new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

PrismAudio: Decomposed Chain-of-Thoughts and Multi-dimensional Rewards for Video-to-Audio Generation

Video-to-Audio (V2A) generation requires balancing four critical perceptual dimensions: semantic consistency, audio-visual temporal synchrony, aesthetic quality, and spatial accuracy; yet existing methods suffer from objective entanglement that conflates competing goals in single loss functions and lack human preference alignment. We introduce PrismAudio, the first framework to integrate Reinforcement Learning into V2A generation with specialized Chain-of-Thought (CoT) planning. Our approach decomposes monolithic reasoning into four specialized CoT modules (Semantic, Temporal, Aesthetic, and Spatial CoT), each paired with targeted reward functions. This CoT-reward correspondence enables multidimensional RL optimization that guides the model to jointly generate better reasoning across all perspectives, solving the objective entanglement problem while preserving interpretability. To make this optimization computationally practical, we propose Fast-GRPO, which employs hybrid ODE-SDE sampling that dramatically reduces the training overhead compared to existing GRPO implementations. We also introduce AudioCanvas, a rigorous benchmark that is more distributionally balanced and covers more realistically diverse and challenging scenarios than existing datasets, with 300 single-event classes and 501 multi-event samples. Experimental results demonstrate that PrismAudio achieves state-of-the-art performance across all four perceptual dimensions on both the in-domain VGGSound test set and out-of-domain AudioCanvas benchmark. The project page is available at https://PrismAudio-Project.github.io.

  • 9 authors
·
Nov 24

Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution

Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.

VideoAgent2: Enhancing the LLM-Based Agent System for Long-Form Video Understanding by Uncertainty-Aware CoT

Long video understanding has emerged as an increasingly important yet challenging task in computer vision. Agent-based approaches are gaining popularity for processing long videos, as they can handle extended sequences and integrate various tools to capture fine-grained information. However, existing methods still face several challenges: (1) they often rely solely on the reasoning ability of large language models (LLMs) without dedicated mechanisms to enhance reasoning in long video scenarios; and (2) they remain vulnerable to errors or noise from external tools. To address these issues, we propose a specialized chain-of-thought (CoT) process tailored for long video analysis. Our proposed CoT with plan-adjust mode enables the LLM to incrementally plan and adapt its information-gathering strategy. We further incorporate heuristic uncertainty estimation of both the LLM and external tools to guide the CoT process. This allows the LLM to assess the reliability of newly collected information, refine its collection strategy, and make more robust decisions when synthesizing final answers. Empirical experiments show that our uncertainty-aware CoT effectively mitigates noise from external tools, leading to more reliable outputs. We implement our approach in a system called VideoAgent2, which also includes additional modules such as general context acquisition and specialized tool design. Evaluation on three dedicated long video benchmarks (and their subsets) demonstrates that VideoAgent2 outperforms the previous state-of-the-art agent-based method, VideoAgent, by an average of 13.1% and achieves leading performance among all zero-shot approaches

  • 7 authors
·
Apr 6