File size: 1,238 Bytes
4f8d4a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# /// script
# dependencies = ["trl>=0.12.0", "transformers>=4.36.0", "accelerate>=0.24.0", "trackio"]
# ///

from datasets import load_dataset
from transformers import AutoTokenizer, T5ForConditionalGeneration
from trl import SFTTrainer, SFTConfig

dataset = load_dataset("mindchain/container-status-de", split="train")
split = dataset.train_test_split(test_size=0.15, seed=42)

def fmt(ex):
    return {"text": f"Status: {ex['text']}", "label": ex["label"]}

train_ds = split["train"].map(fmt, remove_columns=split["train"].column_names)
eval_ds = split["test"].map(fmt, remove_columns=split["test"].column_names)

tokenizer = AutoTokenizer.from_pretrained("google/t5gemma-2-270m")
model = T5ForConditionalGeneration.from_pretrained("google/t5gemma-2-270m")

config = SFTConfig(
    output_dir="out",
    push_to_hub=True,
    hub_model_id="mindchain/t5gemma-270m-container-status",
    num_train_epochs=5,
    per_device_train_batch_size=2,
    gradient_accumulation_steps=4,
    learning_rate=3e-4,
    logging_steps=5,
    max_length=256,
    report_to="trackio",
)

trainer = SFTTrainer(model=model, tokenizer=tokenizer, train_dataset=train_ds, eval_dataset=eval_ds, args=config)
trainer.train()
trainer.push_to_hub()
print('DONE')