key_states = key_states.to(target_dtype)
|
| 317 |
+
value_states = value_states.to(target_dtype)
|
| 318 |
+
|
| 319 |
+
attn_output = self._flash_attention_forward(
|
| 320 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 324 |
+
attn_output = self.o_proj(attn_output)
|
| 325 |
+
|
| 326 |
+
if not output_attentions:
|
| 327 |
+
attn_weights = None
|
| 328 |
+
|
| 329 |
+
return attn_output, attn_weights, past_key_value
|
| 330 |
+
|
| 331 |
+
def _flash_attention_forward(
|
| 332 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 333 |
+
):
|
| 334 |
+
"""
|
| 335 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 336 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 337 |
+
|
| 338 |
+
Args:
|
| 339 |
+
query_states (`torch.Tensor`):
|
| 340 |
+
Input query states to be passed to Flash Attention API
|
| 341 |
+
key_states (`torch.Tensor`):
|
| 342 |
+
Input key states to be passed to Flash Attention API
|
| 343 |
+
value_states (`torch.Tensor`):
|
| 344 |
+
Input value states to be passed to Flash Attention API
|
| 345 |
+
attention_mask (`torch.Tensor`):
|
| 346 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 347 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 348 |
+
dropout (`int`, *optional*):
|
| 349 |
+
Attention dropout
|
| 350 |
+
softmax_scale (`float`, *optional*):
|
| 351 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 352 |
+
"""
|
| 353 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 354 |
+
causal = self.is_causal
|
| 355 |
+
else:
|
| 356 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 357 |
+
causal = self.is_causal and query_length != 1
|
| 358 |
+
|
| 359 |
+
# Contains at least one padding token in the sequence
|
| 360 |
+
if attention_mask is not None:
|
| 361 |
+
batch_size = query_states.shape[0]
|
| 362 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 363 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 367 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 368 |
+
|
| 369 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 370 |
+
query_states,
|
| 371 |
+
key_states,
|
| 372 |
+
value_states,
|
| 373 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 374 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 375 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 376 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 377 |
+
dropout_p=dropout,
|
| 378 |
+
softmax_scale=softmax_scale,
|
| 379 |
+
causal=causal,
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 383 |
+
else:
|
| 384 |
+
attn_output = flash_attn_func(
|
| 385 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
return attn_output
|
| 389 |
+
|
| 390 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 391 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 392 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 393 |
+
|
| 394 |
+
key_layer = index_first_axis(
|
| 395 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 396 |
+
)
|
| 397 |
+
value_layer = index_first_axis(
|
| 398 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 399 |
+
)
|
| 400 |
+
if query_length == kv_seq_len:
|
| 401 |
+
query_layer = index_first_axis(
|
| 402 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 403 |
+
)
|
| 404 |
+
cu_seqlens_q = cu_seqlens_k
|
| 405 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 406 |
+
indices_q = indices_k
|
| 407 |
+
elif query_length == 1:
|
| 408 |
+
max_seqlen_in_batch_q = 1
|
| 409 |
+
cu_seqlens_q = torch.arange(
|
| 410 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 411 |
+
) # There is a memcpy here, that is very bad.
|
| 412 |
+
indices_q = cu_seqlens_q[:-1]
|
| 413 |
+
query_layer = query_layer.squeeze(1)
|
| 414 |
+
else:
|
| 415 |
+
# The -q_len: slice assumes left padding.
|
| 416 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 417 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 418 |
+
|
| 419 |
+
return (
|
| 420 |
+
query_layer,
|
| 421 |
+
key_layer,
|
| 422 |
+
value_layer,
|
| 423 |
+
indices_q,
|
| 424 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 425 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
class LlamaSdpaAttention(LlamaAttention):
|
| 430 |
+
"""
|
| 431 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 432 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 433 |
+
SDPA API.
|
| 434 |
+
"""
|
| 435 |
+
|
| 436 |
+
# Adapted from LlamaAttention.forward
|
| 437 |
+
def forward(
|
| 438 |
+
self,
|
| 439 |
+
hidden_states: torch.Tensor,
|
| 440 |
+
modality_indicators: torch.Tensor,
|
| 441 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 442 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 443 |
+
past_key_value: Optional[Cache] = None,
|
| 444 |
+
output_attentions: bool = False,
|
| 445 |
+
use_cache: bool = False,
|
| 446 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 447 |
+
if output_attentions:
|
| 448 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 449 |
+
logger.warning_once(
|
| 450 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 451 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 452 |
+
)
|
| 453 |
+
return super().forward(
|
| 454 |
+
hidden_states=hidden_states,
|
| 455 |
+
modality_indicators=modality_indicators,
|
| 456 |
+
attention_mask=attention_mask,
|
| 457 |
+
position_ids=position_ids,
|
| 458 |
+
past_key_value=past_key_value,
|
| 459 |
+
output_attentions=output_attentions,
|
| 460 |
+
use_cache=use_cache,
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
bsz, q_len, _ = hidden_states.size()
|
| 464 |
+
|
| 465 |
+
query_states = self.q_proj(hidden_states)
|
| 466 |
+
key_states = self.k_proj(hidden_states, modality_indicators)
|
| 467 |
+
value_states = self.v_proj(hidden_states, modality_indicators)
|
| 468 |
+
|
| 469 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 470 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 471 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 472 |
+
|
| 473 |
+
kv_seq_len = key_states.shape[-2]
|
| 474 |
+
if past_key_value is not None:
|
| 475 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 476 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 477 |
+
|
| 478 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 479 |
+
|
| 480 |
+
if past_key_value is not None:
|
| 481 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 482 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 483 |
+
|
| 484 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 485 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 486 |
+
|
| 487 |
+
if attention_mask is not None:
|
| 488 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 489 |
+
raise ValueError(
|
| 490 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 494 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 495 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 496 |
+
query_states = query_states.contiguous()
|
| 497 |
+
key_states = key_states.contiguous()
|
| 498 |
+
value_states = value_states.contiguous()
|
| 499 |
+
|
| 500 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 501 |
+
query_states,
|
| 502 |
+
key_states,
|
| 503 |
+
value_states,
|
| 504 |
+
attn_mask=attention_mask,
|
| 505 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 506 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
| 507 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 511 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 512 |
+
|
| 513 |
+
attn_output = self.o_proj(attn_output)
|
| 514 |
+
|
| 515 |
+
return attn_output, None, past_key_value
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
LLAMA_ATTENTION_CLASSES = {
|
| 520 |
+
"eager": LlamaAttention,
|
| 521 |
+
"flash_attention_2": LlamaFlashAttention2,
|
| 522 |
+
"sdpa": LlamaSdpaAttention,
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
+
class LlamaDecoderLayer(nn.Module):
|
| 526 |
+
def __init__(self, config: LlamaConfig, layer_idx):
|
| 527 |
+
super().__init__()
|
| 528 |
+
self.hidden_size = config.hidden_size
|
| 529 |
+
self.self_attn = LlamaAttention(config=config)
|
| 530 |
+
# Get attention implementation with fallback to 'eager'
|
| 531 |
+
attn_implementation = getattr(config, '_attn_implementation', 'eager')
|
| 532 |
+
if attn_implementation in LLAMA_ATTENTION_CLASSES:
|
| 533 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[attn_implementation](config=config, layer_idx=layer_idx)
|
| 534 |
+
else:
|
| 535 |
+
# Fallback to eager implementation
|
| 536 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES['eager'](config=config, layer_idx=layer_idx)
|
| 537 |
+
self.mlp = LlamaMLP(config)
|
| 538 |
+
self.input_layernorm = MultiwayNetwork(module_provider=partial(
|
| 539 |
+
LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
| 540 |
+
))
|
| 541 |
+
self.post_attention_layernorm = MultiwayNetwork(module_provider=partial(
|
| 542 |
+
LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
| 543 |
+
))
|
| 544 |
+
|
| 545 |
+
def forward(
|
| 546 |
+
self,
|
| 547 |
+
hidden_states: torch.Tensor,
|
| 548 |
+
modality_indicators: torch.Tensor = None,
|
| 549 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 550 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 551 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 552 |
+
output_attentions: Optional[bool] = False,
|
| 553 |
+
use_cache: Optional[bool] = False,
|
| 554 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 555 |
+
"""
|
| 556 |
+
Args:
|
| 557 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 558 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 559 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 560 |
+
output_attentions (`bool`, *optional*):
|
| 561 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 562 |
+
returned tensors for more detail.
|
| 563 |
+
use_cache (`bool`, *optional*):
|
| 564 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 565 |
+
(see `past_key_values`).
|
| 566 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 567 |
+
"""
|
| 568 |
+
|
| 569 |
+
residual = hidden_states
|
| 570 |
+
|
| 571 |
+
hidden_states = self.input_layernorm(hidden_states, modality_indicators)
|
| 572 |
+
|
| 573 |
+
# Self Attention
|
| 574 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 575 |
+
hidden_states=hidden_states,
|
| 576 |
+
modality_indicators=modality_indicators,
|
| 577 |
+
attention_mask=attention_mask,
|
| 578 |
+
position_ids=position_ids,
|
| 579 |
+
past_key_value=past_key_value,
|
| 580 |
+
output_attentions=output_attentions,
|
| 581 |
+
use_cache=use_cache,
|
| 582 |
+
)
|
| 583 |
+
hidden_states = residual + hidden_states
|
| 584 |
+
|
| 585 |
+
# Fully Connected
|
| 586 |
+
residual = hidden_states
|
| 587 |
+
hidden_states = self.post_attention_layernorm(hidden_states, modality_indicators)
|
| 588 |
+
hidden_states = self.mlp(hidden_states)
|
| 589 |
+
hidden_states = residual + hidden_states
|
| 590 |
+
|
| 591 |
+
outputs = (hidden_states,)
|
| 592 |
+
|
| 593 |
+
if output_attentions:
|
| 594 |
+
outputs += (self_attn_weights,)
|
| 595 |
+
|
| 596 |
+
if use_cache:
|
| 597 |
+
outputs += (present_key_value,)
|
| 598 |
+
|
| 599 |
+
return outputs
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
def model_forward(
|
| 603 |
+
self,
|
| 604 |
+
input_ids: torch.LongTensor = None,
|
| 605 |
+
modality_indicators: torch.Tensor = None,
|
| 606 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 607 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 608 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 609 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 610 |
+
use_cache: Optional[bool] = None,
|
| 611 |
+
output_attentions: Optional[bool] = None,
|
| 612 |
+
output_hidden_states: Optional[bool] = None,
|
| 613 |
+
return_dict: Optional[bool] = None,
|
| 614 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 615 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 616 |
+
output_hidden_states = (
|
| 617 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 618 |
+
)
|
| 619 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 620 |
+
|
| 621 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 622 |
+
|
| 623 |
+
# Set attention implementation attributes if not already set
|
| 624 |
+
if not hasattr(self, '_use_flash_attention_2'):
|
| 625 |
+
self._use_flash_attention_2 = getattr(self.config, '_attn_implementation', 'eager') == 'flash_attention_2'
|
| 626 |
+
if not hasattr(self, '_use_sdpa'):
|
| 627 |
+
self._use_sdpa = getattr(self.config, '_attn_implementation', 'eager') == 'sdpa'
|
| 628 |
+
|
| 629 |
+
# retrieve input_ids and inputs_embeds
|
| 630 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 631 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 632 |
+
elif input_ids is not None:
|
| 633 |
+
batch_size, seq_length = input_ids.shape
|
| 634 |
+
elif inputs_embeds is not None:
|
| 635 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 636 |
+
else:
|
| 637 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 638 |
+
|
| 639 |
+
seq_length_with_past = seq_length
|
| 640 |
+
past_key_values_length = 0
|
| 641 |
+
|
| 642 |
+
if past_key_values is not None:
|
| 643 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 644 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 645 |
+
|
| 646 |
+
if position_ids is None:
|
| 647 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 648 |
+
position_ids = torch.arange(
|
| 649 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 650 |
+
)
|
| 651 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 652 |
+
else:
|
| 653 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 654 |
+
|
| 655 |
+
if inputs_embeds is None:
|
| 656 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 657 |
+
# embed positions
|
| 658 |
+
if attention_mask is None:
|
| 659 |
+
attention_mask = torch.ones(
|
| 660 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
if self._use_flash_attention_2:
|
| 664 |
+
# 2d mask is passed through the layers
|
| 665 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 666 |
+
elif self._use_sdpa and not output_attentions:
|
| 667 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
| 668 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 669 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
| 670 |
+
attention_mask,
|
| 671 |
+
(batch_size, seq_length),
|
| 672 |
+
inputs_embeds,
|
| 673 |
+
past_key_values_length,
|
| 674 |
+
)
|
| 675 |
+
else:
|
| 676 |
+
# 4d mask is passed through the layers
|
| 677 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 678 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
hidden_states = inputs_embeds
|
| 682 |
+
|
| 683 |
+
if self.gradient_checkpointing and self.training:
|
| 684 |
+
if use_cache:
|
| 685 |
+
logger.warning_once(
|
| 686 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 687 |
+
)
|
| 688 |
+
use_cache = False
|
| 689 |
+
|
| 690 |
+
# decoder layers
|
| 691 |
+
all_hidden_states = () if output_hidden_states else None
|
| 692 |
+
all_self_attns = () if output_attentions else None
|
| 693 |
+
next_decoder_cache = () if use_cache else None
|
| 694 |
+
|
| 695 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 696 |
+
if output_hidden_states:
|
| 697 |
+
all_hidden_states += (hidden_states,)
|
| 698 |
+
|
| 699 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 700 |
+
|
| 701 |
+
if self.gradient_checkpointing and self.training:
|
| 702 |
+
|
| 703 |
+
def create_custom_forward(module):
|
| 704 |
+
def custom_forward(*inputs):
|
| 705 |
+
# None for past_key_value
|
| 706 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 707 |
+
|
| 708 |
+
return custom_forward
|
| 709 |
+
|
| 710 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 711 |
+
create_custom_forward(decoder_layer),
|
| 712 |
+
hidden_states,
|
| 713 |
+
modality_indicators,
|
| 714 |
+
attention_mask,
|
| 715 |
+
position_ids,
|
| 716 |
+
)
|
| 717 |
+
else:
|
| 718 |
+
layer_outputs = decoder_layer(
|
| 719 |
+
hidden_states,
|
| 720 |
+
modality_indicators=modality_indicators,
|
| 721 |
+
attention_mask=attention_mask,
|
| 722 |
+
position_ids=position_ids,
|
| 723 |
+
past_key_value=past_key_value,
|
| 724 |
+
output_attentions=output_attentions,
|
| 725 |
+
use_cache=use_cache,
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
hidden_states = layer_outputs[0]
|
| 729 |
+
|
| 730 |
+
if use_cache:
|
| 731 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 732 |
+
|
| 733 |
+
if output_attentions:
|
| 734 |
+
all_self_attns += (layer_outputs[1],)
|
| 735 |
+
|
| 736 |
+
hidden_states = self.norm(hidden_states)
|
| 737 |
+
|
| 738 |
+
# add hidden states from the last decoder layer
|
| 739 |
+
if output_hidden_states:
|
| 740 |
+
all_hidden_states += (hidden_states,)
|
| 741 |
+
|
| 742 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 743 |
+
if not return_dict:
|
| 744 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 745 |
+
return BaseModelOutputWithPast(
|
| 746 |
+
last_hidden_state=hidden_states,
|
| 747 |
+
past_key_values=next_cache,
|
| 748 |
+
hidden_states=all_hidden_states,
|
| 749 |
+
attentions=all_self_attns,
|
| 750 |
+
)
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
def causal_model_forward(
|
| 754 |
+
self,
|
| 755 |
+
input_ids: torch.LongTensor = None,
|
| 756 |
+
modality_indicators: torch.Tensor = None,
|
| 757 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 758 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 759 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 760 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 761 |
+
labels: Optional[torch.LongTensor] = None,
|
| 762 |
+
use_cache: Optional[bool] = None,
|
| 763 |
+
output_attentions: Optional[bool] = None,
|
| 764 |
+
output_hidden_states: Optional[bool] = None,
|
| 765 |
+
return_dict: Optional[bool] = None,
|
| 766 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 767 |
+
r"""
|
| 768 |
+
Args:
|
| 769 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 770 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 771 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 772 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 773 |
+
|
| 774 |
+
Returns:
|
| 775 |
+
|
| 776 |
+
Example:
|
| 777 |
+
|
| 778 |
+
```python
|
| 779 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
| 780 |
+
|
| 781 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 782 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 783 |
+
|
| 784 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 785 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 786 |
+
|
| 787 |
+
>>> # Generate
|
| 788 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 789 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 790 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 791 |
+
```"""
|
| 792 |
+
|
| 793 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 794 |
+
output_hidden_states = (
|
| 795 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 796 |
+
)
|
| 797 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 798 |
+
|
| 799 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 800 |
+
outputs = self.model(
|
| 801 |
+
input_ids=input_ids,
|
| 802 |
+
modality_indicators=modality_indicators,
|
| 803 |
+
attention_mask=attention_mask,
|
| 804 |
+
position_ids=position_ids,
|
| 805 |
+
past_key_values=past_key_values,
|
| 806 |
+
inputs_embeds=inputs_embeds,
|
| 807 |
+
use_cache=use_cache,
|
| 808 |
+
output_attentions=output_attentions,
|
| 809 |
+
output_hidden_states=output_hidden_states,
|
| 810 |
+
return_dict=return_dict,
|
| 811 |
+
)
|
| 812 |
+
|
| 813 |
+
hidden_states = outputs[0]
|
| 814 |
+
if self.config.pretraining_tp > 1:
|
| 815 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
| 816 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 817 |
+
logits = torch.cat(logits, dim=-1)
|
| 818 |
+
else:
|
| 819 |
+
logits = self.lm_head(hidden_states)
|
| 820 |
+
logits = logits.float()
|
| 821 |
+
|
| 822 |
+
loss = None
|
| 823 |
+
if labels is not None:
|
| 824 |
+
# Shift so that tokens < n predict n
|
| 825 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 826 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 827 |
+
# Flatten the tokens
|
| 828 |
+
loss_fct = CrossEntropyLoss()
|
| 829 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 830 |
+
shift_labels = shift_labels.view(-1)
|
| 831 |
+
# Enable model parallelism
|
| 832 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 833 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 834 |
+
|
| 835 |
+
if not return_dict:
|
| 836 |
+
output = (logits,) + outputs[1:]
|
| 837 |
+
return (loss,) + output if loss is not None else output
|
| 838 |
+
|
| 839 |
+
return CausalLMOutputWithPast(
|
| 840 |
+
loss=loss,
|
| 841 |
+
logits=logits,
|
| 842 |
+
past_key_values=outputs.past_key_values,
|
| 843 |
+
hidden_states=outputs.hidden_states,
|
| 844 |
+
attentions=outputs.attentions,
|
| 845 |
+
)
|
| 846 |
+
|
| 847 |
+
def replace_llama_modality_adaptive():
|
| 848 |
+
transformers.models.llama.configuration_llama.LlamaConfig = LlamaConfig
|
| 849 |
+
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
|
| 850 |
+
transformers.models.llama.modeling_llama.LlamaFlashAttention2 = LlamaFlashAttention2
|
| 851 |
+
transformers.models.llama.modeling_llama.LlamaSdpaAttention = LlamaSdpaAttention
|
| 852 |
+
transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
|
| 853 |
+
transformers.models.llama.modeling_llama.LlamaModel.forward = model_forward
|
| 854 |
+
transformers.models.llama.modeling_llama.LlamaForCausalLM.forward = causal_model_forward
|
| 855 |
+
|
| 856 |
+
|
| 857 |
+
if __name__ == "__main__":
|
| 858 |
+
replace_llama_modality_adaptive()
|
| 859 |
+
config = transformers.LlamaConfig.from_pretrained('/cpfs01/shared/public/test/vicuna-7b-v1.5/')
|
| 860 |
+
model = transformers.LlamaForCausalLM(config)
|
| 861 |
+
print(model)
|
modeling_mplug_owl2_huggingface.py
ADDED
|
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Haotian Liu & Qinghao Ye (Modified from LLaVA)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
import sys
|
| 17 |
+
from abc import ABC, abstractmethod
|
| 18 |
+
from typing import List, Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
from torch.nn import CrossEntropyLoss
|
| 24 |
+
from PIL import Image
|
| 25 |
+
|
| 26 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
| 27 |
+
sys.path.insert(0, dir_path)
|
| 28 |
+
|
| 29 |
+
from transformers import (
|
| 30 |
+
AutoConfig,
|
| 31 |
+
AutoModelForCausalLM,
|
| 32 |
+
AutoTokenizer,
|
| 33 |
+
LlamaForCausalLM,
|
| 34 |
+
LlamaModel,
|
| 35 |
+
)
|
| 36 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 37 |
+
from transformers.models.clip.image_processing_clip import CLIPImageProcessor
|
| 38 |
+
|
| 39 |
+
from .configuration_mplug_owl2 import (
|
| 40 |
+
MPLUGOwl2Config,
|
| 41 |
+
MplugOwlVisionConfig,
|
| 42 |
+
MplugOwlVisualAbstractorConfig
|
| 43 |
+
)
|
| 44 |
+
from .modeling_attn_mask_utils import _prepare_4d_causal_attention_mask # Force copy
|
| 45 |
+
from .modeling_llama2 import replace_llama_modality_adaptive
|
| 46 |
+
from .visual_encoder import MplugOwlVisionModel, MplugOwlVisualAbstractorModel
|
| 47 |
+
|
| 48 |
+
IGNORE_INDEX = -100
|
| 49 |
+
IMAGE_TOKEN_INDEX = -200
|
| 50 |
+
DEFAULT_IMAGE_TOKEN = "<|image|>"
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
| 54 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)]
|
| 55 |
+
|
| 56 |
+
def insert_separator(X, sep):
|
| 57 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
| 58 |
+
|
| 59 |
+
input_ids = []
|
| 60 |
+
offset = 0
|
| 61 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
| 62 |
+
offset = 1
|
| 63 |
+
input_ids.append(prompt_chunks[0][0])
|
| 64 |
+
|
| 65 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
| 66 |
+
input_ids.extend(x[offset:])
|
| 67 |
+
|
| 68 |
+
if return_tensors is not None:
|
| 69 |
+
if return_tensors == 'pt':
|
| 70 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
| 71 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
| 72 |
+
return input_ids
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def expand2square(pil_img, background_color):
|
| 76 |
+
width, height = pil_img.size
|
| 77 |
+
if width == height:
|
| 78 |
+
return pil_img
|
| 79 |
+
elif width > height:
|
| 80 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 81 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
| 82 |
+
return result
|
| 83 |
+
else:
|
| 84 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 85 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
| 86 |
+
return result
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class MPLUGOwl2MetaModel:
|
| 90 |
+
def __init__(self, config):
|
| 91 |
+
super(MPLUGOwl2MetaModel, self).__init__(config)
|
| 92 |
+
self.vision_model = MplugOwlVisionModel(
|
| 93 |
+
MplugOwlVisionConfig(**config.visual_config["visual_model"])
|
| 94 |
+
)
|
| 95 |
+
self.visual_abstractor = MplugOwlVisualAbstractorModel(
|
| 96 |
+
MplugOwlVisualAbstractorConfig(**config.visual_config["visual_abstractor"]),
|
| 97 |
+
config.hidden_size,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def get_vision_tower(self):
|
| 101 |
+
vision_model = getattr(self, "vision_model", None)
|
| 102 |
+
if type(vision_model) is list:
|
| 103 |
+
vision_model = vision_model[0]
|
| 104 |
+
return vision_model
|
| 105 |
+
|
| 106 |
+
def get_visual_abstractor(self):
|
| 107 |
+
visual_abstractor = getattr(self, "visual_abstractor", None)
|
| 108 |
+
if type(visual_abstractor) is list:
|
| 109 |
+
visual_abstractor = visual_abstractor[0]
|
| 110 |
+
return visual_abstractor
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class MPLUGOwl2MetaForCausalLM(ABC):
|
| 114 |
+
@abstractmethod
|
| 115 |
+
def get_model(self):
|
| 116 |
+
pass
|
| 117 |
+
|
| 118 |
+
def encode_images(self, images):
|
| 119 |
+
image_features = self.get_model().vision_model(images).last_hidden_state
|
| 120 |
+
image_features = (
|
| 121 |
+
self.get_model()
|
| 122 |
+
.visual_abstractor(encoder_hidden_states=image_features)
|
| 123 |
+
.last_hidden_state
|
| 124 |
+
)
|
| 125 |
+
return image_features
|
| 126 |
+
|
| 127 |
+
def prepare_inputs_labels_for_multimodal(
|
| 128 |
+
self, input_ids, attention_mask, past_key_values, labels, images
|
| 129 |
+
):
|
| 130 |
+
if images is None or input_ids.shape[1] == 1:
|
| 131 |
+
if (
|
| 132 |
+
past_key_values is not None
|
| 133 |
+
and images is not None
|
| 134 |
+
and input_ids.shape[1] == 1
|
| 135 |
+
):
|
| 136 |
+
attention_mask = torch.ones(
|
| 137 |
+
(attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1),
|
| 138 |
+
dtype=attention_mask.dtype,
|
| 139 |
+
device=attention_mask.device,
|
| 140 |
+
)
|
| 141 |
+
multiway_indices = torch.zeros_like(input_ids).long().to(self.device)
|
| 142 |
+
return (
|
| 143 |
+
input_ids,
|
| 144 |
+
multiway_indices,
|
| 145 |
+
attention_mask,
|
| 146 |
+
past_key_values,
|
| 147 |
+
None,
|
| 148 |
+
labels,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
if type(images) is list or images.ndim == 5:
|
| 152 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
| 153 |
+
image_features = self.encode_images(concat_images)
|
| 154 |
+
split_sizes = [image.shape[0] for image in images]
|
| 155 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
| 156 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
| 157 |
+
else:
|
| 158 |
+
image_features = self.encode_images(images)
|
| 159 |
+
|
| 160 |
+
new_input_embeds = []
|
| 161 |
+
new_modality_indicators = []
|
| 162 |
+
new_labels = [] if labels is not None else None
|
| 163 |
+
cur_image_idx = 0
|
| 164 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
| 165 |
+
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
|
| 166 |
+
half_len = cur_input_ids.shape[0] // 2
|
| 167 |
+
cur_image_features = image_features[cur_image_idx]
|
| 168 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(
|
| 169 |
+
cur_input_ids[:half_len]
|
| 170 |
+
)
|
| 171 |
+
cur_input_embeds_2 = self.get_model().embed_tokens(
|
| 172 |
+
cur_input_ids[half_len:]
|
| 173 |
+
)
|
| 174 |
+
cur_input_embeds = torch.cat(
|
| 175 |
+
[cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2],
|
| 176 |
+
dim=0,
|
| 177 |
+
)
|
| 178 |
+
new_input_embeds.append(cur_input_embeds)
|
| 179 |
+
|
| 180 |
+
cur_modality_indicators = (
|
| 181 |
+
torch.zeros(len(cur_input_embeds)).long().to(self.device)
|
| 182 |
+
)
|
| 183 |
+
new_modality_indicators.append(cur_modality_indicators)
|
| 184 |
+
if labels is not None:
|
| 185 |
+
new_labels.append(labels[batch_idx])
|
| 186 |
+
cur_image_idx += 1
|
| 187 |
+
continue
|
| 188 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
| 189 |
+
cur_new_input_embeds = []
|
| 190 |
+
cur_modality_indicators = []
|
| 191 |
+
if labels is not None:
|
| 192 |
+
cur_labels = labels[batch_idx]
|
| 193 |
+
cur_new_labels = []
|
| 194 |
+
assert cur_labels.shape == cur_input_ids.shape
|
| 195 |
+
while image_token_indices.numel() > 0:
|
| 196 |
+
cur_image_features = image_features[cur_image_idx]
|
| 197 |
+
image_token_start = image_token_indices[0]
|
| 198 |
+
cur_new_input_embeds.append(
|
| 199 |
+
self.get_model().embed_tokens(cur_input_ids[:image_token_start])
|
| 200 |
+
)
|
| 201 |
+
cur_new_input_embeds.append(cur_image_features)
|
| 202 |
+
|
| 203 |
+
cur_modality_indicators.append(
|
| 204 |
+
torch.zeros(len(cur_input_ids[:image_token_start])).long()
|
| 205 |
+
)
|
| 206 |
+
cur_modality_indicators.append(
|
| 207 |
+
torch.ones(len(cur_image_features)).long()
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
if labels is not None:
|
| 211 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
| 212 |
+
cur_new_labels.append(
|
| 213 |
+
torch.full(
|
| 214 |
+
(cur_image_features.shape[0],),
|
| 215 |
+
IGNORE_INDEX,
|
| 216 |
+
device=labels.device,
|
| 217 |
+
dtype=labels.dtype,
|
| 218 |
+
)
|
| 219 |
+
)
|
| 220 |
+
cur_labels = cur_labels[image_token_start + 1 :]
|
| 221 |
+
cur_image_idx += 1
|
| 222 |
+
cur_input_ids = cur_input_ids[image_token_start + 1 :]
|
| 223 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
| 224 |
+
if cur_input_ids.numel() > 0:
|
| 225 |
+
cur_new_input_embeds.append(
|
| 226 |
+
self.get_model().embed_tokens(cur_input_ids)
|
| 227 |
+
)
|
| 228 |
+
cur_modality_indicators.append(torch.zeros(len(cur_input_ids)).long())
|
| 229 |
+
if labels is not None:
|
| 230 |
+
cur_new_labels.append(cur_labels)
|
| 231 |
+
cur_new_input_embeds = [
|
| 232 |
+
x.to(device=self.device) for x in cur_new_input_embeds
|
| 233 |
+
]
|
| 234 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
| 235 |
+
new_input_embeds.append(cur_new_input_embeds)
|
| 236 |
+
|
| 237 |
+
cur_modality_indicators = [
|
| 238 |
+
x.to(device=self.device) for x in cur_modality_indicators
|
| 239 |
+
]
|
| 240 |
+
cur_modality_indicators = torch.cat(cur_modality_indicators, dim=0)
|
| 241 |
+
new_modality_indicators.append(cur_modality_indicators)
|
| 242 |
+
|
| 243 |
+
if labels is not None:
|
| 244 |
+
cur_new_labels = torch.cat(cur_new_labels, dim=0)
|
| 245 |
+
new_labels.append(cur_new_labels)
|
| 246 |
+
|
| 247 |
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
| 248 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
| 249 |
+
|
| 250 |
+
new_input_embeds_align = []
|
| 251 |
+
for cur_new_embed in new_input_embeds:
|
| 252 |
+
cur_new_embed = torch.cat(
|
| 253 |
+
(
|
| 254 |
+
cur_new_embed,
|
| 255 |
+
torch.zeros(
|
| 256 |
+
(max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]),
|
| 257 |
+
dtype=cur_new_embed.dtype,
|
| 258 |
+
device=cur_new_embed.device,
|
| 259 |
+
),
|
| 260 |
+
),
|
| 261 |
+
dim=0,
|
| 262 |
+
)
|
| 263 |
+
new_input_embeds_align.append(cur_new_embed)
|
| 264 |
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
| 265 |
+
|
| 266 |
+
new_modality_indicators_align = []
|
| 267 |
+
for cur_modality_indicator in new_modality_indicators:
|
| 268 |
+
cur_new_embed = torch.cat(
|
| 269 |
+
(
|
| 270 |
+
cur_modality_indicator,
|
| 271 |
+
torch.zeros(
|
| 272 |
+
max_len - cur_modality_indicator.shape[0],
|
| 273 |
+
dtype=cur_modality_indicator.dtype,
|
| 274 |
+
device=cur_modality_indicator.device,
|
| 275 |
+
),
|
| 276 |
+
),
|
| 277 |
+
dim=0,
|
| 278 |
+
)
|
| 279 |
+
new_modality_indicators_align.append(cur_new_embed)
|
| 280 |
+
new_modality_indicators = torch.stack(new_modality_indicators_align, dim=0)
|
| 281 |
+
|
| 282 |
+
if labels is not None:
|
| 283 |
+
new_labels_align = []
|
| 284 |
+
_new_labels = new_labels
|
| 285 |
+
for cur_new_label in new_labels:
|
| 286 |
+
cur_new_label = torch.cat(
|
| 287 |
+
(
|
| 288 |
+
cur_new_label,
|
| 289 |
+
torch.full(
|
| 290 |
+
(max_len - cur_new_label.shape[0],),
|
| 291 |
+
IGNORE_INDEX,
|
| 292 |
+
dtype=cur_new_label.dtype,
|
| 293 |
+
device=cur_new_label.device,
|
| 294 |
+
),
|
| 295 |
+
),
|
| 296 |
+
dim=0,
|
| 297 |
+
)
|
| 298 |
+
new_labels_align.append(cur_new_label)
|
| 299 |
+
new_labels = torch.stack(new_labels_align, dim=0)
|
| 300 |
+
|
| 301 |
+
if attention_mask is not None:
|
| 302 |
+
new_attention_mask = []
|
| 303 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(
|
| 304 |
+
attention_mask, _new_labels, new_labels
|
| 305 |
+
):
|
| 306 |
+
new_attn_mask_pad_left = torch.full(
|
| 307 |
+
(cur_new_labels.shape[0] - labels.shape[1],),
|
| 308 |
+
True,
|
| 309 |
+
dtype=attention_mask.dtype,
|
| 310 |
+
device=attention_mask.device,
|
| 311 |
+
)
|
| 312 |
+
new_attn_mask_pad_right = torch.full(
|
| 313 |
+
(cur_new_labels_align.shape[0] - cur_new_labels.shape[0],),
|
| 314 |
+
False,
|
| 315 |
+
dtype=attention_mask.dtype,
|
| 316 |
+
device=attention_mask.device,
|
| 317 |
+
)
|
| 318 |
+
cur_new_attention_mask = torch.cat(
|
| 319 |
+
(
|
| 320 |
+
new_attn_mask_pad_left,
|
| 321 |
+
cur_attention_mask,
|
| 322 |
+
new_attn_mask_pad_right,
|
| 323 |
+
),
|
| 324 |
+
dim=0,
|
| 325 |
+
)
|
| 326 |
+
new_attention_mask.append(cur_new_attention_mask)
|
| 327 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
| 328 |
+
assert attention_mask.shape == new_labels.shape
|
| 329 |
+
else:
|
| 330 |
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
| 331 |
+
new_modality_indicators = torch.stack(new_modality_indicators, dim=0)
|
| 332 |
+
if labels is not None:
|
| 333 |
+
new_labels = torch.stack(new_labels, dim=0)
|
| 334 |
+
|
| 335 |
+
if attention_mask is not None:
|
| 336 |
+
new_attn_mask_pad_left = torch.full(
|
| 337 |
+
(
|
| 338 |
+
attention_mask.shape[0],
|
| 339 |
+
new_input_embeds.shape[1] - input_ids.shape[1],
|
| 340 |
+
),
|
| 341 |
+
True,
|
| 342 |
+
dtype=attention_mask.dtype,
|
| 343 |
+
device=attention_mask.device,
|
| 344 |
+
)
|
| 345 |
+
attention_mask = torch.cat(
|
| 346 |
+
(new_attn_mask_pad_left, attention_mask), dim=1
|
| 347 |
+
)
|
| 348 |
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
| 349 |
+
return (
|
| 350 |
+
None,
|
| 351 |
+
new_modality_indicators,
|
| 352 |
+
attention_mask,
|
| 353 |
+
past_key_values,
|
| 354 |
+
new_input_embeds,
|
| 355 |
+
new_labels,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
class MPLUGOwl2LlamaModel(MPLUGOwl2MetaModel, LlamaModel):
|
| 360 |
+
config_class = MPLUGOwl2Config
|
| 361 |
+
|
| 362 |
+
def __init__(self, config: MPLUGOwl2Config):
|
| 363 |
+
super(MPLUGOwl2LlamaModel, self).__init__(config)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
class MPLUGOwl2LlamaForCausalLM(LlamaForCausalLM, MPLUGOwl2MetaForCausalLM):
|
| 367 |
+
config_class = MPLUGOwl2Config
|
| 368 |
+
|
| 369 |
+
def __init__(self, config):
|
| 370 |
+
super(LlamaForCausalLM, self).__init__(config)
|
| 371 |
+
self.model = MPLUGOwl2LlamaModel(config)
|
| 372 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 373 |
+
|
| 374 |
+
# Tokenizer and image processor will be initialized lazily in score()
|
| 375 |
+
self._tokenizer = None
|
| 376 |
+
self._image_processor = None
|
| 377 |
+
self._preferential_ids = None
|
| 378 |
+
|
| 379 |
+
self.post_init()
|
| 380 |
+
|
| 381 |
+
def _init_processors(self):
|
| 382 |
+
"""Lazily initialize tokenizer and image processor from the model's directory."""
|
| 383 |
+
if self._tokenizer is None:
|
| 384 |
+
# Use the model's name_or_path from config, fallback to HF repo name
|
| 385 |
+
model_path = getattr(self.config, '_name_or_path', None)
|
| 386 |
+
if model_path is None or model_path == './' or not model_path.startswith(('/', 'http', 'mapo80')):
|
| 387 |
+
model_path = "mapo80/DeQA-Doc-Sharpness"
|
| 388 |
+
self._tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 389 |
+
self._image_processor = CLIPImageProcessor.from_pretrained(model_path)
|
| 390 |
+
self._preferential_ids = [id_[1] for id_ in self._tokenizer(
|
| 391 |
+
["excellent", "good", "fair", "poor", "bad"]
|
| 392 |
+
)["input_ids"]]
|
| 393 |
+
|
| 394 |
+
@property
|
| 395 |
+
def tokenizer(self):
|
| 396 |
+
self._init_processors()
|
| 397 |
+
return self._tokenizer
|
| 398 |
+
|
| 399 |
+
@property
|
| 400 |
+
def image_processor(self):
|
| 401 |
+
self._init_processors()
|
| 402 |
+
return self._image_processor
|
| 403 |
+
|
| 404 |
+
@property
|
| 405 |
+
def preferential_ids_(self):
|
| 406 |
+
self._init_processors()
|
| 407 |
+
return self._preferential_ids
|
| 408 |
+
|
| 409 |
+
def get_model(self):
|
| 410 |
+
return self.model
|
| 411 |
+
|
| 412 |
+
def forward(
|
| 413 |
+
self,
|
| 414 |
+
input_ids: torch.LongTensor = None,
|
| 415 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 416 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 417 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 418 |
+
labels: Optional[torch.LongTensor] = None,
|
| 419 |
+
use_cache: Optional[bool] = None,
|
| 420 |
+
output_attentions: Optional[bool] = None,
|
| 421 |
+
output_hidden_states: Optional[bool] = None,
|
| 422 |
+
images: Optional[torch.FloatTensor] = None,
|
| 423 |
+
return_dict: Optional[bool] = None,
|
| 424 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 425 |
+
output_attentions = (
|
| 426 |
+
output_attentions
|
| 427 |
+
if output_attentions is not None
|
| 428 |
+
else self.config.output_attentions
|
| 429 |
+
)
|
| 430 |
+
output_hidden_states = (
|
| 431 |
+
output_hidden_states
|
| 432 |
+
if output_hidden_states is not None
|
| 433 |
+
else self.config.output_hidden_states
|
| 434 |
+
)
|
| 435 |
+
return_dict = (
|
| 436 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 437 |
+
)
|
| 438 |
+
(
|
| 439 |
+
input_ids,
|
| 440 |
+
modality_indicators,
|
| 441 |
+
attention_mask,
|
| 442 |
+
past_key_values,
|
| 443 |
+
inputs_embeds,
|
| 444 |
+
labels,
|
| 445 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
| 446 |
+
input_ids, attention_mask, past_key_values, labels, images
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
outputs = self.model(
|
| 450 |
+
input_ids=input_ids,
|
| 451 |
+
modality_indicators=modality_indicators,
|
| 452 |
+
attention_mask=attention_mask,
|
| 453 |
+
past_key_values=past_key_values,
|
| 454 |
+
inputs_embeds=inputs_embeds,
|
| 455 |
+
use_cache=use_cache,
|
| 456 |
+
output_attentions=output_attentions,
|
| 457 |
+
output_hidden_states=output_hidden_states,
|
| 458 |
+
return_dict=return_dict,
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
hidden_states = outputs[0]
|
| 462 |
+
logits = self.lm_head(hidden_states)
|
| 463 |
+
|
| 464 |
+
loss = None
|
| 465 |
+
if labels is not None:
|
| 466 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 467 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 468 |
+
loss_fct = CrossEntropyLoss()
|
| 469 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 470 |
+
shift_labels = shift_labels.view(-1)
|
| 471 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 472 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 473 |
+
|
| 474 |
+
if not return_dict:
|
| 475 |
+
output = (logits,) + outputs[1:]
|
| 476 |
+
return (loss,) + output if loss is not None else output
|
| 477 |
+
|
| 478 |
+
return CausalLMOutputWithPast(
|
| 479 |
+
loss=loss,
|
| 480 |
+
logits=logits,
|
| 481 |
+
past_key_values=outputs.past_key_values,
|
| 482 |
+
hidden_states=outputs.hidden_states,
|
| 483 |
+
attentions=outputs.attentions,
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
def score(
|
| 487 |
+
self,
|
| 488 |
+
images: List[Image.Image],
|
| 489 |
+
task_: str = "quality",
|
| 490 |
+
input_: str = "image",
|
| 491 |
+
) -> torch.Tensor:
|
| 492 |
+
"""
|
| 493 |
+
Score images based on quality assessment.
|
| 494 |
+
|
| 495 |
+
Args:
|
| 496 |
+
images: List of PIL Images to score
|
| 497 |
+
task_: Type of assessment (default: "quality")
|
| 498 |
+
input_: Input type - "image" or "video" (default: "image")
|
| 499 |
+
|
| 500 |
+
Returns:
|
| 501 |
+
torch.Tensor: Quality scores (1-5 scale)
|
| 502 |
+
"""
|
| 503 |
+
if not hasattr(self, "weight_tensor"):
|
| 504 |
+
self.weight_tensor = torch.Tensor([5., 4., 3., 2., 1.]).half().to(self.device)
|
| 505 |
+
|
| 506 |
+
prompt = "USER: How would you rate the {} of this {}?\n<|image|>\nASSISTANT: The {} of the {} is".format(
|
| 507 |
+
task_, input_, task_, input_
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
if input_ == "image":
|
| 511 |
+
# Process single images
|
| 512 |
+
images = [expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in images]
|
| 513 |
+
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
| 514 |
+
|
| 515 |
+
with torch.inference_mode():
|
| 516 |
+
image_tensor = self.image_processor.preprocess(images, return_tensors="pt")["pixel_values"].half().to(self.device)
|
| 517 |
+
output_logits = self(
|
| 518 |
+
input_ids=input_ids.repeat(image_tensor.shape[0], 1),
|
| 519 |
+
images=image_tensor
|
| 520 |
+
)["logits"][:, -1, self.preferential_ids_]
|
| 521 |
+
|
| 522 |
+
return torch.softmax(output_logits, -1) @ self.weight_tensor
|
| 523 |
+
else:
|
| 524 |
+
# Process videos (list of frame sequences)
|
| 525 |
+
video = [[expand2square(frame, tuple(int(x*255) for x in self.image_processor.image_mean)) for frame in vid] for vid in images]
|
| 526 |
+
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
| 527 |
+
|
| 528 |
+
with torch.inference_mode():
|
| 529 |
+
video_tensors = [
|
| 530 |
+
self.image_processor.preprocess(vid, return_tensors="pt")["pixel_values"].half().to(self.device)
|
| 531 |
+
for vid in video
|
| 532 |
+
]
|
| 533 |
+
output_logits = self(
|
| 534 |
+
input_ids=input_ids.repeat(len(video_tensors), 1),
|
| 535 |
+
images=video_tensors
|
| 536 |
+
)["logits"][:, -1, self.preferential_ids_]
|
| 537 |
+
|
| 538 |
+
return torch.softmax(output_logits, -1) @ self.weight_tensor
|
| 539 |
+
|
| 540 |
+
def prepare_inputs_for_generation(
|
| 541 |
+
self,
|
| 542 |
+
input_ids,
|
| 543 |
+
past_key_values=None,
|
| 544 |
+
attention_mask=None,
|
| 545 |
+
inputs_embeds=None,
|
| 546 |
+
images=None,
|
| 547 |
+
**kwargs,
|
| 548 |
+
):
|
| 549 |
+
if past_key_values:
|
| 550 |
+
input_ids = input_ids[:, -1:]
|
| 551 |
+
|
| 552 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 553 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 554 |
+
else:
|
| 555 |
+
model_inputs = {"input_ids": input_ids}
|
| 556 |
+
|
| 557 |
+
model_inputs.update(
|
| 558 |
+
{
|
| 559 |
+
"past_key_values": past_key_values,
|
| 560 |
+
"use_cache": kwargs.get("use_cache"),
|
| 561 |
+
"attention_mask": attention_mask,
|
| 562 |
+
"images": images,
|
| 563 |
+
}
|
| 564 |
+
)
|
| 565 |
+
return model_inputs
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
AutoConfig.register("mplug_owl2", MPLUGOwl2Config)
|
| 569 |
+
AutoModelForCausalLM.register(MPLUGOwl2Config, MPLUGOwl2LlamaForCausalLM)
|
| 570 |
+
|
| 571 |
+
replace_llama_modality_adaptive()
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 448,
|
| 4 |
+
"width": 448
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": true,
|
| 7 |
+
"do_normalize": true,
|
| 8 |
+
"do_rescale": true,
|
| 9 |
+
"do_resize": true,
|
| 10 |
+
"image_mean": [0.48145466, 0.4578275, 0.40821073],
|
| 11 |
+
"image_processor_type": "CLIPImageProcessor",
|
| 12 |
+
"image_std": [0.26862954, 0.26130258, 0.27577711],
|
| 13 |
+
"resample": 3,
|
| 14 |
+
"rescale_factor": 0.00392156862745098,
|
| 15 |
+
"size": {
|
| 16 |
+
"shortest_edge": 448
|
| 17 |
+
}
|
| 18 |
+
}
|
pytorch_model-00001-of-00004.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:721e2348e05ef81b5cc9534a94b9caba3699586a37cd643aad6dd6c14a9b7041
|
| 3 |
+
size 4981108780
|
pytorch_model-00002-of-00004.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:94954006aba2f33919e4082bc65fc5b5091f73998e9915f85cb71e832d6ee96d
|
| 3 |
+
size 4920293259
|
pytorch_model-00003-of-00004.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:639b15209838cf92a603a4f8667cdec11582c01e4fa7aba87ed916dce074ab76
|
| 3 |
+
size 4989532454
|
pytorch_model-00004-of-00004.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c358f2e9c72bf180194543d9c167d23bd22ca3aa0c9d689afa21d505ca8ab8c
|
| 3 |
+
size 1518469929
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,869 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16409100288
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00004-of-00004.bin",
|
| 7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
|
| 8 |
+
"model.layers.0.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 9 |
+
"model.layers.0.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 10 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 11 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 12 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 13 |
+
"model.layers.0.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 14 |
+
"model.layers.0.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 15 |
+
"model.layers.0.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 16 |
+
"model.layers.0.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 17 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 18 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 20 |
+
"model.layers.0.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 21 |
+
"model.layers.1.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 22 |
+
"model.layers.1.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 23 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 24 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 25 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 26 |
+
"model.layers.1.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 27 |
+
"model.layers.1.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 28 |
+
"model.layers.1.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 29 |
+
"model.layers.1.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 30 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 31 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 32 |
+
"model.layers.1.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 33 |
+
"model.layers.1.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 34 |
+
"model.layers.10.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 35 |
+
"model.layers.10.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 36 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 37 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 38 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 39 |
+
"model.layers.10.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 40 |
+
"model.layers.10.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 41 |
+
"model.layers.10.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 42 |
+
"model.layers.10.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 43 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 44 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 45 |
+
"model.layers.10.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 46 |
+
"model.layers.10.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 47 |
+
"model.layers.11.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 48 |
+
"model.layers.11.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 49 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 50 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 51 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 52 |
+
"model.layers.11.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 53 |
+
"model.layers.11.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 54 |
+
"model.layers.11.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 55 |
+
"model.layers.11.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 56 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 57 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 58 |
+
"model.layers.11.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 59 |
+
"model.layers.11.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 60 |
+
"model.layers.12.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 61 |
+
"model.layers.12.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 62 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 63 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 64 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 65 |
+
"model.layers.12.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 66 |
+
"model.layers.12.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 67 |
+
"model.layers.12.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 68 |
+
"model.layers.12.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 69 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 70 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 71 |
+
"model.layers.12.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 72 |
+
"model.layers.12.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 73 |
+
"model.layers.13.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 74 |
+
"model.layers.13.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 75 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 76 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 77 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 78 |
+
"model.layers.13.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 79 |
+
"model.layers.13.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 80 |
+
"model.layers.13.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 81 |
+
"model.layers.13.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 82 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 83 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 84 |
+
"model.layers.13.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 85 |
+
"model.layers.13.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 86 |
+
"model.layers.14.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 87 |
+
"model.layers.14.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 88 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 89 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 90 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 91 |
+
"model.layers.14.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 92 |
+
"model.layers.14.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 93 |
+
"model.layers.14.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 94 |
+
"model.layers.14.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 95 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 96 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 97 |
+
"model.layers.14.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 98 |
+
"model.layers.14.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 99 |
+
"model.layers.15.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 100 |
+
"model.layers.15.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 101 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 102 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 103 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 104 |
+
"model.layers.15.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 105 |
+
"model.layers.15.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 106 |
+
"model.layers.15.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 107 |
+
"model.layers.15.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 108 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 109 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 110 |
+
"model.layers.15.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 111 |
+
"model.layers.15.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 112 |
+
"model.layers.16.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 113 |
+
"model.layers.16.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 114 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 115 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 116 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 117 |
+
"model.layers.16.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 118 |
+
"model.layers.16.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 119 |
+
"model.layers.16.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 120 |
+
"model.layers.16.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 121 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 122 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 123 |
+
"model.layers.16.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 124 |
+
"model.layers.16.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 125 |
+
"model.layers.17.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 126 |
+
"model.layers.17.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 127 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 128 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 129 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 130 |
+
"model.layers.17.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 131 |
+
"model.layers.17.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 132 |
+
"model.layers.17.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 133 |
+
"model.layers.17.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 134 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 135 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 136 |
+
"model.layers.17.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 137 |
+
"model.layers.17.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 138 |
+
"model.layers.18.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 139 |
+
"model.layers.18.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 140 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 141 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 142 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 143 |
+
"model.layers.18.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 144 |
+
"model.layers.18.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 145 |
+
"model.layers.18.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 146 |
+
"model.layers.18.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 147 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 148 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 149 |
+
"model.layers.18.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 150 |
+
"model.layers.18.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 151 |
+
"model.layers.19.input_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 152 |
+
"model.layers.19.input_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 153 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 154 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 155 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 156 |
+
"model.layers.19.post_attention_layernorm.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 157 |
+
"model.layers.19.post_attention_layernorm.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 158 |
+
"model.layers.19.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 159 |
+
"model.layers.19.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 160 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 161 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 162 |
+
"model.layers.19.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 163 |
+
"model.layers.19.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 164 |
+
"model.layers.2.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 165 |
+
"model.layers.2.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 166 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 167 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 168 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 169 |
+
"model.layers.2.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 170 |
+
"model.layers.2.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 171 |
+
"model.layers.2.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 172 |
+
"model.layers.2.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 173 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 174 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 175 |
+
"model.layers.2.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 176 |
+
"model.layers.2.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 177 |
+
"model.layers.20.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 178 |
+
"model.layers.20.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 179 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 180 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 181 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 182 |
+
"model.layers.20.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 183 |
+
"model.layers.20.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 184 |
+
"model.layers.20.self_attn.k_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 185 |
+
"model.layers.20.self_attn.k_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 186 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 187 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
| 188 |
+
"model.layers.20.self_attn.v_proj.multiway.0.weight": "pytorch_model-00002-of-00004.bin",
|
| 189 |
+
"model.layers.20.self_attn.v_proj.multiway.1.weight": "pytorch_model-00002-of-00004.bin",
|
| 190 |
+
"model.layers.21.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 191 |
+
"model.layers.21.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 192 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 193 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 194 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 195 |
+
"model.layers.21.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 196 |
+
"model.layers.21.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 197 |
+
"model.layers.21.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 198 |
+
"model.layers.21.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 199 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 200 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 201 |
+
"model.layers.21.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 202 |
+
"model.layers.21.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 203 |
+
"model.layers.22.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 204 |
+
"model.layers.22.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 205 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 206 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 207 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 208 |
+
"model.layers.22.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 209 |
+
"model.layers.22.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 210 |
+
"model.layers.22.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 211 |
+
"model.layers.22.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 212 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 213 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 214 |
+
"model.layers.22.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 215 |
+
"model.layers.22.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 216 |
+
"model.layers.23.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 217 |
+
"model.layers.23.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 218 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 219 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 220 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 221 |
+
"model.layers.23.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 222 |
+
"model.layers.23.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 223 |
+
"model.layers.23.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 224 |
+
"model.layers.23.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 225 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 226 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 227 |
+
"model.layers.23.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 228 |
+
"model.layers.23.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 229 |
+
"model.layers.24.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 230 |
+
"model.layers.24.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 231 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 232 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 233 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 234 |
+
"model.layers.24.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 235 |
+
"model.layers.24.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 236 |
+
"model.layers.24.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 237 |
+
"model.layers.24.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 238 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 239 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 240 |
+
"model.layers.24.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 241 |
+
"model.layers.24.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 242 |
+
"model.layers.25.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 243 |
+
"model.layers.25.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 244 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 245 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 246 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 247 |
+
"model.layers.25.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 248 |
+
"model.layers.25.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 249 |
+
"model.layers.25.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 250 |
+
"model.layers.25.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 251 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 252 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 253 |
+
"model.layers.25.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 254 |
+
"model.layers.25.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 255 |
+
"model.layers.26.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 256 |
+
"model.layers.26.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 257 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 258 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 259 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 260 |
+
"model.layers.26.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 261 |
+
"model.layers.26.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 262 |
+
"model.layers.26.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 263 |
+
"model.layers.26.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 264 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 265 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 266 |
+
"model.layers.26.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 267 |
+
"model.layers.26.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 268 |
+
"model.layers.27.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 269 |
+
"model.layers.27.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 270 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 271 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 272 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 273 |
+
"model.layers.27.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 274 |
+
"model.layers.27.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 275 |
+
"model.layers.27.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 276 |
+
"model.layers.27.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 277 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 278 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 279 |
+
"model.layers.27.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 280 |
+
"model.layers.27.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 281 |
+
"model.layers.28.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 282 |
+
"model.layers.28.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 283 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 284 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 285 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 286 |
+
"model.layers.28.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 287 |
+
"model.layers.28.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 288 |
+
"model.layers.28.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 289 |
+
"model.layers.28.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 290 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 291 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 292 |
+
"model.layers.28.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 293 |
+
"model.layers.28.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 294 |
+
"model.layers.29.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 295 |
+
"model.layers.29.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 296 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 297 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 298 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 299 |
+
"model.layers.29.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 300 |
+
"model.layers.29.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 301 |
+
"model.layers.29.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 302 |
+
"model.layers.29.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 303 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 304 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 305 |
+
"model.layers.29.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 306 |
+
"model.layers.29.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 307 |
+
"model.layers.3.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 308 |
+
"model.layers.3.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 309 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 310 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 311 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 312 |
+
"model.layers.3.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 313 |
+
"model.layers.3.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 314 |
+
"model.layers.3.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 315 |
+
"model.layers.3.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 316 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 317 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 318 |
+
"model.layers.3.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 319 |
+
"model.layers.3.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 320 |
+
"model.layers.30.input_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 321 |
+
"model.layers.30.input_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 322 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 323 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 324 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 325 |
+
"model.layers.30.post_attention_layernorm.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 326 |
+
"model.layers.30.post_attention_layernorm.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 327 |
+
"model.layers.30.self_attn.k_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 328 |
+
"model.layers.30.self_attn.k_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 329 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 330 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
| 331 |
+
"model.layers.30.self_attn.v_proj.multiway.0.weight": "pytorch_model-00003-of-00004.bin",
|
| 332 |
+
"model.layers.30.self_attn.v_proj.multiway.1.weight": "pytorch_model-00003-of-00004.bin",
|
| 333 |
+
"model.layers.31.input_layernorm.multiway.0.weight": "pytorch_model-00004-of-00004.bin",
|
| 334 |
+
"model.layers.31.input_layernorm.multiway.1.weight": "pytorch_model-00004-of-00004.bin",
|
| 335 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 336 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 337 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 338 |
+
"model.layers.31.post_attention_layernorm.multiway.0.weight": "pytorch_model-00004-of-00004.bin",
|
| 339 |
+
"model.layers.31.post_attention_layernorm.multiway.1.weight": "pytorch_model-00004-of-00004.bin",
|
| 340 |
+
"model.layers.31.self_attn.k_proj.multiway.0.weight": "pytorch_model-00004-of-00004.bin",
|
| 341 |
+
"model.layers.31.self_attn.k_proj.multiway.1.weight": "pytorch_model-00004-of-00004.bin",
|
| 342 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 343 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 344 |
+
"model.layers.31.self_attn.v_proj.multiway.0.weight": "pytorch_model-00004-of-00004.bin",
|
| 345 |
+
"model.layers.31.self_attn.v_proj.multiway.1.weight": "pytorch_model-00004-of-00004.bin",
|
| 346 |
+
"model.layers.4.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 347 |
+
"model.layers.4.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 348 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 349 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 350 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 351 |
+
"model.layers.4.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 352 |
+
"model.layers.4.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 353 |
+
"model.layers.4.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 354 |
+
"model.layers.4.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 355 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 356 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 357 |
+
"model.layers.4.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 358 |
+
"model.layers.4.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 359 |
+
"model.layers.5.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 360 |
+
"model.layers.5.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 361 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 362 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 363 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 364 |
+
"model.layers.5.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 365 |
+
"model.layers.5.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 366 |
+
"model.layers.5.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 367 |
+
"model.layers.5.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 368 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 369 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 370 |
+
"model.layers.5.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 371 |
+
"model.layers.5.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 372 |
+
"model.layers.6.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 373 |
+
"model.layers.6.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 374 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 375 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 376 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 377 |
+
"model.layers.6.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 378 |
+
"model.layers.6.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 379 |
+
"model.layers.6.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 380 |
+
"model.layers.6.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 381 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 382 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 383 |
+
"model.layers.6.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 384 |
+
"model.layers.6.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 385 |
+
"model.layers.7.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 386 |
+
"model.layers.7.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 387 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 388 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 389 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 390 |
+
"model.layers.7.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 391 |
+
"model.layers.7.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 392 |
+
"model.layers.7.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 393 |
+
"model.layers.7.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 394 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 395 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 396 |
+
"model.layers.7.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 397 |
+
"model.layers.7.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 398 |
+
"model.layers.8.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 399 |
+
"model.layers.8.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 400 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 401 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 402 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 403 |
+
"model.layers.8.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 404 |
+
"model.layers.8.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 405 |
+
"model.layers.8.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 406 |
+
"model.layers.8.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 407 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 408 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 409 |
+
"model.layers.8.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 410 |
+
"model.layers.8.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 411 |
+
"model.layers.9.input_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 412 |
+
"model.layers.9.input_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 413 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 414 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 415 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 416 |
+
"model.layers.9.post_attention_layernorm.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 417 |
+
"model.layers.9.post_attention_layernorm.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 418 |
+
"model.layers.9.self_attn.k_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 419 |
+
"model.layers.9.self_attn.k_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 420 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 421 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
| 422 |
+
"model.layers.9.self_attn.v_proj.multiway.0.weight": "pytorch_model-00001-of-00004.bin",
|
| 423 |
+
"model.layers.9.self_attn.v_proj.multiway.1.weight": "pytorch_model-00001-of-00004.bin",
|
| 424 |
+
"model.norm.weight": "pytorch_model-00004-of-00004.bin",
|
| 425 |
+
"model.vision_model.embeddings.cls_token": "pytorch_model-00004-of-00004.bin",
|
| 426 |
+
"model.vision_model.embeddings.patch_embed.weight": "pytorch_model-00004-of-00004.bin",
|
| 427 |
+
"model.vision_model.embeddings.position_embedding": "pytorch_model-00004-of-00004.bin",
|
| 428 |
+
"model.vision_model.embeddings.pre_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 429 |
+
"model.vision_model.embeddings.pre_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 430 |
+
"model.vision_model.encoder.layers.0.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 431 |
+
"model.vision_model.encoder.layers.0.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 432 |
+
"model.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 433 |
+
"model.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 434 |
+
"model.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 435 |
+
"model.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 436 |
+
"model.vision_model.encoder.layers.0.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 437 |
+
"model.vision_model.encoder.layers.0.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 438 |
+
"model.vision_model.encoder.layers.0.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 439 |
+
"model.vision_model.encoder.layers.0.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 440 |
+
"model.vision_model.encoder.layers.0.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 441 |
+
"model.vision_model.encoder.layers.0.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 442 |
+
"model.vision_model.encoder.layers.1.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 443 |
+
"model.vision_model.encoder.layers.1.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 444 |
+
"model.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 445 |
+
"model.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 446 |
+
"model.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 447 |
+
"model.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 448 |
+
"model.vision_model.encoder.layers.1.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 449 |
+
"model.vision_model.encoder.layers.1.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 450 |
+
"model.vision_model.encoder.layers.1.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 451 |
+
"model.vision_model.encoder.layers.1.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 452 |
+
"model.vision_model.encoder.layers.1.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 453 |
+
"model.vision_model.encoder.layers.1.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 454 |
+
"model.vision_model.encoder.layers.10.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 455 |
+
"model.vision_model.encoder.layers.10.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 456 |
+
"model.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 457 |
+
"model.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 458 |
+
"model.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 459 |
+
"model.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 460 |
+
"model.vision_model.encoder.layers.10.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 461 |
+
"model.vision_model.encoder.layers.10.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 462 |
+
"model.vision_model.encoder.layers.10.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 463 |
+
"model.vision_model.encoder.layers.10.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 464 |
+
"model.vision_model.encoder.layers.10.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 465 |
+
"model.vision_model.encoder.layers.10.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 466 |
+
"model.vision_model.encoder.layers.11.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 467 |
+
"model.vision_model.encoder.layers.11.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 468 |
+
"model.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 469 |
+
"model.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 470 |
+
"model.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 471 |
+
"model.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 472 |
+
"model.vision_model.encoder.layers.11.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 473 |
+
"model.vision_model.encoder.layers.11.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 474 |
+
"model.vision_model.encoder.layers.11.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 475 |
+
"model.vision_model.encoder.layers.11.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 476 |
+
"model.vision_model.encoder.layers.11.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 477 |
+
"model.vision_model.encoder.layers.11.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 478 |
+
"model.vision_model.encoder.layers.12.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 479 |
+
"model.vision_model.encoder.layers.12.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 480 |
+
"model.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 481 |
+
"model.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 482 |
+
"model.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 483 |
+
"model.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 484 |
+
"model.vision_model.encoder.layers.12.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 485 |
+
"model.vision_model.encoder.layers.12.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 486 |
+
"model.vision_model.encoder.layers.12.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 487 |
+
"model.vision_model.encoder.layers.12.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 488 |
+
"model.vision_model.encoder.layers.12.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 489 |
+
"model.vision_model.encoder.layers.12.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 490 |
+
"model.vision_model.encoder.layers.13.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 491 |
+
"model.vision_model.encoder.layers.13.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 492 |
+
"model.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 493 |
+
"model.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 494 |
+
"model.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 495 |
+
"model.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 496 |
+
"model.vision_model.encoder.layers.13.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 497 |
+
"model.vision_model.encoder.layers.13.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 498 |
+
"model.vision_model.encoder.layers.13.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 499 |
+
"model.vision_model.encoder.layers.13.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 500 |
+
"model.vision_model.encoder.layers.13.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 501 |
+
"model.vision_model.encoder.layers.13.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 502 |
+
"model.vision_model.encoder.layers.14.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 503 |
+
"model.vision_model.encoder.layers.14.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 504 |
+
"model.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 505 |
+
"model.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 506 |
+
"model.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 507 |
+
"model.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 508 |
+
"model.vision_model.encoder.layers.14.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 509 |
+
"model.vision_model.encoder.layers.14.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 510 |
+
"model.vision_model.encoder.layers.14.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 511 |
+
"model.vision_model.encoder.layers.14.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 512 |
+
"model.vision_model.encoder.layers.14.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 513 |
+
"model.vision_model.encoder.layers.14.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 514 |
+
"model.vision_model.encoder.layers.15.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 515 |
+
"model.vision_model.encoder.layers.15.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 516 |
+
"model.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 517 |
+
"model.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 518 |
+
"model.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 519 |
+
"model.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 520 |
+
"model.vision_model.encoder.layers.15.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 521 |
+
"model.vision_model.encoder.layers.15.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 522 |
+
"model.vision_model.encoder.layers.15.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 523 |
+
"model.vision_model.encoder.layers.15.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 524 |
+
"model.vision_model.encoder.layers.15.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 525 |
+
"model.vision_model.encoder.layers.15.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 526 |
+
"model.vision_model.encoder.layers.16.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 527 |
+
"model.vision_model.encoder.layers.16.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 528 |
+
"model.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 529 |
+
"model.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 530 |
+
"model.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 531 |
+
"model.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 532 |
+
"model.vision_model.encoder.layers.16.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 533 |
+
"model.vision_model.encoder.layers.16.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 534 |
+
"model.vision_model.encoder.layers.16.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 535 |
+
"model.vision_model.encoder.layers.16.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 536 |
+
"model.vision_model.encoder.layers.16.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 537 |
+
"model.vision_model.encoder.layers.16.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 538 |
+
"model.vision_model.encoder.layers.17.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 539 |
+
"model.vision_model.encoder.layers.17.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 540 |
+
"model.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 541 |
+
"model.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 542 |
+
"model.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 543 |
+
"model.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 544 |
+
"model.vision_model.encoder.layers.17.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 545 |
+
"model.vision_model.encoder.layers.17.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 546 |
+
"model.vision_model.encoder.layers.17.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 547 |
+
"model.vision_model.encoder.layers.17.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 548 |
+
"model.vision_model.encoder.layers.17.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 549 |
+
"model.vision_model.encoder.layers.17.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 550 |
+
"model.vision_model.encoder.layers.18.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 551 |
+
"model.vision_model.encoder.layers.18.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 552 |
+
"model.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 553 |
+
"model.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 554 |
+
"model.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 555 |
+
"model.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 556 |
+
"model.vision_model.encoder.layers.18.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 557 |
+
"model.vision_model.encoder.layers.18.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 558 |
+
"model.vision_model.encoder.layers.18.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 559 |
+
"model.vision_model.encoder.layers.18.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 560 |
+
"model.vision_model.encoder.layers.18.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 561 |
+
"model.vision_model.encoder.layers.18.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 562 |
+
"model.vision_model.encoder.layers.19.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 563 |
+
"model.vision_model.encoder.layers.19.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 564 |
+
"model.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 565 |
+
"model.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 566 |
+
"model.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 567 |
+
"model.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 568 |
+
"model.vision_model.encoder.layers.19.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 569 |
+
"model.vision_model.encoder.layers.19.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 570 |
+
"model.vision_model.encoder.layers.19.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 571 |
+
"model.vision_model.encoder.layers.19.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 572 |
+
"model.vision_model.encoder.layers.19.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 573 |
+
"model.vision_model.encoder.layers.19.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 574 |
+
"model.vision_model.encoder.layers.2.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 575 |
+
"model.vision_model.encoder.layers.2.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 576 |
+
"model.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 577 |
+
"model.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 578 |
+
"model.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 579 |
+
"model.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 580 |
+
"model.vision_model.encoder.layers.2.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 581 |
+
"model.vision_model.encoder.layers.2.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 582 |
+
"model.vision_model.encoder.layers.2.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 583 |
+
"model.vision_model.encoder.layers.2.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 584 |
+
"model.vision_model.encoder.layers.2.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 585 |
+
"model.vision_model.encoder.layers.2.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 586 |
+
"model.vision_model.encoder.layers.20.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 587 |
+
"model.vision_model.encoder.layers.20.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 588 |
+
"model.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 589 |
+
"model.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 590 |
+
"model.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 591 |
+
"model.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 592 |
+
"model.vision_model.encoder.layers.20.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 593 |
+
"model.vision_model.encoder.layers.20.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 594 |
+
"model.vision_model.encoder.layers.20.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 595 |
+
"model.vision_model.encoder.layers.20.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 596 |
+
"model.vision_model.encoder.layers.20.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 597 |
+
"model.vision_model.encoder.layers.20.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 598 |
+
"model.vision_model.encoder.layers.21.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 599 |
+
"model.vision_model.encoder.layers.21.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 600 |
+
"model.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 601 |
+
"model.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 602 |
+
"model.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 603 |
+
"model.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 604 |
+
"model.vision_model.encoder.layers.21.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 605 |
+
"model.vision_model.encoder.layers.21.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 606 |
+
"model.vision_model.encoder.layers.21.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 607 |
+
"model.vision_model.encoder.layers.21.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 608 |
+
"model.vision_model.encoder.layers.21.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 609 |
+
"model.vision_model.encoder.layers.21.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 610 |
+
"model.vision_model.encoder.layers.22.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 611 |
+
"model.vision_model.encoder.layers.22.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 612 |
+
"model.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 613 |
+
"model.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 614 |
+
"model.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 615 |
+
"model.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 616 |
+
"model.vision_model.encoder.layers.22.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 617 |
+
"model.vision_model.encoder.layers.22.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 618 |
+
"model.vision_model.encoder.layers.22.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 619 |
+
"model.vision_model.encoder.layers.22.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 620 |
+
"model.vision_model.encoder.layers.22.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 621 |
+
"model.vision_model.encoder.layers.22.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 622 |
+
"model.vision_model.encoder.layers.23.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 623 |
+
"model.vision_model.encoder.layers.23.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 624 |
+
"model.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 625 |
+
"model.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 626 |
+
"model.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 627 |
+
"model.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 628 |
+
"model.vision_model.encoder.layers.23.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 629 |
+
"model.vision_model.encoder.layers.23.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 630 |
+
"model.vision_model.encoder.layers.23.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 631 |
+
"model.vision_model.encoder.layers.23.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 632 |
+
"model.vision_model.encoder.layers.23.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 633 |
+
"model.vision_model.encoder.layers.23.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 634 |
+
"model.vision_model.encoder.layers.3.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 635 |
+
"model.vision_model.encoder.layers.3.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 636 |
+
"model.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 637 |
+
"model.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 638 |
+
"model.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 639 |
+
"model.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 640 |
+
"model.vision_model.encoder.layers.3.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 641 |
+
"model.vision_model.encoder.layers.3.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 642 |
+
"model.vision_model.encoder.layers.3.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 643 |
+
"model.vision_model.encoder.layers.3.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 644 |
+
"model.vision_model.encoder.layers.3.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 645 |
+
"model.vision_model.encoder.layers.3.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 646 |
+
"model.vision_model.encoder.layers.4.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 647 |
+
"model.vision_model.encoder.layers.4.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 648 |
+
"model.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 649 |
+
"model.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 650 |
+
"model.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 651 |
+
"model.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 652 |
+
"model.vision_model.encoder.layers.4.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 653 |
+
"model.vision_model.encoder.layers.4.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 654 |
+
"model.vision_model.encoder.layers.4.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 655 |
+
"model.vision_model.encoder.layers.4.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 656 |
+
"model.vision_model.encoder.layers.4.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 657 |
+
"model.vision_model.encoder.layers.4.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 658 |
+
"model.vision_model.encoder.layers.5.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 659 |
+
"model.vision_model.encoder.layers.5.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 660 |
+
"model.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 661 |
+
"model.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 662 |
+
"model.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 663 |
+
"model.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 664 |
+
"model.vision_model.encoder.layers.5.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 665 |
+
"model.vision_model.encoder.layers.5.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 666 |
+
"model.vision_model.encoder.layers.5.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 667 |
+
"model.vision_model.encoder.layers.5.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 668 |
+
"model.vision_model.encoder.layers.5.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 669 |
+
"model.vision_model.encoder.layers.5.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 670 |
+
"model.vision_model.encoder.layers.6.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 671 |
+
"model.vision_model.encoder.layers.6.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 672 |
+
"model.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 673 |
+
"model.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 674 |
+
"model.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 675 |
+
"model.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 676 |
+
"model.vision_model.encoder.layers.6.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 677 |
+
"model.vision_model.encoder.layers.6.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 678 |
+
"model.vision_model.encoder.layers.6.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 679 |
+
"model.vision_model.encoder.layers.6.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 680 |
+
"model.vision_model.encoder.layers.6.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 681 |
+
"model.vision_model.encoder.layers.6.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 682 |
+
"model.vision_model.encoder.layers.7.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 683 |
+
"model.vision_model.encoder.layers.7.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 684 |
+
"model.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 685 |
+
"model.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 686 |
+
"model.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 687 |
+
"model.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 688 |
+
"model.vision_model.encoder.layers.7.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 689 |
+
"model.vision_model.encoder.layers.7.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 690 |
+
"model.vision_model.encoder.layers.7.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 691 |
+
"model.vision_model.encoder.layers.7.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 692 |
+
"model.vision_model.encoder.layers.7.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 693 |
+
"model.vision_model.encoder.layers.7.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 694 |
+
"model.vision_model.encoder.layers.8.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 695 |
+
"model.vision_model.encoder.layers.8.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 696 |
+
"model.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 697 |
+
"model.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 698 |
+
"model.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 699 |
+
"model.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 700 |
+
"model.vision_model.encoder.layers.8.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 701 |
+
"model.vision_model.encoder.layers.8.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 702 |
+
"model.vision_model.encoder.layers.8.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 703 |
+
"model.vision_model.encoder.layers.8.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 704 |
+
"model.vision_model.encoder.layers.8.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 705 |
+
"model.vision_model.encoder.layers.8.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 706 |
+
"model.vision_model.encoder.layers.9.input_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 707 |
+
"model.vision_model.encoder.layers.9.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 708 |
+
"model.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
|
| 709 |
+
"model.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
|
| 710 |
+
"model.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
|
| 711 |
+
"model.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
|
| 712 |
+
"model.vision_model.encoder.layers.9.post_attention_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 713 |
+
"model.vision_model.encoder.layers.9.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 714 |
+
"model.vision_model.encoder.layers.9.self_attn.dense.bias": "pytorch_model-00004-of-00004.bin",
|
| 715 |
+
"model.vision_model.encoder.layers.9.self_attn.dense.weight": "pytorch_model-00004-of-00004.bin",
|
| 716 |
+
"model.vision_model.encoder.layers.9.self_attn.query_key_value.bias": "pytorch_model-00004-of-00004.bin",
|
| 717 |
+
"model.vision_model.encoder.layers.9.self_attn.query_key_value.weight": "pytorch_model-00004-of-00004.bin",
|
| 718 |
+
"model.vision_model.post_layernorm.bias": "pytorch_model-00004-of-00004.bin",
|
| 719 |
+
"model.vision_model.post_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
| 720 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 721 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
| 722 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
| 723 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 724 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
| 725 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
| 726 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
| 727 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
| 728 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
| 729 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
| 730 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
| 731 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
| 732 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
| 733 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
| 734 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
| 735 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
| 736 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
| 737 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
| 738 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
| 739 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
| 740 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
| 741 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
| 742 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 743 |
+
"model.visual_abstractor.encoder.layers.0.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 744 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 745 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
| 746 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
| 747 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 748 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
| 749 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
| 750 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
| 751 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
| 752 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
| 753 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
| 754 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
| 755 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
| 756 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
| 757 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
| 758 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
| 759 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
| 760 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
| 761 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
| 762 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
| 763 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
| 764 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
| 765 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
| 766 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 767 |
+
"model.visual_abstractor.encoder.layers.1.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 768 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 769 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
| 770 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
| 771 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 772 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
| 773 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
| 774 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
| 775 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
| 776 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
| 777 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
| 778 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
| 779 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
| 780 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
| 781 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
| 782 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
| 783 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
| 784 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
| 785 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
| 786 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
| 787 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
| 788 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
| 789 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
| 790 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 791 |
+
"model.visual_abstractor.encoder.layers.2.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 792 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 793 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
| 794 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
| 795 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 796 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
| 797 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
| 798 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
| 799 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
| 800 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
| 801 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
| 802 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
| 803 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
| 804 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
| 805 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
| 806 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
| 807 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
| 808 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
| 809 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
| 810 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
| 811 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
| 812 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
| 813 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
| 814 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 815 |
+
"model.visual_abstractor.encoder.layers.3.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 816 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 817 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
| 818 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
| 819 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 820 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
| 821 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
| 822 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
| 823 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
| 824 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
| 825 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
| 826 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
| 827 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
| 828 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
| 829 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
| 830 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
| 831 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
| 832 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
| 833 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
| 834 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
| 835 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
| 836 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
| 837 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
| 838 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 839 |
+
"model.visual_abstractor.encoder.layers.4.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 840 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.k_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 841 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.key.bias": "pytorch_model-00004-of-00004.bin",
|
| 842 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.key.weight": "pytorch_model-00004-of-00004.bin",
|
| 843 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
|
| 844 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.query.bias": "pytorch_model-00004-of-00004.bin",
|
| 845 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.query.weight": "pytorch_model-00004-of-00004.bin",
|
| 846 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.value.bias": "pytorch_model-00004-of-00004.bin",
|
| 847 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.attention.value.weight": "pytorch_model-00004-of-00004.bin",
|
| 848 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.norm1.bias": "pytorch_model-00004-of-00004.bin",
|
| 849 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.norm1.weight": "pytorch_model-00004-of-00004.bin",
|
| 850 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.normk.bias": "pytorch_model-00004-of-00004.bin",
|
| 851 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.normk.weight": "pytorch_model-00004-of-00004.bin",
|
| 852 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.ffn_ln.bias": "pytorch_model-00004-of-00004.bin",
|
| 853 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.ffn_ln.weight": "pytorch_model-00004-of-00004.bin",
|
| 854 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w1.bias": "pytorch_model-00004-of-00004.bin",
|
| 855 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w1.weight": "pytorch_model-00004-of-00004.bin",
|
| 856 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w2.bias": "pytorch_model-00004-of-00004.bin",
|
| 857 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w2.weight": "pytorch_model-00004-of-00004.bin",
|
| 858 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w3.bias": "pytorch_model-00004-of-00004.bin",
|
| 859 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.mlp.w3.weight": "pytorch_model-00004-of-00004.bin",
|
| 860 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.norm2.bias": "pytorch_model-00004-of-00004.bin",
|
| 861 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.norm2.weight": "pytorch_model-00004-of-00004.bin",
|
| 862 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.out_proj.bias": "pytorch_model-00004-of-00004.bin",
|
| 863 |
+
"model.visual_abstractor.encoder.layers.5.crossattention.output.out_proj.weight": "pytorch_model-00004-of-00004.bin",
|
| 864 |
+
"model.visual_abstractor.query_embeds": "pytorch_model-00004-of-00004.bin",
|
| 865 |
+
"model.visual_abstractor.visual_fc.bias": "pytorch_model-00004-of-00004.bin",
|
| 866 |
+
"model.visual_abstractor.visual_fc.weight": "pytorch_model-00004-of-00004.bin",
|
| 867 |
+
"model.visual_abstractor.vit_eos": "pytorch_model-00004-of-00004.bin"
|
| 868 |
+
}
|
| 869 |
+
}
|
runs/Jun19_10-38-29_antfcutrn-kmaker-033145119198/events.out.tfevents.1750300731.antfcutrn-kmaker-033145119198.18341.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:139a2814d9a266e78a1f3e035a1ac2b48cd2966a690ac7b1a7427fd63911a891
|
| 3 |
+
size 62257
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<unk>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"bos_token": "<s>",
|
| 31 |
+
"clean_up_tokenization_spaces": false,
|
| 32 |
+
"eos_token": "</s>",
|
| 33 |
+
"legacy": false,
|
| 34 |
+
"model_max_length": 2048,
|
| 35 |
+
"pad_token": "<unk>",
|
| 36 |
+
"padding_side": "right",
|
| 37 |
+
"sp_model_kwargs": {},
|
| 38 |
+
"spaces_between_special_tokens": false,
|
| 39 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 40 |
+
"unk_token": "<unk>",
|
| 41 |
+
"use_default_system_prompt": false
|
| 42 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 3.0,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 330,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.01,
|
| 13 |
+
"learning_rate": 2.0000000000000003e-06,
|
| 14 |
+
"loss": 0.1273,
|
| 15 |
+
"step": 1
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"epoch": 0.02,
|
| 19 |
+
"learning_rate": 4.000000000000001e-06,
|
| 20 |
+
"loss": 0.1438,
|
| 21 |
+
"step": 2
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"epoch": 0.03,
|
| 25 |
+
"learning_rate": 6e-06,
|
| 26 |
+
"loss": 0.1274,
|
| 27 |
+
"step": 3
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.04,
|
| 31 |
+
"learning_rate": 8.000000000000001e-06,
|
| 32 |
+
"loss": 0.0856,
|
| 33 |
+
"step": 4
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.05,
|
| 37 |
+
"learning_rate": 1e-05,
|
| 38 |
+
"loss": 0.0508,
|
| 39 |
+
"step": 5
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.05,
|
| 43 |
+
"learning_rate": 1.2e-05,
|
| 44 |
+
"loss": 0.066,
|
| 45 |
+
"step": 6
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.06,
|
| 49 |
+
"learning_rate": 1.4e-05,
|
| 50 |
+
"loss": 0.0804,
|
| 51 |
+
"step": 7
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.07,
|
| 55 |
+
"learning_rate": 1.6000000000000003e-05,
|
| 56 |
+
"loss": 0.0526,
|
| 57 |
+
"step": 8
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 0.08,
|
| 61 |
+
"learning_rate": 1.8e-05,
|
| 62 |
+
"loss": 0.0692,
|
| 63 |
+
"step": 9
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"epoch": 0.09,
|
| 67 |
+
"learning_rate": 2e-05,
|
| 68 |
+
"loss": 0.0485,
|
| 69 |
+
"step": 10
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"epoch": 0.1,
|
| 73 |
+
"learning_rate": 1.999951808959328e-05,
|
| 74 |
+
"loss": 0.0363,
|
| 75 |
+
"step": 11
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"epoch": 0.11,
|
| 79 |
+
"learning_rate": 1.9998072404820648e-05,
|
| 80 |
+
"loss": 0.0303,
|
| 81 |
+
"step": 12
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 0.12,
|
| 85 |
+
"learning_rate": 1.9995663085020215e-05,
|
| 86 |
+
"loss": 0.0527,
|
| 87 |
+
"step": 13
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.13,
|
| 91 |
+
"learning_rate": 1.9992290362407232e-05,
|
| 92 |
+
"loss": 0.0485,
|
| 93 |
+
"step": 14
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.14,
|
| 97 |
+
"learning_rate": 1.9987954562051724e-05,
|
| 98 |
+
"loss": 0.0726,
|
| 99 |
+
"step": 15
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"epoch": 0.15,
|
| 103 |
+
"learning_rate": 1.998265610184716e-05,
|
| 104 |
+
"loss": 0.0379,
|
| 105 |
+
"step": 16
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 0.15,
|
| 109 |
+
"learning_rate": 1.997639549247016e-05,
|
| 110 |
+
"loss": 0.0427,
|
| 111 |
+
"step": 17
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"epoch": 0.16,
|
| 115 |
+
"learning_rate": 1.9969173337331283e-05,
|
| 116 |
+
"loss": 0.0405,
|
| 117 |
+
"step": 18
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"epoch": 0.17,
|
| 121 |
+
"learning_rate": 1.9960990332516875e-05,
|
| 122 |
+
"loss": 0.0359,
|
| 123 |
+
"step": 19
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"epoch": 0.18,
|
| 127 |
+
"learning_rate": 1.995184726672197e-05,
|
| 128 |
+
"loss": 0.0284,
|
| 129 |
+
"step": 20
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.19,
|
| 133 |
+
"learning_rate": 1.9941745021174284e-05,
|
| 134 |
+
"loss": 0.033,
|
| 135 |
+
"step": 21
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.2,
|
| 139 |
+
"learning_rate": 1.9930684569549265e-05,
|
| 140 |
+
"loss": 0.0328,
|
| 141 |
+
"step": 22
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"epoch": 0.21,
|
| 145 |
+
"learning_rate": 1.991866697787626e-05,
|
| 146 |
+
"loss": 0.022,
|
| 147 |
+
"step": 23
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"epoch": 0.22,
|
| 151 |
+
"learning_rate": 1.990569340443577e-05,
|
| 152 |
+
"loss": 0.0374,
|
| 153 |
+
"step": 24
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 0.23,
|
| 157 |
+
"learning_rate": 1.989176509964781e-05,
|
| 158 |
+
"loss": 0.0214,
|
| 159 |
+
"step": 25
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"epoch": 0.24,
|
| 163 |
+
"learning_rate": 1.9876883405951378e-05,
|
| 164 |
+
"loss": 0.0329,
|
| 165 |
+
"step": 26
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.25,
|
| 169 |
+
"learning_rate": 1.9861049757675087e-05,
|
| 170 |
+
"loss": 0.0114,
|
| 171 |
+
"step": 27
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.25,
|
| 175 |
+
"learning_rate": 1.9844265680898917e-05,
|
| 176 |
+
"loss": 0.0174,
|
| 177 |
+
"step": 28
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.26,
|
| 181 |
+
"learning_rate": 1.982653279330712e-05,
|
| 182 |
+
"loss": 0.0339,
|
| 183 |
+
"step": 29
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"epoch": 0.27,
|
| 187 |
+
"learning_rate": 1.9807852804032306e-05,
|
| 188 |
+
"loss": 0.0477,
|
| 189 |
+
"step": 30
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"epoch": 0.28,
|
| 193 |
+
"learning_rate": 1.9788227513490724e-05,
|
| 194 |
+
"loss": 0.0377,
|
| 195 |
+
"step": 31
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"epoch": 0.29,
|
| 199 |
+
"learning_rate": 1.9767658813208725e-05,
|
| 200 |
+
"loss": 0.0261,
|
| 201 |
+
"step": 32
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"epoch": 0.3,
|
| 205 |
+
"learning_rate": 1.974614868564045e-05,
|
| 206 |
+
"loss": 0.0397,
|
| 207 |
+
"step": 33
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 0.31,
|
| 211 |
+
"learning_rate": 1.9723699203976768e-05,
|
| 212 |
+
"loss": 0.0316,
|
| 213 |
+
"step": 34
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.32,
|
| 217 |
+
"learning_rate": 1.9700312531945444e-05,
|
| 218 |
+
"loss": 0.0323,
|
| 219 |
+
"step": 35
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.33,
|
| 223 |
+
"learning_rate": 1.96759909236026e-05,
|
| 224 |
+
"loss": 0.0264,
|
| 225 |
+
"step": 36
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"epoch": 0.34,
|
| 229 |
+
"learning_rate": 1.9650736723115476e-05,
|
| 230 |
+
"loss": 0.0204,
|
| 231 |
+
"step": 37
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"epoch": 0.35,
|
| 235 |
+
"learning_rate": 1.9624552364536472e-05,
|
| 236 |
+
"loss": 0.02,
|
| 237 |
+
"step": 38
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"epoch": 0.35,
|
| 241 |
+
"learning_rate": 1.9597440371568576e-05,
|
| 242 |
+
"loss": 0.0189,
|
| 243 |
+
"step": 39
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"epoch": 0.36,
|
| 247 |
+
"learning_rate": 1.956940335732209e-05,
|
| 248 |
+
"loss": 0.0277,
|
| 249 |
+
"step": 40
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"epoch": 0.37,
|
| 253 |
+
"learning_rate": 1.9540444024062807e-05,
|
| 254 |
+
"loss": 0.0321,
|
| 255 |
+
"step": 41
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.38,
|
| 259 |
+
"learning_rate": 1.9510565162951538e-05,
|
| 260 |
+
"loss": 0.04,
|
| 261 |
+
"step": 42
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.39,
|
| 265 |
+
"learning_rate": 1.9479769653775107e-05,
|
| 266 |
+
"loss": 0.0308,
|
| 267 |
+
"step": 43
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"epoch": 0.4,
|
| 271 |
+
"learning_rate": 1.944806046466878e-05,
|
| 272 |
+
"loss": 0.0235,
|
| 273 |
+
"step": 44
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"epoch": 0.41,
|
| 277 |
+
"learning_rate": 1.941544065183021e-05,
|
| 278 |
+
"loss": 0.0185,
|
| 279 |
+
"step": 45
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"epoch": 0.42,
|
| 283 |
+
"learning_rate": 1.9381913359224844e-05,
|
| 284 |
+
"loss": 0.0477,
|
| 285 |
+
"step": 46
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"epoch": 0.43,
|
| 289 |
+
"learning_rate": 1.9347481818282927e-05,
|
| 290 |
+
"loss": 0.0353,
|
| 291 |
+
"step": 47
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"epoch": 0.44,
|
| 295 |
+
"learning_rate": 1.9312149347588035e-05,
|
| 296 |
+
"loss": 0.0347,
|
| 297 |
+
"step": 48
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.45,
|
| 301 |
+
"learning_rate": 1.9275919352557242e-05,
|
| 302 |
+
"loss": 0.023,
|
| 303 |
+
"step": 49
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.45,
|
| 307 |
+
"learning_rate": 1.9238795325112867e-05,
|
| 308 |
+
"loss": 0.0752,
|
| 309 |
+
"step": 50
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"epoch": 0.46,
|
| 313 |
+
"learning_rate": 1.920078084334595e-05,
|
| 314 |
+
"loss": 0.0305,
|
| 315 |
+
"step": 51
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"epoch": 0.47,
|
| 319 |
+
"learning_rate": 1.916187957117136e-05,
|
| 320 |
+
"loss": 0.0216,
|
| 321 |
+
"step": 52
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"epoch": 0.48,
|
| 325 |
+
"learning_rate": 1.9122095257974676e-05,
|
| 326 |
+
"loss": 0.0129,
|
| 327 |
+
"step": 53
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"epoch": 0.49,
|
| 331 |
+
"learning_rate": 1.9081431738250815e-05,
|
| 332 |
+
"loss": 0.0225,
|
| 333 |
+
"step": 54
|
| 334 |
+
},
|
| 335 |
+
{
|
| 336 |
+
"epoch": 0.5,
|
| 337 |
+
"learning_rate": 1.9039892931234434e-05,
|
| 338 |
+
"loss": 0.022,
|
| 339 |
+
"step": 55
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.51,
|
| 343 |
+
"learning_rate": 1.8997482840522218e-05,
|
| 344 |
+
"loss": 0.0419,
|
| 345 |
+
"step": 56
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.52,
|
| 349 |
+
"learning_rate": 1.895420555368697e-05,
|
| 350 |
+
"loss": 0.0308,
|
| 351 |
+
"step": 57
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"epoch": 0.53,
|
| 355 |
+
"learning_rate": 1.891006524188368e-05,
|
| 356 |
+
"loss": 0.0246,
|
| 357 |
+
"step": 58
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"epoch": 0.54,
|
| 361 |
+
"learning_rate": 1.8865066159447468e-05,
|
| 362 |
+
"loss": 0.0446,
|
| 363 |
+
"step": 59
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"epoch": 0.55,
|
| 367 |
+
"learning_rate": 1.881921264348355e-05,
|
| 368 |
+
"loss": 0.0255,
|
| 369 |
+
"step": 60
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"epoch": 0.55,
|
| 373 |
+
"learning_rate": 1.8772509113449243e-05,
|
| 374 |
+
"loss": 0.0247,
|
| 375 |
+
"step": 61
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"epoch": 0.56,
|
| 379 |
+
"learning_rate": 1.8724960070727974e-05,
|
| 380 |
+
"loss": 0.0189,
|
| 381 |
+
"step": 62
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.57,
|
| 385 |
+
"learning_rate": 1.8676570098195443e-05,
|
| 386 |
+
"loss": 0.0241,
|
| 387 |
+
"step": 63
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.58,
|
| 391 |
+
"learning_rate": 1.862734385977792e-05,
|
| 392 |
+
"loss": 0.0285,
|
| 393 |
+
"step": 64
|
| 394 |
+
},
|
| 395 |
+
{
|
| 396 |
+
"epoch": 0.59,
|
| 397 |
+
"learning_rate": 1.8577286100002723e-05,
|
| 398 |
+
"loss": 0.0266,
|
| 399 |
+
"step": 65
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"epoch": 0.6,
|
| 403 |
+
"learning_rate": 1.8526401643540924e-05,
|
| 404 |
+
"loss": 0.0156,
|
| 405 |
+
"step": 66
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"epoch": 0.61,
|
| 409 |
+
"learning_rate": 1.8474695394742345e-05,
|
| 410 |
+
"loss": 0.0188,
|
| 411 |
+
"step": 67
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"epoch": 0.62,
|
| 415 |
+
"learning_rate": 1.8422172337162865e-05,
|
| 416 |
+
"loss": 0.0172,
|
| 417 |
+
"step": 68
|
| 418 |
+
},
|
| 419 |
+
{
|
| 420 |
+
"epoch": 0.63,
|
| 421 |
+
"learning_rate": 1.8368837533084092e-05,
|
| 422 |
+
"loss": 0.019,
|
| 423 |
+
"step": 69
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.64,
|
| 427 |
+
"learning_rate": 1.8314696123025456e-05,
|
| 428 |
+
"loss": 0.0165,
|
| 429 |
+
"step": 70
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.65,
|
| 433 |
+
"learning_rate": 1.825975332524873e-05,
|
| 434 |
+
"loss": 0.0179,
|
| 435 |
+
"step": 71
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"epoch": 0.65,
|
| 439 |
+
"learning_rate": 1.8204014435255136e-05,
|
| 440 |
+
"loss": 0.0199,
|
| 441 |
+
"step": 72
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"epoch": 0.66,
|
| 445 |
+
"learning_rate": 1.8147484825274895e-05,
|
| 446 |
+
"loss": 0.0377,
|
| 447 |
+
"step": 73
|
| 448 |
+
},
|
| 449 |
+
{
|
| 450 |
+
"epoch": 0.67,
|
| 451 |
+
"learning_rate": 1.8090169943749477e-05,
|
| 452 |
+
"loss": 0.0196,
|
| 453 |
+
"step": 74
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"epoch": 0.68,
|
| 457 |
+
"learning_rate": 1.803207531480645e-05,
|
| 458 |
+
"loss": 0.0103,
|
| 459 |
+
"step": 75
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"epoch": 0.69,
|
| 463 |
+
"learning_rate": 1.797320653772707e-05,
|
| 464 |
+
"loss": 0.0237,
|
| 465 |
+
"step": 76
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.7,
|
| 469 |
+
"learning_rate": 1.7913569286406606e-05,
|
| 470 |
+
"loss": 0.0238,
|
| 471 |
+
"step": 77
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.71,
|
| 475 |
+
"learning_rate": 1.785316930880745e-05,
|
| 476 |
+
"loss": 0.0182,
|
| 477 |
+
"step": 78
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"epoch": 0.72,
|
| 481 |
+
"learning_rate": 1.779201242640517e-05,
|
| 482 |
+
"loss": 0.0171,
|
| 483 |
+
"step": 79
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"epoch": 0.73,
|
| 487 |
+
"learning_rate": 1.773010453362737e-05,
|
| 488 |
+
"loss": 0.0256,
|
| 489 |
+
"step": 80
|
| 490 |
+
},
|
| 491 |
+
{
|
| 492 |
+
"epoch": 0.74,
|
| 493 |
+
"learning_rate": 1.7667451597285617e-05,
|
| 494 |
+
"loss": 0.0196,
|
| 495 |
+
"step": 81
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"epoch": 0.75,
|
| 499 |
+
"learning_rate": 1.7604059656000313e-05,
|
| 500 |
+
"loss": 0.0221,
|
| 501 |
+
"step": 82
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"epoch": 0.75,
|
| 505 |
+
"learning_rate": 1.7539934819618696e-05,
|
| 506 |
+
"loss": 0.0172,
|
| 507 |
+
"step": 83
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.76,
|
| 511 |
+
"learning_rate": 1.747508326862597e-05,
|
| 512 |
+
"loss": 0.0192,
|
| 513 |
+
"step": 84
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.77,
|
| 517 |
+
"learning_rate": 1.7409511253549592e-05,
|
| 518 |
+
"loss": 0.0141,
|
| 519 |
+
"step": 85
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"epoch": 0.78,
|
| 523 |
+
"learning_rate": 1.7343225094356857e-05,
|
| 524 |
+
"loss": 0.0226,
|
| 525 |
+
"step": 86
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"epoch": 0.79,
|
| 529 |
+
"learning_rate": 1.727623117984575e-05,
|
| 530 |
+
"loss": 0.0158,
|
| 531 |
+
"step": 87
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"epoch": 0.8,
|
| 535 |
+
"learning_rate": 1.720853596702919e-05,
|
| 536 |
+
"loss": 0.0158,
|
| 537 |
+
"step": 88
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"epoch": 0.81,
|
| 541 |
+
"learning_rate": 1.7140145980512684e-05,
|
| 542 |
+
"loss": 0.0186,
|
| 543 |
+
"step": 89
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"epoch": 0.82,
|
| 547 |
+
"learning_rate": 1.7071067811865477e-05,
|
| 548 |
+
"loss": 0.0099,
|
| 549 |
+
"step": 90
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.83,
|
| 553 |
+
"learning_rate": 1.7001308118985237e-05,
|
| 554 |
+
"loss": 0.0174,
|
| 555 |
+
"step": 91
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.84,
|
| 559 |
+
"learning_rate": 1.6930873625456362e-05,
|
| 560 |
+
"loss": 0.0254,
|
| 561 |
+
"step": 92
|
| 562 |
+
},
|
| 563 |
+
{
|
| 564 |
+
"epoch": 0.85,
|
| 565 |
+
"learning_rate": 1.685977111990193e-05,
|
| 566 |
+
"loss": 0.0173,
|
| 567 |
+
"step": 93
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"epoch": 0.85,
|
| 571 |
+
"learning_rate": 1.678800745532942e-05,
|
| 572 |
+
"loss": 0.0132,
|
| 573 |
+
"step": 94
|
| 574 |
+
},
|
| 575 |
+
{
|
| 576 |
+
"epoch": 0.86,
|
| 577 |
+
"learning_rate": 1.6715589548470187e-05,
|
| 578 |
+
"loss": 0.0118,
|
| 579 |
+
"step": 95
|
| 580 |
+
},
|
| 581 |
+
{
|
| 582 |
+
"epoch": 0.87,
|
| 583 |
+
"learning_rate": 1.664252437911282e-05,
|
| 584 |
+
"loss": 0.0159,
|
| 585 |
+
"step": 96
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"epoch": 0.88,
|
| 589 |
+
"learning_rate": 1.6568818989430416e-05,
|
| 590 |
+
"loss": 0.0165,
|
| 591 |
+
"step": 97
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.89,
|
| 595 |
+
"learning_rate": 1.6494480483301836e-05,
|
| 596 |
+
"loss": 0.0167,
|
| 597 |
+
"step": 98
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.9,
|
| 601 |
+
"learning_rate": 1.641951602562703e-05,
|
| 602 |
+
"loss": 0.0083,
|
| 603 |
+
"step": 99
|
| 604 |
+
},
|
| 605 |
+
{
|
| 606 |
+
"epoch": 0.91,
|
| 607 |
+
"learning_rate": 1.6343932841636455e-05,
|
| 608 |
+
"loss": 0.0229,
|
| 609 |
+
"step": 100
|
| 610 |
+
},
|
| 611 |
+
{
|
| 612 |
+
"epoch": 0.92,
|
| 613 |
+
"learning_rate": 1.6267738216194698e-05,
|
| 614 |
+
"loss": 0.0202,
|
| 615 |
+
"step": 101
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"epoch": 0.93,
|
| 619 |
+
"learning_rate": 1.6190939493098344e-05,
|
| 620 |
+
"loss": 0.0273,
|
| 621 |
+
"step": 102
|
| 622 |
+
},
|
| 623 |
+
{
|
| 624 |
+
"epoch": 0.94,
|
| 625 |
+
"learning_rate": 1.6113544074368166e-05,
|
| 626 |
+
"loss": 0.0117,
|
| 627 |
+
"step": 103
|
| 628 |
+
},
|
| 629 |
+
{
|
| 630 |
+
"epoch": 0.95,
|
| 631 |
+
"learning_rate": 1.6035559419535714e-05,
|
| 632 |
+
"loss": 0.0133,
|
| 633 |
+
"step": 104
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.95,
|
| 637 |
+
"learning_rate": 1.5956993044924334e-05,
|
| 638 |
+
"loss": 0.018,
|
| 639 |
+
"step": 105
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.96,
|
| 643 |
+
"learning_rate": 1.5877852522924733e-05,
|
| 644 |
+
"loss": 0.0175,
|
| 645 |
+
"step": 106
|
| 646 |
+
},
|
| 647 |
+
{
|
| 648 |
+
"epoch": 0.97,
|
| 649 |
+
"learning_rate": 1.579814548126514e-05,
|
| 650 |
+
"loss": 0.0255,
|
| 651 |
+
"step": 107
|
| 652 |
+
},
|
| 653 |
+
{
|
| 654 |
+
"epoch": 0.98,
|
| 655 |
+
"learning_rate": 1.5717879602276123e-05,
|
| 656 |
+
"loss": 0.0223,
|
| 657 |
+
"step": 108
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"epoch": 0.99,
|
| 661 |
+
"learning_rate": 1.5637062622150168e-05,
|
| 662 |
+
"loss": 0.0218,
|
| 663 |
+
"step": 109
|
| 664 |
+
},
|
| 665 |
+
{
|
| 666 |
+
"epoch": 1.0,
|
| 667 |
+
"learning_rate": 1.5555702330196024e-05,
|
| 668 |
+
"loss": 0.0102,
|
| 669 |
+
"step": 110
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"epoch": 1.01,
|
| 673 |
+
"learning_rate": 1.547380656808797e-05,
|
| 674 |
+
"loss": 0.0127,
|
| 675 |
+
"step": 111
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 1.02,
|
| 679 |
+
"learning_rate": 1.5391383229110005e-05,
|
| 680 |
+
"loss": 0.017,
|
| 681 |
+
"step": 112
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 1.03,
|
| 685 |
+
"learning_rate": 1.5308440257395095e-05,
|
| 686 |
+
"loss": 0.0184,
|
| 687 |
+
"step": 113
|
| 688 |
+
},
|
| 689 |
+
{
|
| 690 |
+
"epoch": 1.04,
|
| 691 |
+
"learning_rate": 1.5224985647159489e-05,
|
| 692 |
+
"loss": 0.0077,
|
| 693 |
+
"step": 114
|
| 694 |
+
},
|
| 695 |
+
{
|
| 696 |
+
"epoch": 1.05,
|
| 697 |
+
"learning_rate": 1.5141027441932217e-05,
|
| 698 |
+
"loss": 0.0139,
|
| 699 |
+
"step": 115
|
| 700 |
+
},
|
| 701 |
+
{
|
| 702 |
+
"epoch": 1.05,
|
| 703 |
+
"learning_rate": 1.5056573733779848e-05,
|
| 704 |
+
"loss": 0.0109,
|
| 705 |
+
"step": 116
|
| 706 |
+
},
|
| 707 |
+
{
|
| 708 |
+
"epoch": 1.06,
|
| 709 |
+
"learning_rate": 1.4971632662526545e-05,
|
| 710 |
+
"loss": 0.0146,
|
| 711 |
+
"step": 117
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"epoch": 1.07,
|
| 715 |
+
"learning_rate": 1.4886212414969551e-05,
|
| 716 |
+
"loss": 0.0187,
|
| 717 |
+
"step": 118
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 1.08,
|
| 721 |
+
"learning_rate": 1.4800321224090114e-05,
|
| 722 |
+
"loss": 0.019,
|
| 723 |
+
"step": 119
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 1.09,
|
| 727 |
+
"learning_rate": 1.4713967368259981e-05,
|
| 728 |
+
"loss": 0.0103,
|
| 729 |
+
"step": 120
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"epoch": 1.1,
|
| 733 |
+
"learning_rate": 1.4627159170443504e-05,
|
| 734 |
+
"loss": 0.0164,
|
| 735 |
+
"step": 121
|
| 736 |
+
},
|
| 737 |
+
{
|
| 738 |
+
"epoch": 1.11,
|
| 739 |
+
"learning_rate": 1.4539904997395468e-05,
|
| 740 |
+
"loss": 0.0131,
|
| 741 |
+
"step": 122
|
| 742 |
+
},
|
| 743 |
+
{
|
| 744 |
+
"epoch": 1.12,
|
| 745 |
+
"learning_rate": 1.4452213258854684e-05,
|
| 746 |
+
"loss": 0.0172,
|
| 747 |
+
"step": 123
|
| 748 |
+
},
|
| 749 |
+
{
|
| 750 |
+
"epoch": 1.13,
|
| 751 |
+
"learning_rate": 1.436409240673342e-05,
|
| 752 |
+
"loss": 0.0125,
|
| 753 |
+
"step": 124
|
| 754 |
+
},
|
| 755 |
+
{
|
| 756 |
+
"epoch": 1.14,
|
| 757 |
+
"learning_rate": 1.4275550934302822e-05,
|
| 758 |
+
"loss": 0.0102,
|
| 759 |
+
"step": 125
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 1.15,
|
| 763 |
+
"learning_rate": 1.4186597375374283e-05,
|
| 764 |
+
"loss": 0.0134,
|
| 765 |
+
"step": 126
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 1.15,
|
| 769 |
+
"learning_rate": 1.4097240303476955e-05,
|
| 770 |
+
"loss": 0.0067,
|
| 771 |
+
"step": 127
|
| 772 |
+
},
|
| 773 |
+
{
|
| 774 |
+
"epoch": 1.16,
|
| 775 |
+
"learning_rate": 1.4007488331031409e-05,
|
| 776 |
+
"loss": 0.0096,
|
| 777 |
+
"step": 128
|
| 778 |
+
},
|
| 779 |
+
{
|
| 780 |
+
"epoch": 1.17,
|
| 781 |
+
"learning_rate": 1.391735010851956e-05,
|
| 782 |
+
"loss": 0.0154,
|
| 783 |
+
"step": 129
|
| 784 |
+
},
|
| 785 |
+
{
|
| 786 |
+
"epoch": 1.18,
|
| 787 |
+
"learning_rate": 1.3826834323650899e-05,
|
| 788 |
+
"loss": 0.0188,
|
| 789 |
+
"step": 130
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"epoch": 1.19,
|
| 793 |
+
"learning_rate": 1.3735949700525164e-05,
|
| 794 |
+
"loss": 0.008,
|
| 795 |
+
"step": 131
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"epoch": 1.2,
|
| 799 |
+
"learning_rate": 1.3644704998791501e-05,
|
| 800 |
+
"loss": 0.0139,
|
| 801 |
+
"step": 132
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 1.21,
|
| 805 |
+
"learning_rate": 1.3553109012804162e-05,
|
| 806 |
+
"loss": 0.0111,
|
| 807 |
+
"step": 133
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 1.22,
|
| 811 |
+
"learning_rate": 1.346117057077493e-05,
|
| 812 |
+
"loss": 0.0136,
|
| 813 |
+
"step": 134
|
| 814 |
+
},
|
| 815 |
+
{
|
| 816 |
+
"epoch": 1.23,
|
| 817 |
+
"learning_rate": 1.3368898533922202e-05,
|
| 818 |
+
"loss": 0.012,
|
| 819 |
+
"step": 135
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"epoch": 1.24,
|
| 823 |
+
"learning_rate": 1.3276301795616937e-05,
|
| 824 |
+
"loss": 0.0181,
|
| 825 |
+
"step": 136
|
| 826 |
+
},
|
| 827 |
+
{
|
| 828 |
+
"epoch": 1.25,
|
| 829 |
+
"learning_rate": 1.3183389280525497e-05,
|
| 830 |
+
"loss": 0.012,
|
| 831 |
+
"step": 137
|
| 832 |
+
},
|
| 833 |
+
{
|
| 834 |
+
"epoch": 1.25,
|
| 835 |
+
"learning_rate": 1.3090169943749475e-05,
|
| 836 |
+
"loss": 0.0085,
|
| 837 |
+
"step": 138
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"epoch": 1.26,
|
| 841 |
+
"learning_rate": 1.2996652769962567e-05,
|
| 842 |
+
"loss": 0.0107,
|
| 843 |
+
"step": 139
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 1.27,
|
| 847 |
+
"learning_rate": 1.2902846772544625e-05,
|
| 848 |
+
"loss": 0.015,
|
| 849 |
+
"step": 140
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 1.28,
|
| 853 |
+
"learning_rate": 1.2808760992712923e-05,
|
| 854 |
+
"loss": 0.0152,
|
| 855 |
+
"step": 141
|
| 856 |
+
},
|
| 857 |
+
{
|
| 858 |
+
"epoch": 1.29,
|
| 859 |
+
"learning_rate": 1.2714404498650743e-05,
|
| 860 |
+
"loss": 0.0126,
|
| 861 |
+
"step": 142
|
| 862 |
+
},
|
| 863 |
+
{
|
| 864 |
+
"epoch": 1.3,
|
| 865 |
+
"learning_rate": 1.2619786384633374e-05,
|
| 866 |
+
"loss": 0.0086,
|
| 867 |
+
"step": 143
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"epoch": 1.31,
|
| 871 |
+
"learning_rate": 1.252491577015158e-05,
|
| 872 |
+
"loss": 0.0121,
|
| 873 |
+
"step": 144
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"epoch": 1.32,
|
| 877 |
+
"learning_rate": 1.242980179903264e-05,
|
| 878 |
+
"loss": 0.0146,
|
| 879 |
+
"step": 145
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"epoch": 1.33,
|
| 883 |
+
"learning_rate": 1.2334453638559057e-05,
|
| 884 |
+
"loss": 0.0146,
|
| 885 |
+
"step": 146
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 1.34,
|
| 889 |
+
"learning_rate": 1.2238880478584987e-05,
|
| 890 |
+
"loss": 0.014,
|
| 891 |
+
"step": 147
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 1.35,
|
| 895 |
+
"learning_rate": 1.2143091530650508e-05,
|
| 896 |
+
"loss": 0.0207,
|
| 897 |
+
"step": 148
|
| 898 |
+
},
|
| 899 |
+
{
|
| 900 |
+
"epoch": 1.35,
|
| 901 |
+
"learning_rate": 1.2047096027093798e-05,
|
| 902 |
+
"loss": 0.0166,
|
| 903 |
+
"step": 149
|
| 904 |
+
},
|
| 905 |
+
{
|
| 906 |
+
"epoch": 1.36,
|
| 907 |
+
"learning_rate": 1.1950903220161286e-05,
|
| 908 |
+
"loss": 0.015,
|
| 909 |
+
"step": 150
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"epoch": 1.37,
|
| 913 |
+
"learning_rate": 1.185452238111591e-05,
|
| 914 |
+
"loss": 0.0115,
|
| 915 |
+
"step": 151
|
| 916 |
+
},
|
| 917 |
+
{
|
| 918 |
+
"epoch": 1.38,
|
| 919 |
+
"learning_rate": 1.1757962799343548e-05,
|
| 920 |
+
"loss": 0.0081,
|
| 921 |
+
"step": 152
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"epoch": 1.39,
|
| 925 |
+
"learning_rate": 1.1661233781457655e-05,
|
| 926 |
+
"loss": 0.0164,
|
| 927 |
+
"step": 153
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 1.4,
|
| 931 |
+
"learning_rate": 1.156434465040231e-05,
|
| 932 |
+
"loss": 0.0108,
|
| 933 |
+
"step": 154
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 1.41,
|
| 937 |
+
"learning_rate": 1.1467304744553618e-05,
|
| 938 |
+
"loss": 0.021,
|
| 939 |
+
"step": 155
|
| 940 |
+
},
|
| 941 |
+
{
|
| 942 |
+
"epoch": 1.42,
|
| 943 |
+
"learning_rate": 1.1370123416819683e-05,
|
| 944 |
+
"loss": 0.0187,
|
| 945 |
+
"step": 156
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"epoch": 1.43,
|
| 949 |
+
"learning_rate": 1.1272810033739134e-05,
|
| 950 |
+
"loss": 0.0178,
|
| 951 |
+
"step": 157
|
| 952 |
+
},
|
| 953 |
+
{
|
| 954 |
+
"epoch": 1.44,
|
| 955 |
+
"learning_rate": 1.1175373974578378e-05,
|
| 956 |
+
"loss": 0.0195,
|
| 957 |
+
"step": 158
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"epoch": 1.45,
|
| 961 |
+
"learning_rate": 1.1077824630427593e-05,
|
| 962 |
+
"loss": 0.016,
|
| 963 |
+
"step": 159
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"epoch": 1.45,
|
| 967 |
+
"learning_rate": 1.098017140329561e-05,
|
| 968 |
+
"loss": 0.0226,
|
| 969 |
+
"step": 160
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 1.46,
|
| 973 |
+
"learning_rate": 1.0882423705203698e-05,
|
| 974 |
+
"loss": 0.0187,
|
| 975 |
+
"step": 161
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 1.47,
|
| 979 |
+
"learning_rate": 1.0784590957278452e-05,
|
| 980 |
+
"loss": 0.0122,
|
| 981 |
+
"step": 162
|
| 982 |
+
},
|
| 983 |
+
{
|
| 984 |
+
"epoch": 1.48,
|
| 985 |
+
"learning_rate": 1.0686682588843737e-05,
|
| 986 |
+
"loss": 0.0073,
|
| 987 |
+
"step": 163
|
| 988 |
+
},
|
| 989 |
+
{
|
| 990 |
+
"epoch": 1.49,
|
| 991 |
+
"learning_rate": 1.058870803651189e-05,
|
| 992 |
+
"loss": 0.0102,
|
| 993 |
+
"step": 164
|
| 994 |
+
},
|
| 995 |
+
{
|
| 996 |
+
"epoch": 1.5,
|
| 997 |
+
"learning_rate": 1.0490676743274181e-05,
|
| 998 |
+
"loss": 0.0076,
|
| 999 |
+
"step": 165
|
| 1000 |
+
},
|
| 1001 |
+
{
|
| 1002 |
+
"epoch": 1.51,
|
| 1003 |
+
"learning_rate": 1.0392598157590687e-05,
|
| 1004 |
+
"loss": 0.011,
|
| 1005 |
+
"step": 166
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"epoch": 1.52,
|
| 1009 |
+
"learning_rate": 1.0294481732479635e-05,
|
| 1010 |
+
"loss": 0.02,
|
| 1011 |
+
"step": 167
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 1.53,
|
| 1015 |
+
"learning_rate": 1.0196336924606282e-05,
|
| 1016 |
+
"loss": 0.0186,
|
| 1017 |
+
"step": 168
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 1.54,
|
| 1021 |
+
"learning_rate": 1.0098173193371498e-05,
|
| 1022 |
+
"loss": 0.0133,
|
| 1023 |
+
"step": 169
|
| 1024 |
+
},
|
| 1025 |
+
{
|
| 1026 |
+
"epoch": 1.55,
|
| 1027 |
+
"learning_rate": 1e-05,
|
| 1028 |
+
"loss": 0.0128,
|
| 1029 |
+
"step": 170
|
| 1030 |
+
},
|
| 1031 |
+
{
|
| 1032 |
+
"epoch": 1.55,
|
| 1033 |
+
"learning_rate": 9.901826806628505e-06,
|
| 1034 |
+
"loss": 0.0067,
|
| 1035 |
+
"step": 171
|
| 1036 |
+
},
|
| 1037 |
+
{
|
| 1038 |
+
"epoch": 1.56,
|
| 1039 |
+
"learning_rate": 9.80366307539372e-06,
|
| 1040 |
+
"loss": 0.0052,
|
| 1041 |
+
"step": 172
|
| 1042 |
+
},
|
| 1043 |
+
{
|
| 1044 |
+
"epoch": 1.57,
|
| 1045 |
+
"learning_rate": 9.705518267520369e-06,
|
| 1046 |
+
"loss": 0.0105,
|
| 1047 |
+
"step": 173
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"epoch": 1.58,
|
| 1051 |
+
"learning_rate": 9.607401842409318e-06,
|
| 1052 |
+
"loss": 0.0089,
|
| 1053 |
+
"step": 174
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 1.59,
|
| 1057 |
+
"learning_rate": 9.50932325672582e-06,
|
| 1058 |
+
"loss": 0.0071,
|
| 1059 |
+
"step": 175
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 1.6,
|
| 1063 |
+
"learning_rate": 9.41129196348811e-06,
|
| 1064 |
+
"loss": 0.0082,
|
| 1065 |
+
"step": 176
|
| 1066 |
+
},
|
| 1067 |
+
{
|
| 1068 |
+
"epoch": 1.61,
|
| 1069 |
+
"learning_rate": 9.313317411156265e-06,
|
| 1070 |
+
"loss": 0.0122,
|
| 1071 |
+
"step": 177
|
| 1072 |
+
},
|
| 1073 |
+
{
|
| 1074 |
+
"epoch": 1.62,
|
| 1075 |
+
"learning_rate": 9.215409042721553e-06,
|
| 1076 |
+
"loss": 0.0077,
|
| 1077 |
+
"step": 178
|
| 1078 |
+
},
|
| 1079 |
+
{
|
| 1080 |
+
"epoch": 1.63,
|
| 1081 |
+
"learning_rate": 9.117576294796307e-06,
|
| 1082 |
+
"loss": 0.0084,
|
| 1083 |
+
"step": 179
|
| 1084 |
+
},
|
| 1085 |
+
{
|
| 1086 |
+
"epoch": 1.64,
|
| 1087 |
+
"learning_rate": 9.019828596704394e-06,
|
| 1088 |
+
"loss": 0.0099,
|
| 1089 |
+
"step": 180
|
| 1090 |
+
},
|
| 1091 |
+
{
|
| 1092 |
+
"epoch": 1.65,
|
| 1093 |
+
"learning_rate": 8.922175369572407e-06,
|
| 1094 |
+
"loss": 0.0085,
|
| 1095 |
+
"step": 181
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 1.65,
|
| 1099 |
+
"learning_rate": 8.824626025421625e-06,
|
| 1100 |
+
"loss": 0.005,
|
| 1101 |
+
"step": 182
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 1.66,
|
| 1105 |
+
"learning_rate": 8.72718996626087e-06,
|
| 1106 |
+
"loss": 0.0068,
|
| 1107 |
+
"step": 183
|
| 1108 |
+
},
|
| 1109 |
+
{
|
| 1110 |
+
"epoch": 1.67,
|
| 1111 |
+
"learning_rate": 8.629876583180322e-06,
|
| 1112 |
+
"loss": 0.0124,
|
| 1113 |
+
"step": 184
|
| 1114 |
+
},
|
| 1115 |
+
{
|
| 1116 |
+
"epoch": 1.68,
|
| 1117 |
+
"learning_rate": 8.532695255446384e-06,
|
| 1118 |
+
"loss": 0.0093,
|
| 1119 |
+
"step": 185
|
| 1120 |
+
},
|
| 1121 |
+
{
|
| 1122 |
+
"epoch": 1.69,
|
| 1123 |
+
"learning_rate": 8.43565534959769e-06,
|
| 1124 |
+
"loss": 0.0175,
|
| 1125 |
+
"step": 186
|
| 1126 |
+
},
|
| 1127 |
+
{
|
| 1128 |
+
"epoch": 1.7,
|
| 1129 |
+
"learning_rate": 8.338766218542348e-06,
|
| 1130 |
+
"loss": 0.0053,
|
| 1131 |
+
"step": 187
|
| 1132 |
+
},
|
| 1133 |
+
{
|
| 1134 |
+
"epoch": 1.71,
|
| 1135 |
+
"learning_rate": 8.242037200656455e-06,
|
| 1136 |
+
"loss": 0.0145,
|
| 1137 |
+
"step": 188
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 1.72,
|
| 1141 |
+
"learning_rate": 8.145477618884092e-06,
|
| 1142 |
+
"loss": 0.0096,
|
| 1143 |
+
"step": 189
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 1.73,
|
| 1147 |
+
"learning_rate": 8.04909677983872e-06,
|
| 1148 |
+
"loss": 0.0076,
|
| 1149 |
+
"step": 190
|
| 1150 |
+
},
|
| 1151 |
+
{
|
| 1152 |
+
"epoch": 1.74,
|
| 1153 |
+
"learning_rate": 7.952903972906205e-06,
|
| 1154 |
+
"loss": 0.0092,
|
| 1155 |
+
"step": 191
|
| 1156 |
+
},
|
| 1157 |
+
{
|
| 1158 |
+
"epoch": 1.75,
|
| 1159 |
+
"learning_rate": 7.856908469349495e-06,
|
| 1160 |
+
"loss": 0.0113,
|
| 1161 |
+
"step": 192
|
| 1162 |
+
},
|
| 1163 |
+
{
|
| 1164 |
+
"epoch": 1.75,
|
| 1165 |
+
"learning_rate": 7.761119521415017e-06,
|
| 1166 |
+
"loss": 0.007,
|
| 1167 |
+
"step": 193
|
| 1168 |
+
},
|
| 1169 |
+
{
|
| 1170 |
+
"epoch": 1.76,
|
| 1171 |
+
"learning_rate": 7.66554636144095e-06,
|
| 1172 |
+
"loss": 0.0144,
|
| 1173 |
+
"step": 194
|
| 1174 |
+
},
|
| 1175 |
+
{
|
| 1176 |
+
"epoch": 1.77,
|
| 1177 |
+
"learning_rate": 7.570198200967363e-06,
|
| 1178 |
+
"loss": 0.0088,
|
| 1179 |
+
"step": 195
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 1.78,
|
| 1183 |
+
"learning_rate": 7.4750842298484205e-06,
|
| 1184 |
+
"loss": 0.0063,
|
| 1185 |
+
"step": 196
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 1.79,
|
| 1189 |
+
"learning_rate": 7.380213615366627e-06,
|
| 1190 |
+
"loss": 0.0083,
|
| 1191 |
+
"step": 197
|
| 1192 |
+
},
|
| 1193 |
+
{
|
| 1194 |
+
"epoch": 1.8,
|
| 1195 |
+
"learning_rate": 7.285595501349259e-06,
|
| 1196 |
+
"loss": 0.0095,
|
| 1197 |
+
"step": 198
|
| 1198 |
+
},
|
| 1199 |
+
{
|
| 1200 |
+
"epoch": 1.81,
|
| 1201 |
+
"learning_rate": 7.191239007287082e-06,
|
| 1202 |
+
"loss": 0.0042,
|
| 1203 |
+
"step": 199
|
| 1204 |
+
},
|
| 1205 |
+
{
|
| 1206 |
+
"epoch": 1.82,
|
| 1207 |
+
"learning_rate": 7.097153227455379e-06,
|
| 1208 |
+
"loss": 0.0081,
|
| 1209 |
+
"step": 200
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"epoch": 1.83,
|
| 1213 |
+
"learning_rate": 7.003347230037434e-06,
|
| 1214 |
+
"loss": 0.0102,
|
| 1215 |
+
"step": 201
|
| 1216 |
+
},
|
| 1217 |
+
{
|
| 1218 |
+
"epoch": 1.84,
|
| 1219 |
+
"learning_rate": 6.909830056250527e-06,
|
| 1220 |
+
"loss": 0.0049,
|
| 1221 |
+
"step": 202
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 1.85,
|
| 1225 |
+
"learning_rate": 6.816610719474503e-06,
|
| 1226 |
+
"loss": 0.0084,
|
| 1227 |
+
"step": 203
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 1.85,
|
| 1231 |
+
"learning_rate": 6.723698204383067e-06,
|
| 1232 |
+
"loss": 0.0091,
|
| 1233 |
+
"step": 204
|
| 1234 |
+
},
|
| 1235 |
+
{
|
| 1236 |
+
"epoch": 1.86,
|
| 1237 |
+
"learning_rate": 6.631101466077801e-06,
|
| 1238 |
+
"loss": 0.0084,
|
| 1239 |
+
"step": 205
|
| 1240 |
+
},
|
| 1241 |
+
{
|
| 1242 |
+
"epoch": 1.87,
|
| 1243 |
+
"learning_rate": 6.538829429225068e-06,
|
| 1244 |
+
"loss": 0.0124,
|
| 1245 |
+
"step": 206
|
| 1246 |
+
},
|
| 1247 |
+
{
|
| 1248 |
+
"epoch": 1.88,
|
| 1249 |
+
"learning_rate": 6.446890987195842e-06,
|
| 1250 |
+
"loss": 0.0051,
|
| 1251 |
+
"step": 207
|
| 1252 |
+
},
|
| 1253 |
+
{
|
| 1254 |
+
"epoch": 1.89,
|
| 1255 |
+
"learning_rate": 6.355295001208504e-06,
|
| 1256 |
+
"loss": 0.0047,
|
| 1257 |
+
"step": 208
|
| 1258 |
+
},
|
| 1259 |
+
{
|
| 1260 |
+
"epoch": 1.9,
|
| 1261 |
+
"learning_rate": 6.2640502994748375e-06,
|
| 1262 |
+
"loss": 0.0135,
|
| 1263 |
+
"step": 209
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 1.91,
|
| 1267 |
+
"learning_rate": 6.173165676349103e-06,
|
| 1268 |
+
"loss": 0.0095,
|
| 1269 |
+
"step": 210
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 1.92,
|
| 1273 |
+
"learning_rate": 6.082649891480441e-06,
|
| 1274 |
+
"loss": 0.0051,
|
| 1275 |
+
"step": 211
|
| 1276 |
+
},
|
| 1277 |
+
{
|
| 1278 |
+
"epoch": 1.93,
|
| 1279 |
+
"learning_rate": 5.9925116689685925e-06,
|
| 1280 |
+
"loss": 0.0076,
|
| 1281 |
+
"step": 212
|
| 1282 |
+
},
|
| 1283 |
+
{
|
| 1284 |
+
"epoch": 1.94,
|
| 1285 |
+
"learning_rate": 5.902759696523046e-06,
|
| 1286 |
+
"loss": 0.0051,
|
| 1287 |
+
"step": 213
|
| 1288 |
+
},
|
| 1289 |
+
{
|
| 1290 |
+
"epoch": 1.95,
|
| 1291 |
+
"learning_rate": 5.813402624625722e-06,
|
| 1292 |
+
"loss": 0.0066,
|
| 1293 |
+
"step": 214
|
| 1294 |
+
},
|
| 1295 |
+
{
|
| 1296 |
+
"epoch": 1.95,
|
| 1297 |
+
"learning_rate": 5.724449065697182e-06,
|
| 1298 |
+
"loss": 0.0097,
|
| 1299 |
+
"step": 215
|
| 1300 |
+
},
|
| 1301 |
+
{
|
| 1302 |
+
"epoch": 1.96,
|
| 1303 |
+
"learning_rate": 5.635907593266578e-06,
|
| 1304 |
+
"loss": 0.0094,
|
| 1305 |
+
"step": 216
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 1.97,
|
| 1309 |
+
"learning_rate": 5.54778674114532e-06,
|
| 1310 |
+
"loss": 0.0093,
|
| 1311 |
+
"step": 217
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 1.98,
|
| 1315 |
+
"learning_rate": 5.460095002604533e-06,
|
| 1316 |
+
"loss": 0.0089,
|
| 1317 |
+
"step": 218
|
| 1318 |
+
},
|
| 1319 |
+
{
|
| 1320 |
+
"epoch": 1.99,
|
| 1321 |
+
"learning_rate": 5.3728408295565e-06,
|
| 1322 |
+
"loss": 0.0063,
|
| 1323 |
+
"step": 219
|
| 1324 |
+
},
|
| 1325 |
+
{
|
| 1326 |
+
"epoch": 2.0,
|
| 1327 |
+
"learning_rate": 5.286032631740023e-06,
|
| 1328 |
+
"loss": 0.0063,
|
| 1329 |
+
"step": 220
|
| 1330 |
+
},
|
| 1331 |
+
{
|
| 1332 |
+
"epoch": 2.01,
|
| 1333 |
+
"learning_rate": 5.199678775909889e-06,
|
| 1334 |
+
"loss": 0.0052,
|
| 1335 |
+
"step": 221
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"epoch": 2.02,
|
| 1339 |
+
"learning_rate": 5.1137875850304545e-06,
|
| 1340 |
+
"loss": 0.007,
|
| 1341 |
+
"step": 222
|
| 1342 |
+
},
|
| 1343 |
+
{
|
| 1344 |
+
"epoch": 2.03,
|
| 1345 |
+
"learning_rate": 5.0283673374734546e-06,
|
| 1346 |
+
"loss": 0.0058,
|
| 1347 |
+
"step": 223
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 2.04,
|
| 1351 |
+
"learning_rate": 4.943426266220156e-06,
|
| 1352 |
+
"loss": 0.0046,
|
| 1353 |
+
"step": 224
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 2.05,
|
| 1357 |
+
"learning_rate": 4.858972558067784e-06,
|
| 1358 |
+
"loss": 0.0056,
|
| 1359 |
+
"step": 225
|
| 1360 |
+
},
|
| 1361 |
+
{
|
| 1362 |
+
"epoch": 2.05,
|
| 1363 |
+
"learning_rate": 4.775014352840512e-06,
|
| 1364 |
+
"loss": 0.0092,
|
| 1365 |
+
"step": 226
|
| 1366 |
+
},
|
| 1367 |
+
{
|
| 1368 |
+
"epoch": 2.06,
|
| 1369 |
+
"learning_rate": 4.691559742604906e-06,
|
| 1370 |
+
"loss": 0.0068,
|
| 1371 |
+
"step": 227
|
| 1372 |
+
},
|
| 1373 |
+
{
|
| 1374 |
+
"epoch": 2.07,
|
| 1375 |
+
"learning_rate": 4.608616770889998e-06,
|
| 1376 |
+
"loss": 0.0071,
|
| 1377 |
+
"step": 228
|
| 1378 |
+
},
|
| 1379 |
+
{
|
| 1380 |
+
"epoch": 2.08,
|
| 1381 |
+
"learning_rate": 4.526193431912038e-06,
|
| 1382 |
+
"loss": 0.0052,
|
| 1383 |
+
"step": 229
|
| 1384 |
+
},
|
| 1385 |
+
{
|
| 1386 |
+
"epoch": 2.09,
|
| 1387 |
+
"learning_rate": 4.444297669803981e-06,
|
| 1388 |
+
"loss": 0.0092,
|
| 1389 |
+
"step": 230
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 2.1,
|
| 1393 |
+
"learning_rate": 4.362937377849832e-06,
|
| 1394 |
+
"loss": 0.0091,
|
| 1395 |
+
"step": 231
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 2.11,
|
| 1399 |
+
"learning_rate": 4.282120397723879e-06,
|
| 1400 |
+
"loss": 0.0053,
|
| 1401 |
+
"step": 232
|
| 1402 |
+
},
|
| 1403 |
+
{
|
| 1404 |
+
"epoch": 2.12,
|
| 1405 |
+
"learning_rate": 4.2018545187348645e-06,
|
| 1406 |
+
"loss": 0.0068,
|
| 1407 |
+
"step": 233
|
| 1408 |
+
},
|
| 1409 |
+
{
|
| 1410 |
+
"epoch": 2.13,
|
| 1411 |
+
"learning_rate": 4.12214747707527e-06,
|
| 1412 |
+
"loss": 0.0049,
|
| 1413 |
+
"step": 234
|
| 1414 |
+
},
|
| 1415 |
+
{
|
| 1416 |
+
"epoch": 2.14,
|
| 1417 |
+
"learning_rate": 4.043006955075667e-06,
|
| 1418 |
+
"loss": 0.0046,
|
| 1419 |
+
"step": 235
|
| 1420 |
+
},
|
| 1421 |
+
{
|
| 1422 |
+
"epoch": 2.15,
|
| 1423 |
+
"learning_rate": 3.964440580464286e-06,
|
| 1424 |
+
"loss": 0.0084,
|
| 1425 |
+
"step": 236
|
| 1426 |
+
},
|
| 1427 |
+
{
|
| 1428 |
+
"epoch": 2.15,
|
| 1429 |
+
"learning_rate": 3.8864559256318375e-06,
|
| 1430 |
+
"loss": 0.0073,
|
| 1431 |
+
"step": 237
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 2.16,
|
| 1435 |
+
"learning_rate": 3.8090605069016596e-06,
|
| 1436 |
+
"loss": 0.0057,
|
| 1437 |
+
"step": 238
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 2.17,
|
| 1441 |
+
"learning_rate": 3.7322617838053066e-06,
|
| 1442 |
+
"loss": 0.0069,
|
| 1443 |
+
"step": 239
|
| 1444 |
+
},
|
| 1445 |
+
{
|
| 1446 |
+
"epoch": 2.18,
|
| 1447 |
+
"learning_rate": 3.6560671583635467e-06,
|
| 1448 |
+
"loss": 0.0039,
|
| 1449 |
+
"step": 240
|
| 1450 |
+
},
|
| 1451 |
+
{
|
| 1452 |
+
"epoch": 2.19,
|
| 1453 |
+
"learning_rate": 3.58048397437297e-06,
|
| 1454 |
+
"loss": 0.0044,
|
| 1455 |
+
"step": 241
|
| 1456 |
+
},
|
| 1457 |
+
{
|
| 1458 |
+
"epoch": 2.2,
|
| 1459 |
+
"learning_rate": 3.505519516698165e-06,
|
| 1460 |
+
"loss": 0.0095,
|
| 1461 |
+
"step": 242
|
| 1462 |
+
},
|
| 1463 |
+
{
|
| 1464 |
+
"epoch": 2.21,
|
| 1465 |
+
"learning_rate": 3.4311810105695875e-06,
|
| 1466 |
+
"loss": 0.0046,
|
| 1467 |
+
"step": 243
|
| 1468 |
+
},
|
| 1469 |
+
{
|
| 1470 |
+
"epoch": 2.22,
|
| 1471 |
+
"learning_rate": 3.3574756208871862e-06,
|
| 1472 |
+
"loss": 0.0061,
|
| 1473 |
+
"step": 244
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 2.23,
|
| 1477 |
+
"learning_rate": 3.284410451529816e-06,
|
| 1478 |
+
"loss": 0.0041,
|
| 1479 |
+
"step": 245
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 2.24,
|
| 1483 |
+
"learning_rate": 3.2119925446705824e-06,
|
| 1484 |
+
"loss": 0.0065,
|
| 1485 |
+
"step": 246
|
| 1486 |
+
},
|
| 1487 |
+
{
|
| 1488 |
+
"epoch": 2.25,
|
| 1489 |
+
"learning_rate": 3.140228880098074e-06,
|
| 1490 |
+
"loss": 0.0044,
|
| 1491 |
+
"step": 247
|
| 1492 |
+
},
|
| 1493 |
+
{
|
| 1494 |
+
"epoch": 2.25,
|
| 1495 |
+
"learning_rate": 3.069126374543643e-06,
|
| 1496 |
+
"loss": 0.0046,
|
| 1497 |
+
"step": 248
|
| 1498 |
+
},
|
| 1499 |
+
{
|
| 1500 |
+
"epoch": 2.26,
|
| 1501 |
+
"learning_rate": 2.998691881014765e-06,
|
| 1502 |
+
"loss": 0.0072,
|
| 1503 |
+
"step": 249
|
| 1504 |
+
},
|
| 1505 |
+
{
|
| 1506 |
+
"epoch": 2.27,
|
| 1507 |
+
"learning_rate": 2.9289321881345257e-06,
|
| 1508 |
+
"loss": 0.0054,
|
| 1509 |
+
"step": 250
|
| 1510 |
+
},
|
| 1511 |
+
{
|
| 1512 |
+
"epoch": 2.28,
|
| 1513 |
+
"learning_rate": 2.859854019487318e-06,
|
| 1514 |
+
"loss": 0.0087,
|
| 1515 |
+
"step": 251
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 2.29,
|
| 1519 |
+
"learning_rate": 2.791464032970812e-06,
|
| 1520 |
+
"loss": 0.0049,
|
| 1521 |
+
"step": 252
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 2.3,
|
| 1525 |
+
"learning_rate": 2.723768820154251e-06,
|
| 1526 |
+
"loss": 0.0065,
|
| 1527 |
+
"step": 253
|
| 1528 |
+
},
|
| 1529 |
+
{
|
| 1530 |
+
"epoch": 2.31,
|
| 1531 |
+
"learning_rate": 2.656774905643147e-06,
|
| 1532 |
+
"loss": 0.0061,
|
| 1533 |
+
"step": 254
|
| 1534 |
+
},
|
| 1535 |
+
{
|
| 1536 |
+
"epoch": 2.32,
|
| 1537 |
+
"learning_rate": 2.5904887464504115e-06,
|
| 1538 |
+
"loss": 0.0047,
|
| 1539 |
+
"step": 255
|
| 1540 |
+
},
|
| 1541 |
+
{
|
| 1542 |
+
"epoch": 2.33,
|
| 1543 |
+
"learning_rate": 2.5249167313740307e-06,
|
| 1544 |
+
"loss": 0.0048,
|
| 1545 |
+
"step": 256
|
| 1546 |
+
},
|
| 1547 |
+
{
|
| 1548 |
+
"epoch": 2.34,
|
| 1549 |
+
"learning_rate": 2.4600651803813057e-06,
|
| 1550 |
+
"loss": 0.0046,
|
| 1551 |
+
"step": 257
|
| 1552 |
+
},
|
| 1553 |
+
{
|
| 1554 |
+
"epoch": 2.35,
|
| 1555 |
+
"learning_rate": 2.395940343999691e-06,
|
| 1556 |
+
"loss": 0.0057,
|
| 1557 |
+
"step": 258
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 2.35,
|
| 1561 |
+
"learning_rate": 2.332548402714385e-06,
|
| 1562 |
+
"loss": 0.0056,
|
| 1563 |
+
"step": 259
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 2.36,
|
| 1567 |
+
"learning_rate": 2.26989546637263e-06,
|
| 1568 |
+
"loss": 0.0124,
|
| 1569 |
+
"step": 260
|
| 1570 |
+
},
|
| 1571 |
+
{
|
| 1572 |
+
"epoch": 2.37,
|
| 1573 |
+
"learning_rate": 2.207987573594833e-06,
|
| 1574 |
+
"loss": 0.0026,
|
| 1575 |
+
"step": 261
|
| 1576 |
+
},
|
| 1577 |
+
{
|
| 1578 |
+
"epoch": 2.38,
|
| 1579 |
+
"learning_rate": 2.146830691192553e-06,
|
| 1580 |
+
"loss": 0.0098,
|
| 1581 |
+
"step": 262
|
| 1582 |
+
},
|
| 1583 |
+
{
|
| 1584 |
+
"epoch": 2.39,
|
| 1585 |
+
"learning_rate": 2.086430713593397e-06,
|
| 1586 |
+
"loss": 0.0052,
|
| 1587 |
+
"step": 263
|
| 1588 |
+
},
|
| 1589 |
+
{
|
| 1590 |
+
"epoch": 2.4,
|
| 1591 |
+
"learning_rate": 2.02679346227293e-06,
|
| 1592 |
+
"loss": 0.0053,
|
| 1593 |
+
"step": 264
|
| 1594 |
+
},
|
| 1595 |
+
{
|
| 1596 |
+
"epoch": 2.41,
|
| 1597 |
+
"learning_rate": 1.967924685193552e-06,
|
| 1598 |
+
"loss": 0.0072,
|
| 1599 |
+
"step": 265
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 2.42,
|
| 1603 |
+
"learning_rate": 1.9098300562505266e-06,
|
| 1604 |
+
"loss": 0.0063,
|
| 1605 |
+
"step": 266
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 2.43,
|
| 1609 |
+
"learning_rate": 1.8525151747251058e-06,
|
| 1610 |
+
"loss": 0.0068,
|
| 1611 |
+
"step": 267
|
| 1612 |
+
},
|
| 1613 |
+
{
|
| 1614 |
+
"epoch": 2.44,
|
| 1615 |
+
"learning_rate": 1.7959855647448642e-06,
|
| 1616 |
+
"loss": 0.0064,
|
| 1617 |
+
"step": 268
|
| 1618 |
+
},
|
| 1619 |
+
{
|
| 1620 |
+
"epoch": 2.45,
|
| 1621 |
+
"learning_rate": 1.7402466747512704e-06,
|
| 1622 |
+
"loss": 0.006,
|
| 1623 |
+
"step": 269
|
| 1624 |
+
},
|
| 1625 |
+
{
|
| 1626 |
+
"epoch": 2.45,
|
| 1627 |
+
"learning_rate": 1.6853038769745466e-06,
|
| 1628 |
+
"loss": 0.0048,
|
| 1629 |
+
"step": 270
|
| 1630 |
+
},
|
| 1631 |
+
{
|
| 1632 |
+
"epoch": 2.46,
|
| 1633 |
+
"learning_rate": 1.6311624669159064e-06,
|
| 1634 |
+
"loss": 0.007,
|
| 1635 |
+
"step": 271
|
| 1636 |
+
},
|
| 1637 |
+
{
|
| 1638 |
+
"epoch": 2.47,
|
| 1639 |
+
"learning_rate": 1.577827662837136e-06,
|
| 1640 |
+
"loss": 0.0042,
|
| 1641 |
+
"step": 272
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 2.48,
|
| 1645 |
+
"learning_rate": 1.5253046052576559e-06,
|
| 1646 |
+
"loss": 0.0044,
|
| 1647 |
+
"step": 273
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"epoch": 2.49,
|
| 1651 |
+
"learning_rate": 1.4735983564590784e-06,
|
| 1652 |
+
"loss": 0.0049,
|
| 1653 |
+
"step": 274
|
| 1654 |
+
},
|
| 1655 |
+
{
|
| 1656 |
+
"epoch": 2.5,
|
| 1657 |
+
"learning_rate": 1.4227138999972801e-06,
|
| 1658 |
+
"loss": 0.0058,
|
| 1659 |
+
"step": 275
|
| 1660 |
+
},
|
| 1661 |
+
{
|
| 1662 |
+
"epoch": 2.51,
|
| 1663 |
+
"learning_rate": 1.3726561402220818e-06,
|
| 1664 |
+
"loss": 0.0062,
|
| 1665 |
+
"step": 276
|
| 1666 |
+
},
|
| 1667 |
+
{
|
| 1668 |
+
"epoch": 2.52,
|
| 1669 |
+
"learning_rate": 1.3234299018045615e-06,
|
| 1670 |
+
"loss": 0.0066,
|
| 1671 |
+
"step": 277
|
| 1672 |
+
},
|
| 1673 |
+
{
|
| 1674 |
+
"epoch": 2.53,
|
| 1675 |
+
"learning_rate": 1.2750399292720284e-06,
|
| 1676 |
+
"loss": 0.0064,
|
| 1677 |
+
"step": 278
|
| 1678 |
+
},
|
| 1679 |
+
{
|
| 1680 |
+
"epoch": 2.54,
|
| 1681 |
+
"learning_rate": 1.2274908865507595e-06,
|
| 1682 |
+
"loss": 0.0052,
|
| 1683 |
+
"step": 279
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 2.55,
|
| 1687 |
+
"learning_rate": 1.1807873565164507e-06,
|
| 1688 |
+
"loss": 0.0077,
|
| 1689 |
+
"step": 280
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"epoch": 2.55,
|
| 1693 |
+
"learning_rate": 1.1349338405525368e-06,
|
| 1694 |
+
"loss": 0.0036,
|
| 1695 |
+
"step": 281
|
| 1696 |
+
},
|
| 1697 |
+
{
|
| 1698 |
+
"epoch": 2.56,
|
| 1699 |
+
"learning_rate": 1.0899347581163222e-06,
|
| 1700 |
+
"loss": 0.0076,
|
| 1701 |
+
"step": 282
|
| 1702 |
+
},
|
| 1703 |
+
{
|
| 1704 |
+
"epoch": 2.57,
|
| 1705 |
+
"learning_rate": 1.045794446313031e-06,
|
| 1706 |
+
"loss": 0.0047,
|
| 1707 |
+
"step": 283
|
| 1708 |
+
},
|
| 1709 |
+
{
|
| 1710 |
+
"epoch": 2.58,
|
| 1711 |
+
"learning_rate": 1.0025171594777872e-06,
|
| 1712 |
+
"loss": 0.0053,
|
| 1713 |
+
"step": 284
|
| 1714 |
+
},
|
| 1715 |
+
{
|
| 1716 |
+
"epoch": 2.59,
|
| 1717 |
+
"learning_rate": 9.601070687655667e-07,
|
| 1718 |
+
"loss": 0.0049,
|
| 1719 |
+
"step": 285
|
| 1720 |
+
},
|
| 1721 |
+
{
|
| 1722 |
+
"epoch": 2.6,
|
| 1723 |
+
"learning_rate": 9.185682617491865e-07,
|
| 1724 |
+
"loss": 0.0073,
|
| 1725 |
+
"step": 286
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 2.61,
|
| 1729 |
+
"learning_rate": 8.779047420253239e-07,
|
| 1730 |
+
"loss": 0.0056,
|
| 1731 |
+
"step": 287
|
| 1732 |
+
},
|
| 1733 |
+
{
|
| 1734 |
+
"epoch": 2.62,
|
| 1735 |
+
"learning_rate": 8.381204288286415e-07,
|
| 1736 |
+
"loss": 0.0087,
|
| 1737 |
+
"step": 288
|
| 1738 |
+
},
|
| 1739 |
+
{
|
| 1740 |
+
"epoch": 2.63,
|
| 1741 |
+
"learning_rate": 7.992191566540519e-07,
|
| 1742 |
+
"loss": 0.0041,
|
| 1743 |
+
"step": 289
|
| 1744 |
+
},
|
| 1745 |
+
{
|
| 1746 |
+
"epoch": 2.64,
|
| 1747 |
+
"learning_rate": 7.612046748871327e-07,
|
| 1748 |
+
"loss": 0.0062,
|
| 1749 |
+
"step": 290
|
| 1750 |
+
},
|
| 1751 |
+
{
|
| 1752 |
+
"epoch": 2.65,
|
| 1753 |
+
"learning_rate": 7.240806474427598e-07,
|
| 1754 |
+
"loss": 0.0035,
|
| 1755 |
+
"step": 291
|
| 1756 |
+
},
|
| 1757 |
+
{
|
| 1758 |
+
"epoch": 2.65,
|
| 1759 |
+
"learning_rate": 6.878506524119644e-07,
|
| 1760 |
+
"loss": 0.0042,
|
| 1761 |
+
"step": 292
|
| 1762 |
+
},
|
| 1763 |
+
{
|
| 1764 |
+
"epoch": 2.66,
|
| 1765 |
+
"learning_rate": 6.525181817170756e-07,
|
| 1766 |
+
"loss": 0.0063,
|
| 1767 |
+
"step": 293
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 2.67,
|
| 1771 |
+
"learning_rate": 6.180866407751595e-07,
|
| 1772 |
+
"loss": 0.0054,
|
| 1773 |
+
"step": 294
|
| 1774 |
+
},
|
| 1775 |
+
{
|
| 1776 |
+
"epoch": 2.68,
|
| 1777 |
+
"learning_rate": 5.845593481697931e-07,
|
| 1778 |
+
"loss": 0.0053,
|
| 1779 |
+
"step": 295
|
| 1780 |
+
},
|
| 1781 |
+
{
|
| 1782 |
+
"epoch": 2.69,
|
| 1783 |
+
"learning_rate": 5.519395353312195e-07,
|
| 1784 |
+
"loss": 0.008,
|
| 1785 |
+
"step": 296
|
| 1786 |
+
},
|
| 1787 |
+
{
|
| 1788 |
+
"epoch": 2.7,
|
| 1789 |
+
"learning_rate": 5.20230346224897e-07,
|
| 1790 |
+
"loss": 0.0039,
|
| 1791 |
+
"step": 297
|
| 1792 |
+
},
|
| 1793 |
+
{
|
| 1794 |
+
"epoch": 2.71,
|
| 1795 |
+
"learning_rate": 4.894348370484648e-07,
|
| 1796 |
+
"loss": 0.0037,
|
| 1797 |
+
"step": 298
|
| 1798 |
+
},
|
| 1799 |
+
{
|
| 1800 |
+
"epoch": 2.72,
|
| 1801 |
+
"learning_rate": 4.5955597593719593e-07,
|
| 1802 |
+
"loss": 0.0061,
|
| 1803 |
+
"step": 299
|
| 1804 |
+
},
|
| 1805 |
+
{
|
| 1806 |
+
"epoch": 2.73,
|
| 1807 |
+
"learning_rate": 4.305966426779118e-07,
|
| 1808 |
+
"loss": 0.0059,
|
| 1809 |
+
"step": 300
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 2.74,
|
| 1813 |
+
"learning_rate": 4.025596284314259e-07,
|
| 1814 |
+
"loss": 0.0067,
|
| 1815 |
+
"step": 301
|
| 1816 |
+
},
|
| 1817 |
+
{
|
| 1818 |
+
"epoch": 2.75,
|
| 1819 |
+
"learning_rate": 3.7544763546352834e-07,
|
| 1820 |
+
"loss": 0.0064,
|
| 1821 |
+
"step": 302
|
| 1822 |
+
},
|
| 1823 |
+
{
|
| 1824 |
+
"epoch": 2.75,
|
| 1825 |
+
"learning_rate": 3.492632768845261e-07,
|
| 1826 |
+
"loss": 0.0047,
|
| 1827 |
+
"step": 303
|
| 1828 |
+
},
|
| 1829 |
+
{
|
| 1830 |
+
"epoch": 2.76,
|
| 1831 |
+
"learning_rate": 3.2400907639740243e-07,
|
| 1832 |
+
"loss": 0.0033,
|
| 1833 |
+
"step": 304
|
| 1834 |
+
},
|
| 1835 |
+
{
|
| 1836 |
+
"epoch": 2.77,
|
| 1837 |
+
"learning_rate": 2.996874680545603e-07,
|
| 1838 |
+
"loss": 0.0081,
|
| 1839 |
+
"step": 305
|
| 1840 |
+
},
|
| 1841 |
+
{
|
| 1842 |
+
"epoch": 2.78,
|
| 1843 |
+
"learning_rate": 2.7630079602323447e-07,
|
| 1844 |
+
"loss": 0.0065,
|
| 1845 |
+
"step": 306
|
| 1846 |
+
},
|
| 1847 |
+
{
|
| 1848 |
+
"epoch": 2.79,
|
| 1849 |
+
"learning_rate": 2.5385131435955e-07,
|
| 1850 |
+
"loss": 0.005,
|
| 1851 |
+
"step": 307
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 2.8,
|
| 1855 |
+
"learning_rate": 2.3234118679127615e-07,
|
| 1856 |
+
"loss": 0.0051,
|
| 1857 |
+
"step": 308
|
| 1858 |
+
},
|
| 1859 |
+
{
|
| 1860 |
+
"epoch": 2.81,
|
| 1861 |
+
"learning_rate": 2.117724865092774e-07,
|
| 1862 |
+
"loss": 0.0061,
|
| 1863 |
+
"step": 309
|
| 1864 |
+
},
|
| 1865 |
+
{
|
| 1866 |
+
"epoch": 2.82,
|
| 1867 |
+
"learning_rate": 1.921471959676957e-07,
|
| 1868 |
+
"loss": 0.0076,
|
| 1869 |
+
"step": 310
|
| 1870 |
+
},
|
| 1871 |
+
{
|
| 1872 |
+
"epoch": 2.83,
|
| 1873 |
+
"learning_rate": 1.734672066928822e-07,
|
| 1874 |
+
"loss": 0.0063,
|
| 1875 |
+
"step": 311
|
| 1876 |
+
},
|
| 1877 |
+
{
|
| 1878 |
+
"epoch": 2.84,
|
| 1879 |
+
"learning_rate": 1.5573431910108404e-07,
|
| 1880 |
+
"loss": 0.0031,
|
| 1881 |
+
"step": 312
|
| 1882 |
+
},
|
| 1883 |
+
{
|
| 1884 |
+
"epoch": 2.85,
|
| 1885 |
+
"learning_rate": 1.3895024232491338e-07,
|
| 1886 |
+
"loss": 0.0039,
|
| 1887 |
+
"step": 313
|
| 1888 |
+
},
|
| 1889 |
+
{
|
| 1890 |
+
"epoch": 2.85,
|
| 1891 |
+
"learning_rate": 1.231165940486234e-07,
|
| 1892 |
+
"loss": 0.0053,
|
| 1893 |
+
"step": 314
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 2.86,
|
| 1897 |
+
"learning_rate": 1.0823490035218986e-07,
|
| 1898 |
+
"loss": 0.0078,
|
| 1899 |
+
"step": 315
|
| 1900 |
+
},
|
| 1901 |
+
{
|
| 1902 |
+
"epoch": 2.87,
|
| 1903 |
+
"learning_rate": 9.43065955642275e-08,
|
| 1904 |
+
"loss": 0.0098,
|
| 1905 |
+
"step": 316
|
| 1906 |
+
},
|
| 1907 |
+
{
|
| 1908 |
+
"epoch": 2.88,
|
| 1909 |
+
"learning_rate": 8.133302212373961e-08,
|
| 1910 |
+
"loss": 0.0054,
|
| 1911 |
+
"step": 317
|
| 1912 |
+
},
|
| 1913 |
+
{
|
| 1914 |
+
"epoch": 2.89,
|
| 1915 |
+
"learning_rate": 6.931543045073708e-08,
|
| 1916 |
+
"loss": 0.0054,
|
| 1917 |
+
"step": 318
|
| 1918 |
+
},
|
| 1919 |
+
{
|
| 1920 |
+
"epoch": 2.9,
|
| 1921 |
+
"learning_rate": 5.8254978825718065e-08,
|
| 1922 |
+
"loss": 0.0046,
|
| 1923 |
+
"step": 319
|
| 1924 |
+
},
|
| 1925 |
+
{
|
| 1926 |
+
"epoch": 2.91,
|
| 1927 |
+
"learning_rate": 4.815273327803183e-08,
|
| 1928 |
+
"loss": 0.0086,
|
| 1929 |
+
"step": 320
|
| 1930 |
+
},
|
| 1931 |
+
{
|
| 1932 |
+
"epoch": 2.92,
|
| 1933 |
+
"learning_rate": 3.900966748312862e-08,
|
| 1934 |
+
"loss": 0.0057,
|
| 1935 |
+
"step": 321
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 2.93,
|
| 1939 |
+
"learning_rate": 3.082666266872036e-08,
|
| 1940 |
+
"loss": 0.0055,
|
| 1941 |
+
"step": 322
|
| 1942 |
+
},
|
| 1943 |
+
{
|
| 1944 |
+
"epoch": 2.94,
|
| 1945 |
+
"learning_rate": 2.3604507529843e-08,
|
| 1946 |
+
"loss": 0.0054,
|
| 1947 |
+
"step": 323
|
| 1948 |
+
},
|
| 1949 |
+
{
|
| 1950 |
+
"epoch": 2.95,
|
| 1951 |
+
"learning_rate": 1.7343898152841765e-08,
|
| 1952 |
+
"loss": 0.004,
|
| 1953 |
+
"step": 324
|
| 1954 |
+
},
|
| 1955 |
+
{
|
| 1956 |
+
"epoch": 2.95,
|
| 1957 |
+
"learning_rate": 1.2045437948275952e-08,
|
| 1958 |
+
"loss": 0.0031,
|
| 1959 |
+
"step": 325
|
| 1960 |
+
},
|
| 1961 |
+
{
|
| 1962 |
+
"epoch": 2.96,
|
| 1963 |
+
"learning_rate": 7.70963759277099e-09,
|
| 1964 |
+
"loss": 0.0075,
|
| 1965 |
+
"step": 326
|
| 1966 |
+
},
|
| 1967 |
+
{
|
| 1968 |
+
"epoch": 2.97,
|
| 1969 |
+
"learning_rate": 4.336914979787832e-09,
|
| 1970 |
+
"loss": 0.0055,
|
| 1971 |
+
"step": 327
|
| 1972 |
+
},
|
| 1973 |
+
{
|
| 1974 |
+
"epoch": 2.98,
|
| 1975 |
+
"learning_rate": 1.9275951793518154e-09,
|
| 1976 |
+
"loss": 0.0054,
|
| 1977 |
+
"step": 328
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 2.99,
|
| 1981 |
+
"learning_rate": 4.819104067199653e-10,
|
| 1982 |
+
"loss": 0.0052,
|
| 1983 |
+
"step": 329
|
| 1984 |
+
},
|
| 1985 |
+
{
|
| 1986 |
+
"epoch": 3.0,
|
| 1987 |
+
"learning_rate": 0.0,
|
| 1988 |
+
"loss": 0.0021,
|
| 1989 |
+
"step": 330
|
| 1990 |
+
},
|
| 1991 |
+
{
|
| 1992 |
+
"epoch": 3.0,
|
| 1993 |
+
"step": 330,
|
| 1994 |
+
"total_flos": 0.0,
|
| 1995 |
+
"train_loss": 0.016219358733206086,
|
| 1996 |
+
"train_runtime": 8423.2988,
|
| 1997 |
+
"train_samples_per_second": 1.247,
|
| 1998 |
+
"train_steps_per_second": 0.039
|
| 1999 |
+
}
|
| 2000 |
+
],
|
| 2001 |
+
"logging_steps": 1.0,
|
| 2002 |
+
"max_steps": 330,
|
| 2003 |
+
"num_input_tokens_seen": 0,
|
| 2004 |
+
"num_train_epochs": 3,
|
| 2005 |
+
"save_steps": 500,
|
| 2006 |
+
"total_flos": 0.0,
|
| 2007 |
+
"train_batch_size": 8,
|
| 2008 |
+
"trial_name": null,
|
| 2009 |
+
"trial_params": null
|
| 2010 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:94099be84e09b0bf6180c33929e84583fce28f561bfc0c9e87ec3a0bfb39ad28
|
| 3 |
+
size 6779
|
visual_encoder.py
ADDED
|
@@ -0,0 +1,1019 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Any, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions
|
| 5 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 6 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
# icecream removed for inference
|
| 13 |
+
|
| 14 |
+
def get_abs_pos(abs_pos, tgt_size):
|
| 15 |
+
# abs_pos: L, C
|
| 16 |
+
# tgt_size: M
|
| 17 |
+
# return: M, C
|
| 18 |
+
src_size = int(math.sqrt(abs_pos.size(0)))
|
| 19 |
+
tgt_size = int(math.sqrt(tgt_size))
|
| 20 |
+
dtype = abs_pos.dtype
|
| 21 |
+
|
| 22 |
+
if src_size != tgt_size:
|
| 23 |
+
return F.interpolate(
|
| 24 |
+
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
| 25 |
+
size=(tgt_size, tgt_size),
|
| 26 |
+
mode="bicubic",
|
| 27 |
+
align_corners=False,
|
| 28 |
+
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
| 29 |
+
else:
|
| 30 |
+
return abs_pos
|
| 31 |
+
|
| 32 |
+
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
| 33 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
| 34 |
+
"""
|
| 35 |
+
grid_size: int of the grid height and width
|
| 36 |
+
return:
|
| 37 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
| 38 |
+
"""
|
| 39 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 40 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 41 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 42 |
+
grid = np.stack(grid, axis=0)
|
| 43 |
+
|
| 44 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 45 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 46 |
+
if cls_token:
|
| 47 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
| 48 |
+
return pos_embed
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 52 |
+
assert embed_dim % 2 == 0
|
| 53 |
+
|
| 54 |
+
# use half of dimensions to encode grid_h
|
| 55 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 56 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 57 |
+
|
| 58 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 59 |
+
return emb
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 63 |
+
"""
|
| 64 |
+
embed_dim: output dimension for each position
|
| 65 |
+
pos: a list of positions to be encoded: size (M,)
|
| 66 |
+
out: (M, D)
|
| 67 |
+
"""
|
| 68 |
+
assert embed_dim % 2 == 0
|
| 69 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
| 70 |
+
omega /= embed_dim / 2.
|
| 71 |
+
omega = 1. / 10000**omega # (D/2,)
|
| 72 |
+
|
| 73 |
+
pos = pos.reshape(-1) # (M,)
|
| 74 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
| 75 |
+
|
| 76 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 77 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 78 |
+
|
| 79 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 80 |
+
return emb
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
import torch
|
| 85 |
+
import torch.nn as nn
|
| 86 |
+
import torch.nn.functional as F
|
| 87 |
+
|
| 88 |
+
class MplugOwlVisionEmbeddings(nn.Module):
|
| 89 |
+
def __init__(self, config):
|
| 90 |
+
super().__init__()
|
| 91 |
+
self.config = config
|
| 92 |
+
self.hidden_size = config.hidden_size
|
| 93 |
+
self.image_size = config.image_size
|
| 94 |
+
self.patch_size = config.patch_size
|
| 95 |
+
|
| 96 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size))
|
| 97 |
+
|
| 98 |
+
self.patch_embed = nn.Conv2d(
|
| 99 |
+
in_channels=3,
|
| 100 |
+
out_channels=self.hidden_size,
|
| 101 |
+
kernel_size=self.patch_size,
|
| 102 |
+
stride=self.patch_size,
|
| 103 |
+
bias=False,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# Initialize position embedding for default size (can be resized later)
|
| 107 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 108 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size))
|
| 109 |
+
self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
| 110 |
+
|
| 111 |
+
def interpolate_pos_encoding(self, embeddings, h, w):
|
| 112 |
+
"""
|
| 113 |
+
Interpolate position embeddings for different image sizes
|
| 114 |
+
"""
|
| 115 |
+
npatch = embeddings.shape[1] - 1 # subtract 1 for cls token
|
| 116 |
+
N = self.position_embedding.shape[1] - 1 # original number of patches
|
| 117 |
+
|
| 118 |
+
if npatch == N:
|
| 119 |
+
return self.position_embedding
|
| 120 |
+
|
| 121 |
+
# Separate class token and patch embeddings
|
| 122 |
+
class_pos_embed = self.position_embedding[:, 0:1] # [1, 1, hidden_size]
|
| 123 |
+
patch_pos_embed = self.position_embedding[:, 1:] # [1, N, hidden_size]
|
| 124 |
+
|
| 125 |
+
dim = embeddings.shape[-1]
|
| 126 |
+
|
| 127 |
+
# Calculate original grid size
|
| 128 |
+
w0 = h0 = int(N ** 0.5)
|
| 129 |
+
|
| 130 |
+
# Reshape patch embeddings to 2D grid
|
| 131 |
+
patch_pos_embed = patch_pos_embed.reshape(1, w0, h0, dim).permute(0, 3, 1, 2)
|
| 132 |
+
|
| 133 |
+
# Convert to float32 for interpolation
|
| 134 |
+
patch_pos_embed = patch_pos_embed.float()
|
| 135 |
+
|
| 136 |
+
# Interpolate to new size
|
| 137 |
+
patch_pos_embed = F.interpolate(
|
| 138 |
+
patch_pos_embed,
|
| 139 |
+
size=(h, w),
|
| 140 |
+
mode='bicubic',
|
| 141 |
+
align_corners=False,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# Convert back to original dtype
|
| 145 |
+
patch_pos_embed = patch_pos_embed.to(dtype=embeddings.dtype)
|
| 146 |
+
|
| 147 |
+
# Reshape back to sequence
|
| 148 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).reshape(1, -1, dim)
|
| 149 |
+
|
| 150 |
+
# Concatenate class token and patch embeddings
|
| 151 |
+
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
|
| 152 |
+
|
| 153 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 154 |
+
batch_size = pixel_values.size(0)
|
| 155 |
+
#print(f"[DEBUG] Input image shape: {pixel_values.shape}")
|
| 156 |
+
|
| 157 |
+
image_embeds = self.patch_embed(pixel_values)
|
| 158 |
+
#print(f"[DEBUG] After patch_embed shape: {image_embeds.shape}")
|
| 159 |
+
|
| 160 |
+
# Get patch grid dimensions
|
| 161 |
+
_, _, h, w = image_embeds.shape
|
| 162 |
+
|
| 163 |
+
image_embeds = image_embeds.flatten(2).transpose(1, 2)
|
| 164 |
+
#print(f"[DEBUG] After flatten and transpose shape: {image_embeds.shape}")
|
| 165 |
+
|
| 166 |
+
class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype)
|
| 167 |
+
embeddings = torch.cat([class_embeds, image_embeds], dim=1)
|
| 168 |
+
|
| 169 |
+
# Interpolate position embeddings to match current image size
|
| 170 |
+
pos_embed = self.interpolate_pos_encoding(embeddings, h, w).to(image_embeds.dtype)
|
| 171 |
+
#print(f"[DEBUG] Position embedding shape after interpolation: {pos_embed.shape}")
|
| 172 |
+
|
| 173 |
+
embeddings = embeddings + pos_embed
|
| 174 |
+
embeddings = self.pre_layernorm(embeddings)
|
| 175 |
+
return embeddings
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class MplugOwlVisionAttention(nn.Module):
|
| 180 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 181 |
+
|
| 182 |
+
def __init__(self, config):
|
| 183 |
+
super().__init__()
|
| 184 |
+
self.config = config
|
| 185 |
+
self.hidden_size = config.hidden_size
|
| 186 |
+
self.num_heads = config.num_attention_heads
|
| 187 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 188 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
| 189 |
+
raise ValueError(
|
| 190 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
| 191 |
+
f" {self.num_heads})."
|
| 192 |
+
)
|
| 193 |
+
self.scale = self.head_dim**-0.5
|
| 194 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
| 195 |
+
|
| 196 |
+
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size)
|
| 197 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
| 198 |
+
|
| 199 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 200 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 201 |
+
|
| 202 |
+
def forward(
|
| 203 |
+
self,
|
| 204 |
+
hidden_states: torch.Tensor,
|
| 205 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 206 |
+
output_attentions: Optional[bool] = False,
|
| 207 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 208 |
+
"""Input shape: Batch x Time x Channel"""
|
| 209 |
+
|
| 210 |
+
bsz, seq_len, embed_dim = hidden_states.size()
|
| 211 |
+
|
| 212 |
+
mixed_qkv = self.query_key_value(hidden_states)
|
| 213 |
+
|
| 214 |
+
mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute(
|
| 215 |
+
3, 0, 2, 1, 4
|
| 216 |
+
) # [3, b, np, sq, hn]
|
| 217 |
+
query_states, key_states, value_states = (
|
| 218 |
+
mixed_qkv[0],
|
| 219 |
+
mixed_qkv[1],
|
| 220 |
+
mixed_qkv[2],
|
| 221 |
+
)
|
| 222 |
+
# if self.config.use_flash_attn and flash_attn_func is not None:
|
| 223 |
+
if False:
|
| 224 |
+
# [b*sq, np, hn]
|
| 225 |
+
query_states = query_states.permute(0, 2, 1, 3).contiguous()
|
| 226 |
+
query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1)
|
| 227 |
+
|
| 228 |
+
key_states = key_states.permute(0, 2, 1, 3).contiguous()
|
| 229 |
+
key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1)
|
| 230 |
+
|
| 231 |
+
value_states = value_states.permute(0, 2, 1, 3).contiguous()
|
| 232 |
+
value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1)
|
| 233 |
+
|
| 234 |
+
cu_seqlens = torch.arange(
|
| 235 |
+
0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
context_layer = flash_attn_func(
|
| 239 |
+
query_states,
|
| 240 |
+
key_states,
|
| 241 |
+
value_states,
|
| 242 |
+
cu_seqlens,
|
| 243 |
+
cu_seqlens,
|
| 244 |
+
seq_len,
|
| 245 |
+
seq_len,
|
| 246 |
+
self.dropout if self.training else 0.0,
|
| 247 |
+
softmax_scale=self.scale,
|
| 248 |
+
causal=False,
|
| 249 |
+
return_attn_probs=False,
|
| 250 |
+
)
|
| 251 |
+
# [b*sq, np, hn] => [b, sq, np, hn]
|
| 252 |
+
context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2))
|
| 253 |
+
else:
|
| 254 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 255 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
| 256 |
+
|
| 257 |
+
attention_scores = attention_scores * self.scale
|
| 258 |
+
|
| 259 |
+
# Normalize the attention scores to probabilities.
|
| 260 |
+
attention_probs = torch.softmax(attention_scores, dim=-1)
|
| 261 |
+
|
| 262 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 263 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 264 |
+
attention_probs = self.dropout(attention_probs)
|
| 265 |
+
|
| 266 |
+
# Mask heads if we want to
|
| 267 |
+
if head_mask is not None:
|
| 268 |
+
attention_probs = attention_probs * head_mask
|
| 269 |
+
|
| 270 |
+
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
| 271 |
+
|
| 272 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
|
| 273 |
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
| 274 |
+
|
| 275 |
+
output = self.dense(context_layer)
|
| 276 |
+
|
| 277 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
| 278 |
+
|
| 279 |
+
return outputs
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
class QuickGELU(nn.Module):
|
| 283 |
+
def forward(self, x: torch.Tensor):
|
| 284 |
+
return x * torch.sigmoid(1.702 * x)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
class MplugOwlMLP(nn.Module):
|
| 288 |
+
def __init__(self, config):
|
| 289 |
+
super().__init__()
|
| 290 |
+
self.config = config
|
| 291 |
+
self.activation_fn = QuickGELU()
|
| 292 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 293 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 294 |
+
|
| 295 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 296 |
+
hidden_states = self.fc1(hidden_states)
|
| 297 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 298 |
+
hidden_states = self.fc2(hidden_states)
|
| 299 |
+
return hidden_states
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class MplugOwlVisionEncoderLayer(nn.Module):
|
| 303 |
+
def __init__(self, config):
|
| 304 |
+
super().__init__()
|
| 305 |
+
self.hidden_size = config.hidden_size
|
| 306 |
+
self.self_attn = MplugOwlVisionAttention(config)
|
| 307 |
+
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
| 308 |
+
self.mlp = MplugOwlMLP(config)
|
| 309 |
+
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
| 310 |
+
|
| 311 |
+
def forward(
|
| 312 |
+
self,
|
| 313 |
+
hidden_states: torch.Tensor,
|
| 314 |
+
attention_mask: torch.Tensor,
|
| 315 |
+
output_attentions: Optional[bool] = False,
|
| 316 |
+
) -> Tuple[torch.FloatTensor]:
|
| 317 |
+
"""
|
| 318 |
+
Args:
|
| 319 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 320 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
| 321 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 322 |
+
`(config.encoder_attention_heads,)`.
|
| 323 |
+
output_attentions (`bool`, *optional*):
|
| 324 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 325 |
+
returned tensors for more detail.
|
| 326 |
+
"""
|
| 327 |
+
residual = hidden_states
|
| 328 |
+
|
| 329 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 330 |
+
hidden_states, attn_weights = self.self_attn(
|
| 331 |
+
hidden_states=hidden_states,
|
| 332 |
+
head_mask=attention_mask,
|
| 333 |
+
output_attentions=output_attentions,
|
| 334 |
+
)
|
| 335 |
+
hidden_states = hidden_states + residual
|
| 336 |
+
residual = hidden_states
|
| 337 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 338 |
+
hidden_states = self.mlp(hidden_states)
|
| 339 |
+
|
| 340 |
+
hidden_states = hidden_states + residual
|
| 341 |
+
|
| 342 |
+
outputs = (hidden_states,)
|
| 343 |
+
|
| 344 |
+
if output_attentions:
|
| 345 |
+
outputs += (attn_weights,)
|
| 346 |
+
|
| 347 |
+
return outputs
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
class MplugOwlVisionEncoder(nn.Module):
|
| 351 |
+
"""
|
| 352 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 353 |
+
[`MplugOwlVisionEncoderLayer`].
|
| 354 |
+
|
| 355 |
+
Args:
|
| 356 |
+
config (`MplugOwlVisionConfig`):
|
| 357 |
+
The corresponding vision configuration for the `MplugOwlEncoder`.
|
| 358 |
+
"""
|
| 359 |
+
|
| 360 |
+
def __init__(self, config):
|
| 361 |
+
super().__init__()
|
| 362 |
+
self.config = config
|
| 363 |
+
self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 364 |
+
self.gradient_checkpointing = True
|
| 365 |
+
|
| 366 |
+
def forward(
|
| 367 |
+
self,
|
| 368 |
+
inputs_embeds,
|
| 369 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 370 |
+
output_attentions: Optional[bool] = None,
|
| 371 |
+
output_hidden_states: Optional[bool] = None,
|
| 372 |
+
return_dict: Optional[bool] = None,
|
| 373 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 374 |
+
r"""
|
| 375 |
+
Args:
|
| 376 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 377 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 378 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 379 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 380 |
+
|
| 381 |
+
- 1 for tokens that are **not masked**,
|
| 382 |
+
- 0 for tokens that are **masked**.
|
| 383 |
+
|
| 384 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 385 |
+
output_attentions (`bool`, *optional*):
|
| 386 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 387 |
+
returned tensors for more detail.
|
| 388 |
+
output_hidden_states (`bool`, *optional*):
|
| 389 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 390 |
+
for more detail.
|
| 391 |
+
return_dict (`bool`, *optional*):
|
| 392 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 393 |
+
"""
|
| 394 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 395 |
+
output_hidden_states = (
|
| 396 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 397 |
+
)
|
| 398 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 399 |
+
|
| 400 |
+
encoder_states = () if output_hidden_states else None
|
| 401 |
+
all_attentions = () if output_attentions else None
|
| 402 |
+
|
| 403 |
+
hidden_states = inputs_embeds
|
| 404 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 405 |
+
if output_hidden_states:
|
| 406 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 407 |
+
if self.gradient_checkpointing and self.training:
|
| 408 |
+
|
| 409 |
+
def create_custom_forward(module):
|
| 410 |
+
def custom_forward(*inputs):
|
| 411 |
+
return module(*inputs, output_attentions)
|
| 412 |
+
|
| 413 |
+
return custom_forward
|
| 414 |
+
|
| 415 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 416 |
+
create_custom_forward(encoder_layer),
|
| 417 |
+
hidden_states,
|
| 418 |
+
attention_mask,
|
| 419 |
+
)
|
| 420 |
+
else:
|
| 421 |
+
layer_outputs = encoder_layer(
|
| 422 |
+
hidden_states,
|
| 423 |
+
attention_mask,
|
| 424 |
+
output_attentions=output_attentions,
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
hidden_states = layer_outputs[0]
|
| 428 |
+
|
| 429 |
+
if output_attentions:
|
| 430 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 431 |
+
|
| 432 |
+
if output_hidden_states:
|
| 433 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 434 |
+
|
| 435 |
+
if not return_dict:
|
| 436 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
| 437 |
+
return BaseModelOutput(
|
| 438 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
class MplugOwlVisionModel(PreTrainedModel):
|
| 443 |
+
main_input_name = "pixel_values"
|
| 444 |
+
_no_split_modules = ["MplugOwlVisionEncoderLayer"]
|
| 445 |
+
|
| 446 |
+
def __init__(self, config):
|
| 447 |
+
super().__init__(config)
|
| 448 |
+
self.config = config
|
| 449 |
+
self.hidden_size = config.hidden_size
|
| 450 |
+
|
| 451 |
+
self.embeddings = MplugOwlVisionEmbeddings(config)
|
| 452 |
+
self.encoder = MplugOwlVisionEncoder(config)
|
| 453 |
+
self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
| 454 |
+
|
| 455 |
+
self.post_init()
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
def forward(
|
| 459 |
+
self,
|
| 460 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 461 |
+
output_attentions: Optional[bool] = None,
|
| 462 |
+
output_hidden_states: Optional[bool] = None,
|
| 463 |
+
return_dict: Optional[bool] = None,
|
| 464 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 465 |
+
r"""
|
| 466 |
+
Returns:
|
| 467 |
+
|
| 468 |
+
"""
|
| 469 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 470 |
+
output_hidden_states = (
|
| 471 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 472 |
+
)
|
| 473 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 474 |
+
|
| 475 |
+
if pixel_values is None:
|
| 476 |
+
raise ValueError("You have to specify pixel_values")
|
| 477 |
+
|
| 478 |
+
hidden_states = self.embeddings(pixel_values)
|
| 479 |
+
|
| 480 |
+
encoder_outputs = self.encoder(
|
| 481 |
+
inputs_embeds=hidden_states,
|
| 482 |
+
output_attentions=output_attentions,
|
| 483 |
+
output_hidden_states=output_hidden_states,
|
| 484 |
+
return_dict=return_dict,
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
last_hidden_state = encoder_outputs[0]
|
| 488 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
| 489 |
+
|
| 490 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 491 |
+
pooled_output = self.post_layernorm(pooled_output)
|
| 492 |
+
|
| 493 |
+
if not return_dict:
|
| 494 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 495 |
+
|
| 496 |
+
return BaseModelOutputWithPooling(
|
| 497 |
+
last_hidden_state=last_hidden_state,
|
| 498 |
+
pooler_output=pooled_output,
|
| 499 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 500 |
+
attentions=encoder_outputs.attentions,
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
def get_input_embeddings(self):
|
| 504 |
+
return self.embeddings
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
class MplugOwlVisualAbstractorMLP(nn.Module):
|
| 508 |
+
def __init__(self, config):
|
| 509 |
+
super().__init__()
|
| 510 |
+
self.config = config
|
| 511 |
+
in_features = config.hidden_size
|
| 512 |
+
self.act = nn.SiLU()
|
| 513 |
+
|
| 514 |
+
self.w1 = nn.Linear(in_features, config.intermediate_size)
|
| 515 |
+
self.w2 = nn.Linear(config.intermediate_size, in_features)
|
| 516 |
+
self.w3 = nn.Linear(in_features, config.intermediate_size)
|
| 517 |
+
self.ffn_ln = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps)
|
| 518 |
+
|
| 519 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 520 |
+
hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states)
|
| 521 |
+
hidden_states = self.ffn_ln(hidden_states)
|
| 522 |
+
hidden_states = self.w2(hidden_states)
|
| 523 |
+
return hidden_states
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
class MplugOwlVisualAbstractorMultiHeadAttention(nn.Module):
|
| 527 |
+
def __init__(self, config):
|
| 528 |
+
super().__init__()
|
| 529 |
+
self.config = config
|
| 530 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
| 531 |
+
raise ValueError(
|
| 532 |
+
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
| 533 |
+
% (config.hidden_size, config.num_attention_heads)
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
self.num_attention_heads = config.num_attention_heads
|
| 537 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 538 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 539 |
+
|
| 540 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 541 |
+
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
| 542 |
+
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
| 543 |
+
|
| 544 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 545 |
+
self.save_attention = False
|
| 546 |
+
|
| 547 |
+
# self.q_pos_embed = nn.Parameter(
|
| 548 |
+
# torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float()
|
| 549 |
+
# ).requires_grad_(False)
|
| 550 |
+
# grids = config.grid_size
|
| 551 |
+
# self.k_pos_embed = nn.Parameter(
|
| 552 |
+
# torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float()
|
| 553 |
+
# ).requires_grad_(False)
|
| 554 |
+
grids = config.grid_size
|
| 555 |
+
self.register_buffer(
|
| 556 |
+
'q_pos_embed',
|
| 557 |
+
torch.from_numpy(get_1d_sincos_pos_embed_from_grid(config.hidden_size, np.arange(config.num_learnable_queries, dtype=np.float32))).float()
|
| 558 |
+
)
|
| 559 |
+
self.register_buffer(
|
| 560 |
+
'k_pos_embed',
|
| 561 |
+
torch.from_numpy(get_2d_sincos_pos_embed(config.hidden_size, grids, cls_token=True)).float()
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
def save_attn_gradients(self, attn_gradients):
|
| 566 |
+
self.attn_gradients = attn_gradients
|
| 567 |
+
|
| 568 |
+
def get_attn_gradients(self):
|
| 569 |
+
return self.attn_gradients
|
| 570 |
+
|
| 571 |
+
def save_attention_map(self, attention_map):
|
| 572 |
+
self.attention_map = attention_map
|
| 573 |
+
|
| 574 |
+
def get_attention_map(self):
|
| 575 |
+
return self.attention_map
|
| 576 |
+
|
| 577 |
+
def transpose_for_scores(self, x):
|
| 578 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 579 |
+
x = x.view(*new_x_shape)
|
| 580 |
+
return x.permute(0, 2, 1, 3)
|
| 581 |
+
|
| 582 |
+
def forward(
|
| 583 |
+
self,
|
| 584 |
+
hidden_states,
|
| 585 |
+
attention_mask=None,
|
| 586 |
+
head_mask=None,
|
| 587 |
+
encoder_hidden_states=None,
|
| 588 |
+
encoder_attention_mask=None,
|
| 589 |
+
past_key_value=None,
|
| 590 |
+
output_attentions=False,
|
| 591 |
+
):
|
| 592 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 593 |
+
# and values come from an encoder; the attention mask needs to be
|
| 594 |
+
# such that the encoder's padding tokens are not attended to.
|
| 595 |
+
|
| 596 |
+
# 确保位置编码的维度与输入匹配
|
| 597 |
+
if encoder_hidden_states is not None:
|
| 598 |
+
seq_len = encoder_hidden_states.size(1)
|
| 599 |
+
if seq_len != self.k_pos_embed.size(0):
|
| 600 |
+
# 如果序列长度不匹配,需要调整位置编码
|
| 601 |
+
# 使用更高效的方式调整位置编码
|
| 602 |
+
k_pos_embed = self.k_pos_embed
|
| 603 |
+
if seq_len > k_pos_embed.size(0):
|
| 604 |
+
# 如果目标序列更长,使用重复
|
| 605 |
+
repeat_times = (seq_len + k_pos_embed.size(0) - 1) // k_pos_embed.size(0)
|
| 606 |
+
k_pos_embed = k_pos_embed.repeat(repeat_times, 1)[:seq_len]
|
| 607 |
+
else:
|
| 608 |
+
# 如果目标序列更短,使用切片
|
| 609 |
+
k_pos_embed = k_pos_embed[:seq_len]
|
| 610 |
+
else:
|
| 611 |
+
k_pos_embed = self.k_pos_embed
|
| 612 |
+
|
| 613 |
+
# 确保 q_pos_embed 和 k_pos_embed 的维度正确
|
| 614 |
+
q_pos_embed = self.q_pos_embed.to(dtype=hidden_states.dtype)
|
| 615 |
+
k_pos_embed = k_pos_embed.to(dtype=encoder_hidden_states.dtype)
|
| 616 |
+
|
| 617 |
+
# 确保维度匹配
|
| 618 |
+
if q_pos_embed.size(0) + k_pos_embed.size(0) != encoder_hidden_states.size(1):
|
| 619 |
+
# 如果维度不匹配,调整 k_pos_embed 的大小
|
| 620 |
+
target_size = encoder_hidden_states.size(1) - q_pos_embed.size(0)
|
| 621 |
+
if target_size > k_pos_embed.size(0):
|
| 622 |
+
# 如果目标大小更大,使用重复
|
| 623 |
+
repeat_times = (target_size + k_pos_embed.size(0) - 1) // k_pos_embed.size(0)
|
| 624 |
+
k_pos_embed = k_pos_embed.repeat(repeat_times, 1)[:target_size]
|
| 625 |
+
else:
|
| 626 |
+
# 如果目标大小更小,使用切片
|
| 627 |
+
k_pos_embed = k_pos_embed[:target_size]
|
| 628 |
+
|
| 629 |
+
qk_pos_embed = torch.cat([q_pos_embed, k_pos_embed], dim=0).unsqueeze(0)
|
| 630 |
+
else:
|
| 631 |
+
qk_pos_embed = self.q_pos_embed.unsqueeze(0).to(dtype=hidden_states.dtype)
|
| 632 |
+
|
| 633 |
+
# 确保最终维度匹配
|
| 634 |
+
assert qk_pos_embed.size(1) == encoder_hidden_states.size(1), \
|
| 635 |
+
f"Position embedding size {qk_pos_embed.size(1)} does not match encoder hidden states size {encoder_hidden_states.size(1)}"
|
| 636 |
+
|
| 637 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states + qk_pos_embed))
|
| 638 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 639 |
+
attention_mask = encoder_attention_mask
|
| 640 |
+
|
| 641 |
+
mixed_query_layer = self.query(hidden_states + self.q_pos_embed.unsqueeze(0).to(dtype=hidden_states.dtype))
|
| 642 |
+
|
| 643 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 644 |
+
|
| 645 |
+
past_key_value = (key_layer, value_layer)
|
| 646 |
+
|
| 647 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 648 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 649 |
+
|
| 650 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 651 |
+
|
| 652 |
+
if attention_mask is not None:
|
| 653 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 654 |
+
attention_scores = attention_scores + attention_mask
|
| 655 |
+
|
| 656 |
+
# Normalize the attention scores to probabilities.
|
| 657 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
| 658 |
+
|
| 659 |
+
if self.save_attention:
|
| 660 |
+
self.save_attention_map(attention_probs)
|
| 661 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
| 662 |
+
|
| 663 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 664 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 665 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
| 666 |
+
|
| 667 |
+
# Mask heads if we want to
|
| 668 |
+
if head_mask is not None:
|
| 669 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
| 670 |
+
|
| 671 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
| 672 |
+
|
| 673 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 674 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 675 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
| 676 |
+
|
| 677 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 678 |
+
|
| 679 |
+
outputs = outputs + (past_key_value,)
|
| 680 |
+
return outputs
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
class MplugOwlVisualAbstractorCrossOutput(nn.Module):
|
| 684 |
+
def __init__(self, config):
|
| 685 |
+
super().__init__()
|
| 686 |
+
dim = config.hidden_size
|
| 687 |
+
self.out_proj = nn.Linear(dim, dim, bias=True)
|
| 688 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 689 |
+
self.mlp = MplugOwlVisualAbstractorMLP(config)
|
| 690 |
+
|
| 691 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 692 |
+
input_tensor = input_tensor + self.out_proj(hidden_states)
|
| 693 |
+
input_tensor = input_tensor + self.mlp(self.norm2(input_tensor))
|
| 694 |
+
return input_tensor
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
class MplugOwlVisualAbstractorAttention(nn.Module):
|
| 698 |
+
def __init__(self, config):
|
| 699 |
+
super().__init__()
|
| 700 |
+
self.attention = MplugOwlVisualAbstractorMultiHeadAttention(config)
|
| 701 |
+
self.output = MplugOwlVisualAbstractorCrossOutput(config)
|
| 702 |
+
self.pruned_heads = set()
|
| 703 |
+
self.norm1 = nn.LayerNorm(config.hidden_size)
|
| 704 |
+
self.normk = nn.LayerNorm(config.hidden_size)
|
| 705 |
+
|
| 706 |
+
def prune_heads(self, heads):
|
| 707 |
+
if len(heads) == 0:
|
| 708 |
+
return
|
| 709 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 710 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
# Prune linear layers
|
| 714 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
| 715 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
| 716 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
| 717 |
+
self.output.dense = prune_linear_layer(self.output.out_proj, index, dim=1)
|
| 718 |
+
|
| 719 |
+
# Update hyper params and store pruned heads
|
| 720 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
| 721 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
| 722 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 723 |
+
|
| 724 |
+
def forward(
|
| 725 |
+
self,
|
| 726 |
+
hidden_states: torch.Tensor,
|
| 727 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 728 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 729 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 730 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 731 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 732 |
+
output_attentions: Optional[bool] = False,
|
| 733 |
+
) -> Tuple[torch.Tensor]:
|
| 734 |
+
# HACK we apply norm on q and k
|
| 735 |
+
hidden_states = self.norm1(hidden_states)
|
| 736 |
+
encoder_hidden_states = self.normk(encoder_hidden_states)
|
| 737 |
+
encoder_hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
| 738 |
+
encoder_attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=-1)
|
| 739 |
+
self_outputs = self.attention(
|
| 740 |
+
hidden_states,
|
| 741 |
+
attention_mask,
|
| 742 |
+
head_mask,
|
| 743 |
+
encoder_hidden_states,
|
| 744 |
+
encoder_attention_mask,
|
| 745 |
+
past_key_value,
|
| 746 |
+
output_attentions,
|
| 747 |
+
)
|
| 748 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 749 |
+
# add attentions if we output them
|
| 750 |
+
outputs = (attention_output,) + self_outputs[1:]
|
| 751 |
+
return outputs
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
class MplugOwlVisualAbstractorLayer(nn.Module):
|
| 755 |
+
def __init__(self, config, layer_idx):
|
| 756 |
+
super().__init__()
|
| 757 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 758 |
+
self.seq_len_dim = 1
|
| 759 |
+
|
| 760 |
+
self.layer_idx = layer_idx
|
| 761 |
+
|
| 762 |
+
self.crossattention = MplugOwlVisualAbstractorAttention(config)
|
| 763 |
+
self.has_cross_attention = True
|
| 764 |
+
|
| 765 |
+
def forward(
|
| 766 |
+
self,
|
| 767 |
+
hidden_states,
|
| 768 |
+
attention_mask=None,
|
| 769 |
+
head_mask=None,
|
| 770 |
+
encoder_hidden_states=None,
|
| 771 |
+
encoder_attention_mask=None,
|
| 772 |
+
output_attentions=False,
|
| 773 |
+
):
|
| 774 |
+
if encoder_hidden_states is None:
|
| 775 |
+
raise ValueError("encoder_hidden_states must be given for cross-attention layers")
|
| 776 |
+
cross_attention_outputs = self.crossattention(
|
| 777 |
+
hidden_states,
|
| 778 |
+
attention_mask,
|
| 779 |
+
head_mask,
|
| 780 |
+
encoder_hidden_states,
|
| 781 |
+
encoder_attention_mask,
|
| 782 |
+
output_attentions=output_attentions,
|
| 783 |
+
)
|
| 784 |
+
query_attention_output = cross_attention_outputs[0]
|
| 785 |
+
|
| 786 |
+
outputs = (query_attention_output,)
|
| 787 |
+
return outputs
|
| 788 |
+
|
| 789 |
+
|
| 790 |
+
class MplugOwlVisualAbstractorEncoder(nn.Module):
|
| 791 |
+
def __init__(self, config):
|
| 792 |
+
super().__init__()
|
| 793 |
+
self.config = config
|
| 794 |
+
self.layers = nn.ModuleList(
|
| 795 |
+
[MplugOwlVisualAbstractorLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 796 |
+
)
|
| 797 |
+
self.gradient_checkpointing = True
|
| 798 |
+
|
| 799 |
+
def forward(
|
| 800 |
+
self,
|
| 801 |
+
hidden_states,
|
| 802 |
+
attention_mask=None,
|
| 803 |
+
head_mask=None,
|
| 804 |
+
encoder_hidden_states=None,
|
| 805 |
+
encoder_attention_mask=None,
|
| 806 |
+
past_key_values=None,
|
| 807 |
+
output_attentions=False,
|
| 808 |
+
output_hidden_states=False,
|
| 809 |
+
return_dict=True,
|
| 810 |
+
):
|
| 811 |
+
all_hidden_states = () if output_hidden_states else None
|
| 812 |
+
|
| 813 |
+
for i in range(self.config.num_hidden_layers):
|
| 814 |
+
layer_module = self.layers[i]
|
| 815 |
+
if output_hidden_states:
|
| 816 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 817 |
+
|
| 818 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 819 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 820 |
+
|
| 821 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
| 822 |
+
|
| 823 |
+
def create_custom_forward(module):
|
| 824 |
+
def custom_forward(*inputs):
|
| 825 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 826 |
+
|
| 827 |
+
return custom_forward
|
| 828 |
+
|
| 829 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 830 |
+
create_custom_forward(layer_module),
|
| 831 |
+
hidden_states,
|
| 832 |
+
attention_mask,
|
| 833 |
+
layer_head_mask,
|
| 834 |
+
encoder_hidden_states,
|
| 835 |
+
encoder_attention_mask,
|
| 836 |
+
)
|
| 837 |
+
else:
|
| 838 |
+
layer_outputs = layer_module(
|
| 839 |
+
hidden_states,
|
| 840 |
+
attention_mask,
|
| 841 |
+
layer_head_mask,
|
| 842 |
+
encoder_hidden_states,
|
| 843 |
+
encoder_attention_mask,
|
| 844 |
+
output_attentions,
|
| 845 |
+
)
|
| 846 |
+
|
| 847 |
+
hidden_states = layer_outputs[0]
|
| 848 |
+
|
| 849 |
+
return BaseModelOutput(
|
| 850 |
+
last_hidden_state=hidden_states,
|
| 851 |
+
)
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
class MplugOwlVisualAbstractorModel(PreTrainedModel):
|
| 855 |
+
_no_split_modules = ["MplugOwlVisualAbstractorLayer"]
|
| 856 |
+
def __init__(self, config, language_hidden_size):
|
| 857 |
+
super().__init__(config)
|
| 858 |
+
self.config = config
|
| 859 |
+
|
| 860 |
+
self.encoder = MplugOwlVisualAbstractorEncoder(config)
|
| 861 |
+
self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size)
|
| 862 |
+
self.query_embeds = torch.nn.Parameter(torch.randn(1, config.num_learnable_queries, config.hidden_size))
|
| 863 |
+
self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size))
|
| 864 |
+
|
| 865 |
+
self.post_init()
|
| 866 |
+
|
| 867 |
+
def _prune_heads(self, heads_to_prune):
|
| 868 |
+
"""
|
| 869 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 870 |
+
class PreTrainedModel
|
| 871 |
+
"""
|
| 872 |
+
for layer, heads in heads_to_prune.items():
|
| 873 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 874 |
+
|
| 875 |
+
def get_extended_attention_mask(
|
| 876 |
+
self,
|
| 877 |
+
attention_mask: torch.Tensor,
|
| 878 |
+
input_shape: Tuple[int],
|
| 879 |
+
device: torch.device,
|
| 880 |
+
) -> torch.Tensor:
|
| 881 |
+
"""
|
| 882 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
| 883 |
+
|
| 884 |
+
Arguments:
|
| 885 |
+
attention_mask (`torch.Tensor`):
|
| 886 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
| 887 |
+
input_shape (`Tuple[int]`):
|
| 888 |
+
The shape of the input to the model.
|
| 889 |
+
device: (`torch.device`):
|
| 890 |
+
The device of the input to the model.
|
| 891 |
+
|
| 892 |
+
Returns:
|
| 893 |
+
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
| 894 |
+
"""
|
| 895 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 896 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 897 |
+
if attention_mask.dim() == 3:
|
| 898 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
| 899 |
+
elif attention_mask.dim() == 2:
|
| 900 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
| 901 |
+
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 902 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
| 903 |
+
else:
|
| 904 |
+
raise ValueError(
|
| 905 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
| 906 |
+
input_shape, attention_mask.shape
|
| 907 |
+
)
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 911 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 912 |
+
# positions we want to attend and -10000.0 for masked positions.
|
| 913 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 914 |
+
# effectively the same as removing these entirely.
|
| 915 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 916 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
| 917 |
+
return extended_attention_mask
|
| 918 |
+
|
| 919 |
+
def forward(
|
| 920 |
+
self,
|
| 921 |
+
attention_mask=None,
|
| 922 |
+
head_mask=None,
|
| 923 |
+
encoder_hidden_states=None,
|
| 924 |
+
encoder_attention_mask=None,
|
| 925 |
+
past_key_values=None,
|
| 926 |
+
output_attentions=None,
|
| 927 |
+
output_hidden_states=None,
|
| 928 |
+
return_dict=None,
|
| 929 |
+
):
|
| 930 |
+
r"""
|
| 931 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
|
| 932 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 933 |
+
the model is configured as a decoder.
|
| 934 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
|
| 935 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 936 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 937 |
+
- 1 for tokens that are **not masked**,
|
| 938 |
+
- 0 for tokens that are **masked**.
|
| 939 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of:
|
| 940 |
+
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and
|
| 941 |
+
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are
|
| 942 |
+
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key
|
| 943 |
+
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
|
| 944 |
+
`(batch_size, sequence_length)`.
|
| 945 |
+
"""
|
| 946 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 947 |
+
output_hidden_states = (
|
| 948 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 949 |
+
)
|
| 950 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 951 |
+
|
| 952 |
+
query_embeds = self.query_embeds.repeat(encoder_hidden_states.shape[0], 1, 1)
|
| 953 |
+
embedding_output = query_embeds
|
| 954 |
+
input_shape = embedding_output.size()[:-1]
|
| 955 |
+
batch_size, seq_length = input_shape
|
| 956 |
+
device = embedding_output.device
|
| 957 |
+
|
| 958 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 959 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 960 |
+
if attention_mask is None:
|
| 961 |
+
attention_mask = torch.ones(
|
| 962 |
+
(query_embeds.shape[0], query_embeds.shape[1]), dtype=torch.long, device=query_embeds.device
|
| 963 |
+
)
|
| 964 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
| 965 |
+
|
| 966 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 967 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 968 |
+
if encoder_hidden_states is not None:
|
| 969 |
+
if type(encoder_hidden_states) == list:
|
| 970 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
| 971 |
+
else:
|
| 972 |
+
(
|
| 973 |
+
encoder_batch_size,
|
| 974 |
+
encoder_sequence_length,
|
| 975 |
+
_,
|
| 976 |
+
) = encoder_hidden_states.size()
|
| 977 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 978 |
+
|
| 979 |
+
if type(encoder_attention_mask) == list:
|
| 980 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
| 981 |
+
elif encoder_attention_mask is None:
|
| 982 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 983 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 984 |
+
else:
|
| 985 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 986 |
+
else:
|
| 987 |
+
encoder_extended_attention_mask = None
|
| 988 |
+
|
| 989 |
+
# Prepare head mask if needed
|
| 990 |
+
# 1.0 in head_mask indicate we keep the head
|
| 991 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 992 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 993 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 994 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 995 |
+
|
| 996 |
+
encoder_outputs = self.encoder(
|
| 997 |
+
embedding_output,
|
| 998 |
+
attention_mask=extended_attention_mask,
|
| 999 |
+
head_mask=head_mask,
|
| 1000 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1001 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 1002 |
+
past_key_values=past_key_values,
|
| 1003 |
+
output_attentions=output_attentions,
|
| 1004 |
+
output_hidden_states=output_hidden_states,
|
| 1005 |
+
return_dict=return_dict,
|
| 1006 |
+
)
|
| 1007 |
+
sequence_output = encoder_outputs[0]
|
| 1008 |
+
pooled_output = sequence_output[:, 0, :]
|
| 1009 |
+
|
| 1010 |
+
sequence_output = self.visual_fc(sequence_output)
|
| 1011 |
+
sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1)
|
| 1012 |
+
|
| 1013 |
+
return BaseModelOutputWithPooling(
|
| 1014 |
+
last_hidden_state=sequence_output,
|
| 1015 |
+
pooler_output=pooled_output,
|
| 1016 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1017 |
+
)
|
| 1018 |
+
|
| 1019 |
+
|