circuit-sparsity / modeling_circuitgpt.py
achyutarajaram's picture
Upload folder using huggingface_hub
179cd55 verified
from __future__ import annotations
import re
from dataclasses import dataclass
from typing import Sequence
import torch
from torch import nn
from transformers.generation.utils import GenerationMixin
from transformers.modeling_utils import PreTrainedModel
from transformers.utils.generic import ModelOutput
from .config import CircuitGPTConfig
from .gpt import GPT
from .hook_utils import hook_recorder
@dataclass
class CircuitGPTCausalLMOutput(ModelOutput):
loss: torch.Tensor | None = None
logits: torch.Tensor | None = None
activations: dict[str, torch.Tensor] | None = None
def _activations_regex(keys: Sequence[str]) -> str:
escaped = (re.escape(k) for k in keys)
return "^(" + "|".join(escaped) + ")$"
class CircuitGPTPreTrainedModel(PreTrainedModel):
config_class = CircuitGPTConfig
base_model_prefix = "circuit_model"
circuit_model: GPT
def __init__(self, config: CircuitGPTConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
def get_input_embeddings(self) -> nn.Module:
return self.circuit_model.transformer.wte # type: ignore[return-value]
def set_input_embeddings(self, value: nn.Module) -> None:
self.circuit_model.transformer.wte = value # type: ignore[assignment]
def get_output_embeddings(self) -> nn.Module:
return self.circuit_model.lm_head # type: ignore[return-value]
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
self.circuit_model.lm_head = new_embeddings # type: ignore[assignment]
class CircuitGPTForCausalLM(CircuitGPTPreTrainedModel, GenerationMixin):
"""
Hugging Face-compatible wrapper around `circuit_sparsity.gpt.GPT`.
All math happens inside the original module so parity is guaranteed.
"""
def __init__(self, config: CircuitGPTConfig, circuit_model: GPT | None = None) -> None:
super().__init__(config)
if circuit_model is None:
self.circuit_model = GPT(config.to_circuit_config())
self.post_init()
else:
self.circuit_model = circuit_model
# ------------------------------------------------------------------
# Constructors
# ------------------------------------------------------------------
@classmethod
def from_circuit_model(cls, circuit_model: GPT) -> "CircuitGPTForCausalLM":
config = CircuitGPTConfig.from_circuit_config(circuit_model.config)
return cls(config, circuit_model=circuit_model)
# ------------------------------------------------------------------
# Forward
# ------------------------------------------------------------------
def forward(
self,
input_ids: torch.Tensor,
labels: torch.LongTensor | None = None,
output_activations: Sequence[str] | None = None,
return_dict: bool | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
**kwargs,
) -> CircuitGPTCausalLMOutput:
# Ignore HF generation kwargs we don't use; surface any unknowns.
remaining_kwargs = {k: v for k, v in kwargs.items() if v is not None}
if remaining_kwargs:
unsupported = ", ".join(remaining_kwargs.keys())
raise ValueError(f"Unsupported arguments for CircuitGPTForCausalLM: {unsupported}")
if input_ids.size(-1) > self.config.block_size:
raise ValueError(
f"Sequence length {input_ids.size(-1)} exceeds block size {self.config.block_size}"
)
if output_activations:
regex = _activations_regex(output_activations)
with hook_recorder(regex=regex) as recorded:
logits, loss, _ = self.circuit_model(input_ids, targets=labels)
activations = {key: recorded[key] for key in output_activations if key in recorded}
else:
activations = None
logits, loss, _ = self.circuit_model(input_ids, targets=labels)
if labels is None:
loss = None
return CircuitGPTCausalLMOutput(
loss=loss,
logits=logits,
activations=activations,
)
# ------------------------------------------------------------------
# Generation helpers
# ------------------------------------------------------------------
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, **kwargs):
if input_ids.size(-1) > self.config.block_size:
input_ids = input_ids[:, -self.config.block_size :]
return {"input_ids": input_ids}
def _reorder_cache(self, past, beam_idx):
# No KV cache implemented; method exists for interface completeness.
return past