Diffusers
Safetensors
English
marshallhamzah commited on
Commit
4c2f224
·
verified ·
1 Parent(s): a22f0a1

Upload folder using huggingface_hub

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
lidm/.DS_Store ADDED
Binary file (6.15 kB). View file
 
lidm/config.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet2DConditionModel",
3
+ "_diffusers_version": "0.32.2",
4
+ "act_fn": "silu",
5
+ "addition_embed_type": null,
6
+ "addition_embed_type_num_heads": 64,
7
+ "addition_time_embed_dim": null,
8
+ "attention_head_dim": 8,
9
+ "attention_type": "default",
10
+ "block_out_channels": [
11
+ 128,
12
+ 256,
13
+ 256,
14
+ 512
15
+ ],
16
+ "center_input_sample": false,
17
+ "class_embed_type": null,
18
+ "class_embeddings_concat": false,
19
+ "conv_in_kernel": 3,
20
+ "conv_out_kernel": 3,
21
+ "cross_attention_dim": 1,
22
+ "cross_attention_norm": null,
23
+ "decay": 0.9999,
24
+ "down_block_types": [
25
+ "AttnDownBlock2D",
26
+ "AttnDownBlock2D",
27
+ "AttnDownBlock2D",
28
+ "DownBlock2D"
29
+ ],
30
+ "downsample_padding": 1,
31
+ "dropout": 0.0,
32
+ "dual_cross_attention": false,
33
+ "encoder_hid_dim": null,
34
+ "encoder_hid_dim_type": null,
35
+ "flip_sin_to_cos": true,
36
+ "freq_shift": 0,
37
+ "in_channels": 4,
38
+ "inv_gamma": 1.0,
39
+ "layers_per_block": 2,
40
+ "mid_block_only_cross_attention": null,
41
+ "mid_block_scale_factor": 1,
42
+ "mid_block_type": "UNetMidBlock2DCrossAttn",
43
+ "min_decay": 0.0,
44
+ "norm_eps": 1e-05,
45
+ "norm_num_groups": 32,
46
+ "num_attention_heads": null,
47
+ "num_class_embeds": null,
48
+ "only_cross_attention": false,
49
+ "optimization_step": 4800,
50
+ "out_channels": 4,
51
+ "power": 0.6666666666666666,
52
+ "projection_class_embeddings_input_dim": null,
53
+ "resnet_out_scale_factor": 1.0,
54
+ "resnet_skip_time_act": false,
55
+ "resnet_time_scale_shift": "default",
56
+ "reverse_transformer_layers_per_block": null,
57
+ "sample_size": 14,
58
+ "time_cond_proj_dim": null,
59
+ "time_embedding_act_fn": null,
60
+ "time_embedding_dim": null,
61
+ "time_embedding_type": "positional",
62
+ "timestep_post_act": null,
63
+ "transformer_layers_per_block": 1,
64
+ "up_block_types": [
65
+ "UpBlock2D",
66
+ "AttnUpBlock2D",
67
+ "AttnUpBlock2D",
68
+ "AttnUpBlock2D"
69
+ ],
70
+ "upcast_attention": false,
71
+ "update_after_step": 0,
72
+ "use_ema_warmup": false,
73
+ "use_linear_projection": false
74
+ }
lidm/config.yaml ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wandb_group: lidm_cardiacnet
2
+ output_dir: /nfs/usrhome/khmuhammad/Echodream/experiments/lidm_cardiacnet
3
+ vae_path: /nfs/usrhome/khmuhammad/Echodream/models/vae
4
+ globals:
5
+ target_fps: 32
6
+ target_nframes: 64
7
+ outputs:
8
+ - image
9
+ - class_id
10
+ datasets:
11
+ - name: CardiacNetLatent
12
+ active: true
13
+ params:
14
+ root: /nfs/usrhome/khmuhammad/Echodream/data/latents/cardiacnet
15
+ target_fps: ${globals.target_fps}
16
+ target_nframes: ${globals.target_nframes}
17
+ target_resolution: 14
18
+ outputs: ${globals.outputs}
19
+ unet:
20
+ _class_name: UNet2DConditionModel
21
+ sample_size: 14
22
+ in_channels: 4
23
+ out_channels: 4
24
+ center_input_sample: false
25
+ time_embedding_type: positional
26
+ freq_shift: 0
27
+ flip_sin_to_cos: true
28
+ down_block_types:
29
+ - AttnDownBlock2D
30
+ - AttnDownBlock2D
31
+ - AttnDownBlock2D
32
+ - DownBlock2D
33
+ up_block_types:
34
+ - UpBlock2D
35
+ - AttnUpBlock2D
36
+ - AttnUpBlock2D
37
+ - AttnUpBlock2D
38
+ block_out_channels:
39
+ - 128
40
+ - 256
41
+ - 256
42
+ - 512
43
+ layers_per_block: 2
44
+ mid_block_scale_factor: 1
45
+ downsample_padding: 1
46
+ dropout: 0.0
47
+ act_fn: silu
48
+ cross_attention_dim: 1
49
+ norm_eps: 1.0e-05
50
+ noise_scheduler:
51
+ _class_name: DDPMScheduler
52
+ num_train_timesteps: 1000
53
+ beta_start: 0.0001
54
+ beta_end: 0.02
55
+ beta_schedule: linear
56
+ variance_type: fixed_small
57
+ clip_sample: true
58
+ clip_sample_range: 4.0
59
+ prediction_type: v_prediction
60
+ thresholding: false
61
+ dynamic_thresholding_ratio: 0.995
62
+ sample_max_value: 1.0
63
+ timestep_spacing: leading
64
+ steps_offset: 0
65
+ training_mode: diffusion
66
+ train_batch_size: 256
67
+ dataloader_num_workers: 16
68
+ max_train_steps: 5000
69
+ training_conditioning_type: class_id
70
+ learning_rate: 0.0003
71
+ lr_warmup_steps: 500
72
+ scale_lr: false
73
+ lr_scheduler: constant
74
+ use_8bit_adam: false
75
+ gradient_accumulation_steps: 1
76
+ noise_offset: 0.0
77
+ drop_conditionning: 0.1
78
+ gradient_checkpointing: false
79
+ use_ema: true
80
+ enable_xformers_memory_efficient_attention: false
81
+ allow_tf32: true
82
+ adam_beta1: 0.9
83
+ adam_beta2: 0.999
84
+ adam_weight_decay: 0.01
85
+ adam_epsilon: 1.0e-08
86
+ max_grad_norm: 1.0
87
+ logging_dir: logs
88
+ mixed_precision: fp16
89
+ validation_timesteps: 128
90
+ validation_fps: ${globals.target_fps}
91
+ validation_frames: ${globals.target_nframes}
92
+ validation_count: 4
93
+ validation_guidance: 1.0
94
+ validation_steps: 100
95
+ validation_conditioning_type: class_id
96
+ report_to: wandb
97
+ checkpointing_steps: 100
98
+ checkpoints_total_limit: 50
99
+ resume_from_checkpoint: null
100
+ tracker_project_name: echo-dream
101
+ seed: 42
102
+ text_encoder_path: openai/clip-vit-large-patch14
103
+ pretrained_model_name_or_path: openai/clip-vit-large-patch14
104
+ tokenizer_path: openai/clip-vit-large-patch14
105
+ train_text_encoder: false
106
+ condition_guidance_scale: 5.0
107
+ num_validation_samples: 4
108
+ num_train_epochs: 5000
lidm/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74e6b1a07b329ae84e52e66731cbed210043803365d53797e82dff14f7bb8c4e
3
+ size 298641496
lvdm/config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNetSpatioTemporalConditionModel",
3
+ "_diffusers_version": "0.32.2",
4
+ "addition_time_embed_dim": 1,
5
+ "block_out_channels": [
6
+ 128,
7
+ 256,
8
+ 256,
9
+ 512
10
+ ],
11
+ "cross_attention_dim": 1,
12
+ "decay": 0.9999,
13
+ "down_block_types": [
14
+ "CrossAttnDownBlockSpatioTemporal",
15
+ "CrossAttnDownBlockSpatioTemporal",
16
+ "CrossAttnDownBlockSpatioTemporal",
17
+ "DownBlockSpatioTemporal"
18
+ ],
19
+ "in_channels": 8,
20
+ "inv_gamma": 1.0,
21
+ "layers_per_block": 2,
22
+ "min_decay": 0.0,
23
+ "num_attention_heads": [
24
+ 8,
25
+ 16,
26
+ 16,
27
+ 32
28
+ ],
29
+ "num_frames": 64,
30
+ "optimization_step": 100000,
31
+ "out_channels": 4,
32
+ "power": 0.6666666666666666,
33
+ "projection_class_embeddings_input_dim": 1,
34
+ "sample_size": 14,
35
+ "transformer_layers_per_block": 1,
36
+ "up_block_types": [
37
+ "UpBlockSpatioTemporal",
38
+ "CrossAttnUpBlockSpatioTemporal",
39
+ "CrossAttnUpBlockSpatioTemporal",
40
+ "CrossAttnUpBlockSpatioTemporal"
41
+ ],
42
+ "update_after_step": 0,
43
+ "use_ema_warmup": false
44
+ }
lvdm/config.yaml ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wandb_group: lvdm_cardiacnet
2
+ output_dir: /nfs/usrhome/khmuhammad/Echodream/experiments/cardiacnet_with_both_cfg
3
+ vae_path: /nfs/usrhome/khmuhammad/Echodream/models/vae
4
+ globals:
5
+ target_fps: 32
6
+ target_nframes: 64
7
+ outputs:
8
+ - video
9
+ - class_id
10
+ - image
11
+ datasets:
12
+ - name: CardiacNetLatent
13
+ active: true
14
+ params:
15
+ root: /nfs/usrhome/khmuhammad/Echodream/data/latents/cardiacnet
16
+ target_fps: ${globals.target_fps}
17
+ target_nframes: ${globals.target_nframes}
18
+ target_resolution: 14
19
+ outputs: ${globals.outputs}
20
+ unet:
21
+ _class_name: UNetSpatioTemporalConditionModel
22
+ addition_time_embed_dim: 1
23
+ block_out_channels:
24
+ - 128
25
+ - 256
26
+ - 256
27
+ - 512
28
+ cross_attention_dim: 1
29
+ down_block_types:
30
+ - CrossAttnDownBlockSpatioTemporal
31
+ - CrossAttnDownBlockSpatioTemporal
32
+ - CrossAttnDownBlockSpatioTemporal
33
+ - DownBlockSpatioTemporal
34
+ in_channels: 8
35
+ layers_per_block: 2
36
+ num_attention_heads:
37
+ - 8
38
+ - 16
39
+ - 16
40
+ - 32
41
+ num_frames: ${globals.target_nframes}
42
+ out_channels: 4
43
+ projection_class_embeddings_input_dim: 1
44
+ sample_size: 14
45
+ transformer_layers_per_block: 1
46
+ up_block_types:
47
+ - UpBlockSpatioTemporal
48
+ - CrossAttnUpBlockSpatioTemporal
49
+ - CrossAttnUpBlockSpatioTemporal
50
+ - CrossAttnUpBlockSpatioTemporal
51
+ noise_scheduler:
52
+ _class_name: DDPMScheduler
53
+ num_train_timesteps: 1000
54
+ beta_start: 0.0001
55
+ beta_end: 0.02
56
+ beta_schedule: linear
57
+ variance_type: fixed_small
58
+ clip_sample: true
59
+ clip_sample_range: 4.0
60
+ prediction_type: v_prediction
61
+ thresholding: false
62
+ dynamic_thresholding_ratio: 0.995
63
+ sample_max_value: 1.0
64
+ timestep_spacing: leading
65
+ steps_offset: 0
66
+ training_mode: diffusion
67
+ train_batch_size: 4
68
+ dataloader_num_workers: 16
69
+ max_train_steps: 100000
70
+ training_conditioning_type: class_id
71
+ learning_rate: 1.0e-05
72
+ lr_warmup_steps: 500
73
+ scale_lr: false
74
+ lr_scheduler: constant
75
+ use_8bit_adam: false
76
+ gradient_accumulation_steps: 1
77
+ noise_offset: 0.1
78
+ drop_conditionning: 0.1
79
+ gradient_checkpointing: false
80
+ use_ema: true
81
+ enable_xformers_memory_efficient_attention: false
82
+ allow_tf32: true
83
+ adam_beta1: 0.9
84
+ adam_beta2: 0.999
85
+ adam_weight_decay: 0.01
86
+ adam_epsilon: 1.0e-08
87
+ max_grad_norm: 1.0
88
+ logging_dir: logs
89
+ mixed_precision: fp16
90
+ validation_timesteps: 128
91
+ validation_fps: ${globals.target_fps}
92
+ validation_frames: ${globals.target_nframes}
93
+ validation_lvefs:
94
+ - 0.0
95
+ - 0.4
96
+ - 0.7
97
+ - 1.0
98
+ validation_class_ids:
99
+ - 0
100
+ - 1
101
+ - 2
102
+ - 2
103
+ validation_texts:
104
+ - '0.0'
105
+ - '0.4'
106
+ - '0.7'
107
+ - '1.0'
108
+ num_validation_samples: 4
109
+ validation_guidance: 1.0
110
+ validation_steps: 1000
111
+ validation_conditioning_type: class_id
112
+ report_to: wandb
113
+ checkpointing_steps: 1000
114
+ checkpoints_total_limit: 50
115
+ resume_from_checkpoint: null
116
+ tracker_project_name: echo-dream
117
+ seed: 42
118
+ text_encoder_path: openai/clip-vit-large-patch14
119
+ pretrained_model_name_or_path: openai/clip-vit-large-patch14
120
+ tokenizer_path: openai/clip-vit-large-patch14
121
+ train_text_encoder: false
122
+ guidance_scale_class: 5.0
123
+ guidance_scale_frame: 1.0
124
+ use_separate_guidance: true
125
+ num_train_epochs: 2858
lvdm/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05d6ac1f65405d29e94b77fff886fcf59e3062d8b7ec289b2851adf19b58e870
3
+ size 575506960
reidentification/config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "experiment_description": "reidentification_cardiacnet",
3
+ "resumption": false,
4
+ "resumption_count": null,
5
+ "previous_experiment": null,
6
+ "image_path": "/nfs/usrhome/khmuhammad/Echodream/data/latents/cardiacnet/FileList.csv",
7
+ "siamese_architecture": "ResNet-50",
8
+ "data_handling": "balanced",
9
+ "num_workers": 16,
10
+ "pin_memory": true,
11
+ "n_channels": 4,
12
+ "n_features": 128,
13
+ "image_size": 14,
14
+ "loss": "BCEWithLogitsLoss",
15
+ "optimizer": "Adam",
16
+ "learning_rate": 0.0001,
17
+ "batch_size": 128,
18
+ "max_epochs": 1000,
19
+ "early_stopping": 50,
20
+ "transform": "pmone",
21
+ "n_samples_train": 7465,
22
+ "n_samples_val": 1288,
23
+ "n_samples_test": 1277
24
+ }
reidentification/privacy_results.png ADDED
reidentification/reidentification_cardiacnet_AUC_bootstrapped.txt ADDED
The diff for this file is too large to render. See raw diff
 
reidentification/reidentification_cardiacnet_AUC_confidence.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ AUC_mean: 0.8966665273421355
2
+ Confidence interval for the AUC score: 0.8135332564398309 - 0.9645224171539961
reidentification/reidentification_cardiacnet_ROC_curve.png ADDED
reidentification/reidentification_cardiacnet_ROC_metrics.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FP_rate TP_rate Threshold
2
+ 0.0 0.0 inf
3
+ 0.0 0.017241379310344827 0.90055907
4
+ 0.0 0.034482758620689655 0.89724135
5
+ 0.022727272727272728 0.034482758620689655 0.8359996
6
+ 0.022727272727272728 0.1724137931034483 0.7796647
7
+ 0.045454545454545456 0.1724137931034483 0.7770565
8
+ 0.045454545454545456 0.2413793103448276 0.75760627
9
+ 0.06818181818181818 0.2413793103448276 0.75691855
10
+ 0.06818181818181818 0.29310344827586204 0.7487697
11
+ 0.09090909090909091 0.29310344827586204 0.7467885
12
+ 0.09090909090909091 0.39655172413793105 0.7113943
13
+ 0.11363636363636363 0.39655172413793105 0.70960283
14
+ 0.11363636363636363 0.6896551724137931 0.62563276
15
+ 0.13636363636363635 0.6896551724137931 0.62072283
16
+ 0.13636363636363635 0.7241379310344828 0.6022496
17
+ 0.1590909090909091 0.7241379310344828 0.59749454
18
+ 0.1590909090909091 0.9482758620689655 0.47744486
19
+ 0.20454545454545456 0.9482758620689655 0.42266732
20
+ 0.20454545454545456 0.9827586206896551 0.37383837
21
+ 0.3181818181818182 0.9827586206896551 0.19901036
22
+ 0.3181818181818182 1.0 0.19824442
23
+ 1.0 1.0 0.0038780852
reidentification/reidentification_cardiacnet_best_network.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a69ad382678dbc01b91103b1f3b1e4154a38e72a2d44ac43f5e5e9d2114a7c64
3
+ size 95426164
reidentification/reidentification_cardiacnet_checkpoint.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54241a653b2ad7fdcf279bc384b0f0326df3a7f13971b4774c99dbab7c96a7a2
3
+ size 285772301
reidentification/reidentification_cardiacnet_labels_predictions.txt ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Label Prediction PredictionThresholded
2
+ 1.0 0.6022496 1.0
3
+ 0.0 0.09744886 0.0
4
+ 1.0 0.6286307 1.0
5
+ 1.0 0.54431444 1.0
6
+ 1.0 0.89724135 1.0
7
+ 0.0 0.100125074 0.0
8
+ 0.0 0.1289377 0.0
9
+ 1.0 0.6324457 1.0
10
+ 0.0 0.019807827 0.0
11
+ 0.0 0.14575937 0.0
12
+ 1.0 0.74620545 1.0
13
+ 0.0 0.11141623 0.0
14
+ 1.0 0.76421446 1.0
15
+ 1.0 0.54901147 1.0
16
+ 0.0 0.18298768 0.0
17
+ 1.0 0.8302783 1.0
18
+ 0.0 0.18664043 0.0
19
+ 1.0 0.8278004 1.0
20
+ 1.0 0.62563276 1.0
21
+ 1.0 0.47744486 0.0
22
+ 0.0 0.056497965 0.0
23
+ 1.0 0.7057221 1.0
24
+ 1.0 0.6960438 1.0
25
+ 0.0 0.09615805 0.0
26
+ 0.0 0.049529728 0.0
27
+ 0.0 0.01130122 0.0
28
+ 0.0 0.42266732 0.0
29
+ 0.0 0.057646614 0.0
30
+ 1.0 0.7070402 1.0
31
+ 1.0 0.66170114 1.0
32
+ 1.0 0.53751546 1.0
33
+ 0.0 0.11976343 0.0
34
+ 0.0 0.0038780852 0.0
35
+ 0.0 0.1641896 0.0
36
+ 1.0 0.6464675 1.0
37
+ 0.0 0.008061392 0.0
38
+ 0.0 0.44730732 0.0
39
+ 0.0 0.050302036 0.0
40
+ 1.0 0.5794296 1.0
41
+ 0.0 0.59749454 1.0
42
+ 1.0 0.6935347 1.0
43
+ 1.0 0.48460743 0.0
44
+ 1.0 0.70030934 1.0
45
+ 1.0 0.5765836 1.0
46
+ 1.0 0.19824442 0.0
47
+ 0.0 0.75691855 1.0
48
+ 1.0 0.75768316 1.0
49
+ 1.0 0.49249226 0.0
50
+ 1.0 0.75760627 1.0
51
+ 1.0 0.6517592 1.0
52
+ 0.0 0.014802303 0.0
53
+ 1.0 0.7796647 1.0
54
+ 1.0 0.6153901 1.0
55
+ 1.0 0.82731575 1.0
56
+ 0.0 0.70960283 1.0
57
+ 1.0 0.90055907 1.0
58
+ 0.0 0.16843818 0.0
59
+ 0.0 0.05660545 0.0
60
+ 0.0 0.083066955 0.0
61
+ 1.0 0.73244864 1.0
62
+ 0.0 0.27908492 0.0
63
+ 1.0 0.37383837 0.0
64
+ 1.0 0.7500904 1.0
65
+ 1.0 0.8257809 1.0
66
+ 1.0 0.6732321 1.0
67
+ 0.0 0.62072283 1.0
68
+ 1.0 0.80104613 1.0
69
+ 1.0 0.73245335 1.0
70
+ 0.0 0.287899 0.0
71
+ 1.0 0.5019317 1.0
72
+ 1.0 0.5892737 1.0
73
+ 0.0 0.025210667 0.0
74
+ 0.0 0.02887715 0.0
75
+ 0.0 0.23159571 0.0
76
+ 0.0 0.7467885 1.0
77
+ 1.0 0.83531487 1.0
78
+ 1.0 0.7094688 1.0
79
+ 1.0 0.80881214 1.0
80
+ 0.0 0.19901036 0.0
81
+ 1.0 0.62780195 1.0
82
+ 1.0 0.7487697 1.0
83
+ 1.0 0.7417836 1.0
84
+ 0.0 0.09489107 0.0
85
+ 1.0 0.63948214 1.0
86
+ 0.0 0.8359996 1.0
87
+ 1.0 0.50122845 1.0
88
+ 1.0 0.72733957 1.0
89
+ 0.0 0.041001033 0.0
90
+ 1.0 0.6355308 1.0
91
+ 1.0 0.583207 1.0
92
+ 1.0 0.5571773 1.0
93
+ 0.0 0.04687711 0.0
94
+ 1.0 0.768625 1.0
95
+ 1.0 0.7113943 1.0
96
+ 0.0 0.08604615 0.0
97
+ 0.0 0.0061084116 0.0
98
+ 1.0 0.7516521 1.0
99
+ 0.0 0.3234674 0.0
100
+ 0.0 0.7770565 1.0
101
+ 1.0 0.65039396 1.0
102
+ 0.0 0.058377847 0.0
103
+ 1.0 0.40753123 0.0
reidentification/reidentification_cardiacnet_loss_curves.png ADDED
reidentification/reidentification_cardiacnet_loss_values.txt ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TrainingLoss ValidationLoss
2
+ 0.04699204937886384 0.06288872523741289
3
+ 0.046887285628561245 0.06281954050064087
4
+ 0.04665101079617517 0.06331316991285844
5
+ 0.0467574212510707 0.06437988714738326
6
+ 0.04688440541089591 0.06333068825981834
7
+ 0.046648355863862116 0.06286770105361938
8
+ 0.046406059952105505 0.06341292641379616
9
+ 0.04582271737567449 0.06277053464542735
10
+ 0.04500683990575499 0.06230698932300915
11
+ 0.04434434943279977 0.061524624174291435
12
+ 0.04418335930775788 0.061322472312233665
13
+ 0.04309317722158917 0.06095058267766779
14
+ 0.04291122545630245 0.05974687771363692
15
+ 0.04116544784125635 0.05898941646922718
16
+ 0.04013045561515679 0.05897426063364202
17
+ 0.04238740973553415 0.05833476781845093
18
+ 0.04084784903768766 0.05944101376966997
19
+ 0.04061237129114442 0.0588732741095803
20
+ 0.039897973254575565 0.058167793534018776
21
+ 0.03836734517145965 0.05882789871909402
22
+ 0.040111357882871464 0.058024937456304375
23
+ 0.039754627114635406 0.05606528845700351
24
+ 0.038693024950512384 0.05640332807194103
25
+ 0.03834061905489129 0.05589605461467396
26
+ 0.038216905068543 0.05522603338414973
27
+ 0.03951845835831206 0.054901030930605804
28
+ 0.037873752036337124 0.05465989763086492
29
+ 0.03912309872902046 0.05448671362616799
30
+ 0.03757839990874468 0.0549849813634699
31
+ 0.03724130533509335 0.05306124687194824
32
+ 0.036349635002976756 0.05259555036371404
33
+ 0.03808270167496245 0.05245573954148726
34
+ 0.03804717225543523 0.05165175958113237
35
+ 0.036177018941459006 0.05111839554526589
36
+ 0.035030676146685064 0.050836449319666084
37
+ 0.03699060213767876 0.05115982619198886
38
+ 0.03665017071416823 0.050841905853965065
39
+ 0.037139873383408885 0.05077680132605813
40
+ 0.03626049171059818 0.05094237219203602
41
+ 0.03341532662763434 0.05064206773584539
42
+ 0.035875424490136615 0.050013970245014534
43
+ 0.03530807212247687 0.0494604923508384
44
+ 0.03478103370989783 0.04901276393370195
45
+ 0.034446280891612426 0.04915709387172352
46
+ 0.03557624150130708 0.04908882487903942
47
+ 0.035942295345209416 0.04970898953351108
48
+ 0.035105097091804115 0.04971440271897749
49
+ 0.03515280101258876 0.04964155500585383
50
+ 0.0355643508797985 0.04944035681811246
51
+ 0.0341976350646908 0.050184916366230355
52
+ 0.03577285398871212 0.04993713443929499
53
+ 0.03334649437564915 0.05000790140845559
54
+ 0.03320498335159431 0.04925449327989058
55
+ 0.034630242040601826 0.04952225901863792
56
+ 0.03509370755341094 0.04873290387066928
57
+ 0.0329809896016525 0.0488369193944064
58
+ 0.03398508944753873 0.049216628074645996
59
+ 0.03364624764959691 0.04786229133605957
60
+ 0.03412228721683308 0.04702228849584406
61
+ 0.03177706872002553 0.046976262872869316
62
+ 0.03413769097651465 0.047149484807794746
63
+ 0.035664042173805886 0.04757924513383345
64
+ 0.03309421569614087 0.04850154573267156
65
+ 0.03275631544953686 0.04851776361465454
66
+ 0.03336955783730847 0.048480342734943734
67
+ 0.03361737172482377 0.0479298396544023
68
+ 0.03226407756239681 0.04807003519751809
69
+ 0.030313147326647225 0.048320147124203766
70
+ 0.03164226927999723 0.048050306060097435
71
+ 0.0330486181428877 0.047855496406555176
72
+ 0.032546721777673496 0.04706948453729803
73
+ 0.03311620981006299 0.04555368965322321
74
+ 0.03154099543215865 0.044877981597727
75
+ 0.032139115919501096 0.044535244053060356
76
+ 0.03277004068180666 0.0446160381490534
77
+ 0.03131106293807596 0.04413708773526279
78
+ 0.031922648518772447 0.04418757286938754
79
+ 0.03119170362666502 0.04424473914233121
80
+ 0.031746439509472604 0.04407036846334284
81
+ 0.03228556402659012 0.04370711879296736
82
+ 0.03252707800622714 0.04398909482088956
83
+ 0.032335813267756315 0.04403703592040322
84
+ 0.03260204903150009 0.04390417987650091
85
+ 0.030515448016635444 0.043628925626928154
86
+ 0.032214876453755266 0.043317705392837524
87
+ 0.029232045351448705 0.04389086094769565
88
+ 0.03253420278177423 0.043433273380452934
89
+ 0.03043830445257284 0.04336151751604947
90
+ 0.030467692068067646 0.043392804535952484
91
+ 0.031989629996024956 0.043415424498644745
92
+ 0.029734883773124825 0.043386215513402764
93
+ 0.031432323536630405 0.04354823177511042
94
+ 0.030142398708957737 0.04392384940927679
95
+ 0.030539089845398725 0.042911832982843574
96
+ 0.02910375746630006 0.04222915389321067
97
+ 0.03038546645035178 0.041405661539597946
98
+ 0.031016709440845554 0.04191451451995156
99
+ 0.03241813031293578 0.043268425898118454
100
+ 0.03196639125630007 0.043053559281609276
101
+ 0.029575307490461965 0.043038433248346504
102
+ 0.030397361617977337 0.04302238876169378
103
+ 0.029903752824007455 0.042619087479331276
104
+ 0.02991405483019554 0.04165226221084595
105
+ 0.028879098467907663 0.04115108468315818
106
+ 0.03156459230487629 0.04017819599671797
107
+ 0.029301849462218203 0.04115664688023654
108
+ 0.030226167480824358 0.04185780070044778
109
+ 0.029845406948509862 0.04237756674939936
110
+ 0.02937950774774713 0.042494660074060615
111
+ 0.029179446778054965 0.04183673858642578
112
+ 0.029613411527569012 0.041507856412367386
113
+ 0.02939488877684383 0.04172103513370861
114
+ 0.027567115375551128 0.04184340076013045
115
+ 0.028703735036365058 0.04231279275634072
116
+ 0.02834049978498685 0.04206307096914812
117
+ 0.027003059447821925 0.041027437556873665
118
+ 0.02919952798697908 0.04015639695254239
119
+ 0.030919159367933113 0.042107208208604294
120
+ 0.026618154877323216 0.04429153420708396
121
+ 0.02996538402670521 0.04443242875012485
122
+ 0.03003024953906819 0.04398950392549688
123
+ 0.03136649475259296 0.043156076561320915
124
+ 0.029921435198541416 0.04203648729757829
125
+ 0.02825794028023542 0.04200582612644543
126
+ 0.028985230599419546 0.04174055836417458
127
+ 0.029377594842749127 0.04102459820834073
128
+ 0.02961747525102001 0.03925031694498929
129
+ 0.02854349097963107 0.03958094120025635
130
+ 0.029774253651247185 0.03957588564265858
131
+ 0.027343392877255457 0.03930228135802529
132
+ 0.028678839994689165 0.038129836320877075
133
+ 0.02854159979496972 0.0380178148096258
134
+ 0.028549976773181204 0.03787088394165039
135
+ 0.028619917267459934 0.03814834627238187
136
+ 0.029328165418010647 0.03711749748750166
137
+ 0.025543461916810374 0.03814191980795427
138
+ 0.02965508325625274 0.03924508528275923
139
+ 0.02857724185717308 0.03867482597177679
140
+ 0.027496971316256766 0.03696881641041149
141
+ 0.028763057316763926 0.03706789829514243
142
+ 0.027611778954328117 0.03631512414325367
143
+ 0.028432459144269007 0.036395891146226364
144
+ 0.030520105260913654 0.03545417027039961
145
+ 0.028118948815232615 0.03496507622978904
146
+ 0.027275734533697873 0.03620171005075628
147
+ 0.028295496257684998 0.03612835569815202
148
+ 0.028319421461073017 0.03463855656710538
149
+ 0.027529930159197014 0.03506395491686734
150
+ 0.02789017962197126 0.035677129572088066
151
+ 0.029647848868774154 0.03623188083822077
152
+ 0.027453965554803103 0.03573017499663613
153
+ 0.028107979034973404 0.03562354499643499
154
+ 0.026563083216295403 0.03527915206822482
155
+ 0.027416167622905666 0.0347862189466303
156
+ 0.02891730757082923 0.03736837343736128
157
+ 0.02692023273241722 0.037689469077370384
158
+ 0.027451308096869517 0.0375608043237166
159
+ 0.02673617712521957 0.037450026382099495
160
+ 0.02668964660773843 0.03690117868510159
161
+ 0.02627696576765028 0.03538266908038746
162
+ 0.02554320127277051 0.0346600359136408
163
+ 0.026426499172792595 0.035473325035788796
164
+ 0.02710336396249674 0.03556554425846447
165
+ 0.025694497055926566 0.035388377579775726
166
+ 0.026974810382067147 0.03590835224498402
167
+ 0.025634954036292384 0.03612690351226113
168
+ 0.027282931036868338 0.036235218698328193
169
+ 0.026676962941379872 0.03651073304089633
170
+ 0.024985807932029338 0.036154798486016014
171
+ 0.02768255744950246 0.035813244906338776
172
+ 0.024567843998892832 0.03587344288825989
173
+ 0.02869951320906817 0.03640073537826538
174
+ 0.02570668115454205 0.03687205910682678
175
+ 0.02831854456562107 0.036631188609383324
176
+ 0.02639329433441162 0.03629641099409624
177
+ 0.026578502129700223 0.035756552761251274
178
+ 0.025710323099362647 0.0351278538053686
179
+ 0.026650548486386316 0.034605763175270775
180
+ 0.026203831373634984 0.03415016694502397
181
+ 0.026458508382409304 0.03389386155388572
182
+ 0.02704210806701143 0.034389463337984955
183
+ 0.024177455801074787 0.03449355201287703
184
+ 0.025226307117332845 0.03472243384881453
185
+ 0.025605649766275437 0.03342218832536177
186
+ 0.026246077428429812 0.03386729142882607
187
+ 0.02520123225147441 0.034237276424061165
188
+ 0.02458039077661805 0.03416307947852395
189
+ 0.026156487606339537 0.03330680457028476
190
+ 0.028533905239428503 0.033280470154502174
191
+ 0.026330987275657008 0.03368460590189153
192
+ 0.02478776846901845 0.03407831625504927
193
+ 0.027061582621881516 0.03373212705958973
194
+ 0.026199240300614955 0.032885006882927635
195
+ 0.02646441782935191 0.033076652071692726
196
+ 0.02696166048615666 0.03241703185168179
197
+ 0.025879280041840116 0.03122438896786083
198
+ 0.023968511718814655 0.03145164522257718
199
+ 0.026139083050065123 0.03161090070551092
200
+ 0.023628458633261212 0.03320029377937317
201
+ 0.02217987078731343 0.033707973631945526
202
+ 0.02477120848025306 0.033978903835470024
203
+ 0.025235911547127416 0.03367515043778853
204
+ 0.02445481641817901 0.03466774658723311
205
+ 0.02416771650314331 0.034451961517333984
206
+ 0.023390378992436296 0.034236655993895096
207
+ 0.026388487573397363 0.03307599912990223
208
+ 0.0255325921511246 0.03408950838175687
209
+ 0.026776224374771118 0.034911575642499054
210
+ 0.0254414854413372 0.03487909923900257
211
+ 0.02500678371574919 0.03394436836242676
212
+ 0.022549168033114936 0.03259789401834661
213
+ 0.023930567806049928 0.0320869575847279
214
+ 0.02413729843446764 0.032185597853227096
215
+ 0.023672299364865836 0.03249469128522006
216
+ 0.023114712561591196 0.032443054697730324
217
+ 0.025365889072418213 0.03263373266566883
218
+ 0.02529280620106196 0.03254848989573392
219
+ 0.02356809983819218 0.03256935964931141
220
+ 0.02444115735716739 0.031573593616485596
221
+ 0.02335367869522612 0.032694477926601066
222
+ 0.024461973521669032 0.032499343156814575
223
+ 0.025633887719299833 0.031328794631091034
224
+ 0.023904266498856627 0.030275420709089798
225
+ 0.02235177512896263 0.030701268802989613
226
+ 0.02417860899941396 0.03157486698844216
227
+ 0.026593611907150785 0.03274914893237027
228
+ 0.023845747870914008 0.03309755704619668
229
+ 0.022270857277563064 0.03262243216687983
230
+ 0.022479273505130057 0.031449282711202446
231
+ 0.025017767639483435 0.03142108158631758
232
+ 0.022776022806005963 0.03212383118542758
233
+ 0.02182813216063936 0.03340581872246482
234
+ 0.023071960877563993 0.032674415545030075
235
+ 0.02423867987374128 0.03236349062486128
236
+ 0.024530028387651604 0.03115297176621177
237
+ 0.02230217598252377 0.030739583752372047
238
+ 0.023351824889748782 0.03190724145282398
239
+ 0.021431268271753342 0.03338543935255571
240
+ 0.02237398796162363 0.032383268529718574
241
+ 0.0228650478993432 0.03268344564871355
242
+ 0.02390503630799762 0.03273805704983798
243
+ 0.022756996296219908 0.03373765403574163
244
+ 0.024195689266010866 0.03479388356208801
245
+ 0.02359636254229788 0.036015548489310524
246
+ 0.02143242551108538 0.03601470318707553
247
+ 0.024458622023210686 0.03548304330218922
248
+ 0.02402607061095157 0.034002182158556854
249
+ 0.022198145672426384 0.03247938101941889
250
+ 0.022289623143309255 0.031129465861753983
251
+ 0.020503888190802882 0.03165336088700728
252
+ 0.021561001822099846 0.03178766098889438
253
+ 0.021977871656417847 0.032725255597721443
254
+ 0.023996559240050234 0.03378228165886619
255
+ 0.021074160680932513 0.03447851267727939
256
+ 0.022658997673099323 0.03424350781874223
257
+ 0.021121360487857108 0.03298938274383545
258
+ 0.022668677871510133 0.03412243994799527
259
+ 0.020427216917781505 0.034245881167325104
260
+ 0.02261115332781258 0.03466760028492321
261
+ 0.021239244836871906 0.03513168746774847
262
+ 0.02196511424193948 0.034236149354414505
263
+ 0.023820433576228255 0.03340622240846807
264
+ 0.018908522896847482 0.03301749988035722
265
+ 0.02318775401277057 0.03239744359796697
266
+ 0.021607057522919217 0.031156209382143887
267
+ 0.020824576838541838 0.031142004511573097
268
+ 0.020180345086728113 0.031846076250076294
269
+ 0.021890523575120054 0.03261905908584595
270
+ 0.02297683843111588 0.03338123993440108
271
+ 0.021875785063889066 0.03384268012913791
272
+ 0.022091001272201538 0.03385455770926042
273
+ 0.02107285695560908 0.03499796986579895
274
+ 0.02207245917643531 0.03545480424707586
reidentification/reidentification_cardiacnet_results.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AUC: 0.8945924764890283
2
+ Accuracy: 0.8725490196078431
3
+ F1-Score: 0.8888888888888888
4
+ Precision: 0.8813559322033898
5
+ Recall: 0.896551724137931
6
+ Classification report: precision recall f1-score support
7
+
8
+ 0.0 0.86 0.84 0.85 44
9
+ 1.0 0.88 0.90 0.89 58
10
+
11
+ accuracy 0.87 102
12
+ macro avg 0.87 0.87 0.87 102
13
+ weighted avg 0.87 0.87 0.87 102
14
+
15
+ Confusion matrix: [[37 7]
16
+ [ 6 52]]
vae/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.23.1",
4
+ "act_fn": "silu",
5
+ "block_out_channels": [
6
+ 128,
7
+ 256,
8
+ 256,
9
+ 512
10
+ ],
11
+ "down_block_types": [
12
+ "DownEncoderBlock2D",
13
+ "DownEncoderBlock2D",
14
+ "DownEncoderBlock2D",
15
+ "DownEncoderBlock2D"
16
+ ],
17
+ "force_upcast": true,
18
+ "in_channels": 3,
19
+ "latent_channels": 4,
20
+ "layers_per_block": 2,
21
+ "norm_num_groups": 32,
22
+ "out_channels": 3,
23
+ "sample_size": 512,
24
+ "scaling_factor": 0.18215,
25
+ "up_block_types": [
26
+ "UpDecoderBlock2D",
27
+ "UpDecoderBlock2D",
28
+ "UpDecoderBlock2D",
29
+ "UpDecoderBlock2D"
30
+ ]
31
+ }
vae/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0be1555511d1e145bfda156062aab744c6f7fc12e930c78c3640baf8183d5b
3
+ size 249675844