new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes

Recently, 3D Gaussian Splatting (3DGS) has revolutionized radiance field reconstruction, manifesting efficient and high-fidelity novel view synthesis. However, accurately representing surfaces, especially in large and complex scenarios, remains a significant challenge due to the unstructured nature of 3DGS. In this paper, we present CityGaussianV2, a novel approach for large-scale scene reconstruction that addresses critical challenges related to geometric accuracy and efficiency. Building on the favorable generalization capabilities of 2D Gaussian Splatting (2DGS), we address its convergence and scalability issues. Specifically, we implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence. To scale up, we introduce an elongation filter that mitigates Gaussian count explosion caused by 2DGS degeneration. Furthermore, we optimize the CityGaussian pipeline for parallel training, achieving up to 10times compression, at least 25% savings in training time, and a 50% decrease in memory usage. We also established standard geometry benchmarks under large-scale scenes. Experimental results demonstrate that our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs. The project page is available at https://dekuliutesla.github.io/CityGaussianV2/.

  • 5 authors
·
Nov 1, 2024 2

Mixture of Experts Guided by Gaussian Splatters Matters: A new Approach to Weakly-Supervised Video Anomaly Detection

Video Anomaly Detection (VAD) is a challenging task due to the variability of anomalous events and the limited availability of labeled data. Under the Weakly-Supervised VAD (WSVAD) paradigm, only video-level labels are provided during training, while predictions are made at the frame level. Although state-of-the-art models perform well on simple anomalies (e.g., explosions), they struggle with complex real-world events (e.g., shoplifting). This difficulty stems from two key issues: (1) the inability of current models to address the diversity of anomaly types, as they process all categories with a shared model, overlooking category-specific features; and (2) the weak supervision signal, which lacks precise temporal information, limiting the ability to capture nuanced anomalous patterns blended with normal events. To address these challenges, we propose Gaussian Splatting-guided Mixture of Experts (GS-MoE), a novel framework that employs a set of expert models, each specialized in capturing specific anomaly types. These experts are guided by a temporal Gaussian splatting loss, enabling the model to leverage temporal consistency and enhance weak supervision. The Gaussian splatting approach encourages a more precise and comprehensive representation of anomalies by focusing on temporal segments most likely to contain abnormal events. The predictions from these specialized experts are integrated through a mixture-of-experts mechanism to model complex relationships across diverse anomaly patterns. Our approach achieves state-of-the-art performance, with a 91.58% AUC on the UCF-Crime dataset, and demonstrates superior results on XD-Violence and MSAD datasets. By leveraging category-specific expertise and temporal guidance, GS-MoE sets a new benchmark for VAD under weak supervision.

  • 7 authors
·
Aug 8

GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering

Advancements in 3D Gaussian Splatting have significantly accelerated 3D reconstruction and generation. However, it may require a large number of Gaussians, which creates a substantial memory footprint. This paper introduces GES (Generalized Exponential Splatting), a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes, requiring far fewer particles to represent a scene and thus significantly outperforming Gaussian Splatting methods in efficiency with a plug-and-play replacement ability for Gaussian-based utilities. GES is validated theoretically and empirically in both principled 1D setup and realistic 3D scenes. It is shown to represent signals with sharp edges more accurately, which are typically challenging for Gaussians due to their inherent low-pass characteristics. Our empirical analysis demonstrates that GEF outperforms Gaussians in fitting natural-occurring signals (e.g. squares, triangles, and parabolic signals), thereby reducing the need for extensive splitting operations that increase the memory footprint of Gaussian Splatting. With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks while requiring less than half the memory storage of Gaussian Splatting and increasing the rendering speed by up to 39%. The code is available on the project website https://abdullahamdi.com/ges .

  • 8 authors
·
Feb 15, 2024 1

The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions

In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.

  • 2 authors
·
Jan 3, 2024

Analytic-Splatting: Anti-Aliased 3D Gaussian Splatting via Analytic Integration

The 3D Gaussian Splatting (3DGS) gained its popularity recently by combining the advantages of both primitive-based and volumetric 3D representations, resulting in improved quality and efficiency for 3D scene rendering. However, 3DGS is not alias-free, and its rendering at varying resolutions could produce severe blurring or jaggies. This is because 3DGS treats each pixel as an isolated, single point rather than as an area, causing insensitivity to changes in the footprints of pixels. Consequently, this discrete sampling scheme inevitably results in aliasing, owing to the restricted sampling bandwidth. In this paper, we derive an analytical solution to address this issue. More specifically, we use a conditioned logistic function as the analytic approximation of the cumulative distribution function (CDF) in a one-dimensional Gaussian signal and calculate the Gaussian integral by subtracting the CDFs. We then introduce this approximation in the two-dimensional pixel shading, and present Analytic-Splatting, which analytically approximates the Gaussian integral within the 2D-pixel window area to better capture the intensity response of each pixel. Moreover, we use the approximated response of the pixel window integral area to participate in the transmittance calculation of volume rendering, making Analytic-Splatting sensitive to the changes in pixel footprint at different resolutions. Experiments on various datasets validate that our approach has better anti-aliasing capability that gives more details and better fidelity.

  • 6 authors
·
Mar 16, 2024

Gaussian Splatting with NeRF-based Color and Opacity

Neural Radiance Fields (NeRFs) have demonstrated the remarkable potential of neural networks to capture the intricacies of 3D objects. By encoding the shape and color information within neural network weights, NeRFs excel at producing strikingly sharp novel views of 3D objects. Recently, numerous generalizations of NeRFs utilizing generative models have emerged, expanding its versatility. In contrast, Gaussian Splatting (GS) offers a similar render quality with faster training and inference as it does not need neural networks to work. It encodes information about the 3D objects in the set of Gaussian distributions that can be rendered in 3D similarly to classical meshes. Unfortunately, GS are difficult to condition since they usually require circa hundred thousand Gaussian components. To mitigate the caveats of both models, we propose a hybrid model Viewing Direction Gaussian Splatting (VDGS) that uses GS representation of the 3D object's shape and NeRF-based encoding of color and opacity. Our model uses Gaussian distributions with trainable positions (i.e. means of Gaussian), shape (i.e. covariance of Gaussian), color and opacity, and a neural network that takes Gaussian parameters and viewing direction to produce changes in the said color and opacity. As a result, our model better describes shadows, light reflections, and the transparency of 3D objects without adding additional texture and light components.

  • 5 authors
·
Dec 21, 2023

Solving High Frequency and Multi-Scale PDEs with Gaussian Processes

Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.

  • 6 authors
·
Nov 8, 2023

GVGEN: Text-to-3D Generation with Volumetric Representation

In recent years, 3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities. To address these shortcomings, this paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input. We propose two innovative techniques:(1) Structured Volumetric Representation. We first arrange disorganized 3D Gaussian points as a structured form GaussianVolume. This transformation allows the capture of intricate texture details within a volume composed of a fixed number of Gaussians. To better optimize the representation of these details, we propose a unique pruning and densifying method named the Candidate Pool Strategy, enhancing detail fidelity through selective optimization. (2) Coarse-to-fine Generation Pipeline. To simplify the generation of GaussianVolume and empower the model to generate instances with detailed 3D geometry, we propose a coarse-to-fine pipeline. It initially constructs a basic geometric structure, followed by the prediction of complete Gaussian attributes. Our framework, GVGEN, demonstrates superior performance in qualitative and quantitative assessments compared to existing 3D generation methods. Simultaneously, it maintains a fast generation speed (sim7 seconds), effectively striking a balance between quality and efficiency.

  • 9 authors
·
Mar 19, 2024 1

Pattern and Origin for the Extreme γ-ray Flares of 3C 454.3 and 3C 279: An Astrophysical Critical Damper?

We apply a Gaussian process method to the extreme gamma-ray flares of 3C 454.3 and 3C 279 to discover the variable patterns and then to investigate the physical origins of the giant flares. The kernels of stochastically driven damped simple harmonic oscillator (SHO), the damped random-walk (DRW), and Matrm ern-3/2 are respectively used to describe the adaptive-binning gamma-ray light curves of the two flares. Our findings show that both the extreme gamma-ray flares of 3C 454.3 and 3C 279 clearly prefer the SHO kernel in the over-damped mode and the Matrm ern-3/2 kernel over the DRW kernel. The resulted SHO and Matrm ern-3/2 power spectral densities (PSDs) are the same for each object, with the index changing from -4 at high frequencies to 0 at low frequencies. The patterns of the two flares are both approaching the critical damping mode with the quality factor Q approx 0.4 (i.e., the damping ratio eta approx 1.25), but with slightly different damping timescales. The characteristic timescale (corresponding to the broken frequency in the PSD) for 3C 454.3 is 2-3 days and 3-5 days for 3C 279. The variable patterns found here suggest that once the system responds to the energy injection disturbance, the release of the energy in the system is finished abruptly. The obtained timescale provides a constraint on the size of energy dissipation region for each source.

  • 5 authors
·
Feb 28

Optimized Minimal 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) has emerged as a powerful representation for real-time, high-performance rendering, enabling a wide range of applications. However, representing 3D scenes with numerous explicit Gaussian primitives imposes significant storage and memory overhead. Recent studies have shown that high-quality rendering can be achieved with a substantially reduced number of Gaussians when represented with high-precision attributes. Nevertheless, existing 3DGS compression methods still rely on a relatively large number of Gaussians, focusing primarily on attribute compression. This is because a smaller set of Gaussians becomes increasingly sensitive to lossy attribute compression, leading to severe quality degradation. Since the number of Gaussians is directly tied to computational costs, it is essential to reduce the number of Gaussians effectively rather than only optimizing storage. In this paper, we propose Optimized Minimal Gaussians representation (OMG), which significantly reduces storage while using a minimal number of primitives. First, we determine the distinct Gaussian from the near ones, minimizing redundancy without sacrificing quality. Second, we propose a compact and precise attribute representation that efficiently captures both continuity and irregularity among primitives. Additionally, we propose a sub-vector quantization technique for improved irregularity representation, maintaining fast training with a negligible codebook size. Extensive experiments demonstrate that OMG reduces storage requirements by nearly 50% compared to the previous state-of-the-art and enables 600+ FPS rendering while maintaining high rendering quality. Our source code is available at https://maincold2.github.io/omg/.

  • 3 authors
·
Mar 21 2

Adaptive Pruning for Increased Robustness and Reduced Computational Overhead in Gaussian Process Accelerated Saddle Point Searches

Gaussian process (GP) regression provides a strategy for accelerating saddle point searches on high-dimensional energy surfaces by reducing the number of times the energy and its derivatives with respect to atomic coordinates need to be evaluated. The computational overhead in the hyperparameter optimization can, however, be large and make the approach inefficient. Failures can also occur if the search ventures too far into regions that are not represented well enough by the GP model. Here, these challenges are resolved by using geometry-aware optimal transport measures and an active pruning strategy using a summation over Wasserstein-1 distances for each atom-type in farthest-point sampling, selecting a fixed-size subset of geometrically diverse configurations to avoid rapidly increasing cost of GP updates as more observations are made. Stability is enhanced by permutation-invariant metric that provides a reliable trust radius for early-stopping and a logarithmic barrier penalty for the growth of the signal variance. These physically motivated algorithmic changes prove their efficacy by reducing to less than a half the mean computational time on a set of 238 challenging configurations from a previously published data set of chemical reactions. With these improvements, the GP approach is established as, a robust and scalable algorithm for accelerating saddle point searches when the evaluation of the energy and atomic forces requires significant computational effort.

  • 2 authors
·
Oct 7 2

An Efficient Tester-Learner for Halfspaces

We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.

  • 4 authors
·
Feb 28, 2023

Kernel Density Estimators in Large Dimensions

This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.

  • 2 authors
·
Aug 11, 2024

Predictive Multiplicity in Probabilistic Classification

Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.

  • 3 authors
·
Jun 2, 2022

GASP: Gaussian Splatting for Physic-Based Simulations

Physics simulation is paramount for modeling and utilizing 3D scenes in various real-world applications. However, integrating with state-of-the-art 3D scene rendering techniques such as Gaussian Splatting (GS) remains challenging. Existing models use additional meshing mechanisms, including triangle or tetrahedron meshing, marching cubes, or cage meshes. Alternatively, we can modify the physics-grounded Newtonian dynamics to align with 3D Gaussian components. Current models take the first-order approximation of a deformation map, which locally approximates the dynamics by linear transformations. In contrast, our GS for Physics-Based Simulations (GASP) pipeline uses parametrized flat Gaussian distributions. Consequently, the problem of modeling Gaussian components using the physics engine is reduced to working with 3D points. In our work, we present additional rules for manipulating Gaussians, demonstrating how to adapt the pipeline to incorporate meshes, control Gaussian sizes during simulations, and enhance simulation efficiency. This is achieved through the Gaussian grouping strategy, which implements hierarchical structuring and enables simulations to be performed exclusively on selected Gaussians. The resulting solution can be integrated into any physics engine that can be treated as a black box. As demonstrated in our studies, the proposed pipeline exhibits superior performance on a diverse range of benchmark datasets designed for 3D object rendering. The project webpage, which includes additional visualizations, can be found at https://waczjoan.github.io/GASP.

  • 6 authors
·
Sep 9, 2024

Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning

In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27].

  • 2 authors
·
Sep 29, 2024

High-Dynamic Radar Sequence Prediction for Weather Nowcasting Using Spatiotemporal Coherent Gaussian Representation

Weather nowcasting is an essential task that involves predicting future radar echo sequences based on current observations, offering significant benefits for disaster management, transportation, and urban planning. Current prediction methods are limited by training and storage efficiency, mainly focusing on 2D spatial predictions at specific altitudes. Meanwhile, 3D volumetric predictions at each timestamp remain largely unexplored. To address such a challenge, we introduce a comprehensive framework for 3D radar sequence prediction in weather nowcasting, using the newly proposed SpatioTemporal Coherent Gaussian Splatting (STC-GS) for dynamic radar representation and GauMamba for efficient and accurate forecasting. Specifically, rather than relying on a 4D Gaussian for dynamic scene reconstruction, STC-GS optimizes 3D scenes at each frame by employing a group of Gaussians while effectively capturing their movements across consecutive frames. It ensures consistent tracking of each Gaussian over time, making it particularly effective for prediction tasks. With the temporally correlated Gaussian groups established, we utilize them to train GauMamba, which integrates a memory mechanism into the Mamba framework. This allows the model to learn the temporal evolution of Gaussian groups while efficiently handling a large volume of Gaussian tokens. As a result, it achieves both efficiency and accuracy in forecasting a wide range of dynamic meteorological radar signals. The experimental results demonstrate that our STC-GS can efficiently represent 3D radar sequences with over 16times higher spatial resolution compared with the existing 3D representation methods, while GauMamba outperforms state-of-the-art methods in forecasting a broad spectrum of high-dynamic weather conditions.

  • 4 authors
·
Feb 17

Compact 3D Scene Representation via Self-Organizing Gaussian Grids

3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes. In contrast to Neural Radiance Fields, it utilizes efficient rasterization allowing for very fast rendering at high-quality. However, the storage size is significantly higher, which hinders practical deployment, e.g.~on resource constrained devices. In this paper, we introduce a compact scene representation organizing the parameters of 3D Gaussian Splatting (3DGS) into a 2D grid with local homogeneity, ensuring a drastic reduction in storage requirements without compromising visual quality during rendering. Central to our idea is the explicit exploitation of perceptual redundancies present in natural scenes. In essence, the inherent nature of a scene allows for numerous permutations of Gaussian parameters to equivalently represent it. To this end, we propose a novel highly parallel algorithm that regularly arranges the high-dimensional Gaussian parameters into a 2D grid while preserving their neighborhood structure. During training, we further enforce local smoothness between the sorted parameters in the grid. The uncompressed Gaussians use the same structure as 3DGS, ensuring a seamless integration with established renderers. Our method achieves a reduction factor of 8x to 26x in size for complex scenes with no increase in training time, marking a substantial leap forward in the domain of 3D scene distribution and consumption. Additional information can be found on our project page: https://fraunhoferhhi.github.io/Self-Organizing-Gaussians/

  • 4 authors
·
Dec 19, 2023

The Unreasonable Effectiveness of Gaussian Score Approximation for Diffusion Models and its Applications

By learning the gradient of smoothed data distributions, diffusion models can iteratively generate samples from complex distributions. The learned score function enables their generalization capabilities, but how the learned score relates to the score of the underlying data manifold remains largely unclear. Here, we aim to elucidate this relationship by comparing learned neural scores to the scores of two kinds of analytically tractable distributions: Gaussians and Gaussian mixtures. The simplicity of the Gaussian model makes it theoretically attractive, and we show that it admits a closed-form solution and predicts many qualitative aspects of sample generation dynamics. We claim that the learned neural score is dominated by its linear (Gaussian) approximation for moderate to high noise scales, and supply both theoretical and empirical arguments to support this claim. Moreover, the Gaussian approximation empirically works for a larger range of noise scales than naive theory suggests it should, and is preferentially learned early in training. At smaller noise scales, we observe that learned scores are better described by a coarse-grained (Gaussian mixture) approximation of training data than by the score of the training distribution, a finding consistent with generalization. Our findings enable us to precisely predict the initial phase of trained models' sampling trajectories through their Gaussian approximations. We show that this allows the skipping of the first 15-30% of sampling steps while maintaining high sample quality (with a near state-of-the-art FID score of 1.93 on CIFAR-10 unconditional generation). This forms the foundation of a novel hybrid sampling method, termed analytical teleportation, which can seamlessly integrate with and accelerate existing samplers, including DPM-Solver-v3 and UniPC. Our findings suggest ways to improve the design and training of diffusion models.

  • 2 authors
·
Dec 12, 2024

MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--

For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.

  • 1 authors
·
May 19, 2021

Optimized Minimal 4D Gaussian Splatting

4D Gaussian Splatting has emerged as a new paradigm for dynamic scene representation, enabling real-time rendering of scenes with complex motions. However, it faces a major challenge of storage overhead, as millions of Gaussians are required for high-fidelity reconstruction. While several studies have attempted to alleviate this memory burden, they still face limitations in compression ratio or visual quality. In this work, we present OMG4 (Optimized Minimal 4D Gaussian Splatting), a framework that constructs a compact set of salient Gaussians capable of faithfully representing 4D Gaussian models. Our method progressively prunes Gaussians in three stages: (1) Gaussian Sampling to identify primitives critical to reconstruction fidelity, (2) Gaussian Pruning to remove redundancies, and (3) Gaussian Merging to fuse primitives with similar characteristics. In addition, we integrate implicit appearance compression and generalize Sub-Vector Quantization (SVQ) to 4D representations, further reducing storage while preserving quality. Extensive experiments on standard benchmark datasets demonstrate that OMG4 significantly outperforms recent state-of-the-art methods, reducing model sizes by over 60% while maintaining reconstruction quality. These results position OMG4 as a significant step forward in compact 4D scene representation, opening new possibilities for a wide range of applications. Our source code is available at https://minshirley.github.io/OMG4/.

Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation

While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.

  • 4 authors
·
Feb 4

TasselNetV4: A vision foundation model for cross-scene, cross-scale, and cross-species plant counting

Accurate plant counting provides valuable information for agriculture such as crop yield prediction, plant density assessment, and phenotype quantification. Vision-based approaches are currently the mainstream solution. Prior art typically uses a detection or a regression model to count a specific plant. However, plants have biodiversity, and new cultivars are increasingly bred each year. It is almost impossible to exhaust and build all species-dependent counting models. Inspired by class-agnostic counting (CAC) in computer vision, we argue that it is time to rethink the problem formulation of plant counting, from what plants to count to how to count plants. In contrast to most daily objects with spatial and temporal invariance, plants are dynamic, changing with time and space. Their non-rigid structure often leads to worse performance than counting rigid instances like heads and cars such that current CAC and open-world detection models are suboptimal to count plants. In this work, we inherit the vein of the TasselNet plant counting model and introduce a new extension, TasselNetV4, shifting from species-specific counting to cross-species counting. TasselNetV4 marries the local counting idea of TasselNet with the extract-and-match paradigm in CAC. It builds upon a plain vision transformer and incorporates novel multi-branch box-aware local counters used to enhance cross-scale robustness. Two challenging datasets, PAC-105 and PAC-Somalia, are harvested. Extensive experiments against state-of-the-art CAC models show that TasselNetV4 achieves not only superior counting performance but also high efficiency.Our results indicate that TasselNetV4 emerges to be a vision foundation model for cross-scene, cross-scale, and cross-species plant counting.

  • 11 authors
·
Sep 25

Search for dark matter subhalos among unassociated Fermi-LAT sources in presence of dataset shift

We search for dark matter (DM) annihilating subhalos of the Milky Way halo among the Fermi Large Area Telescope (LAT) unassociated sources. We construct, for the first time, a statistical model of the unassociated sources at latitudes above 10 degrees. The latter is built as a combination of both DM annihilation subhalos as well as Galactic and extragalactic astrophysical components. The astrophysical components are constructed based on distributions of associated sources, while the distribution of DM subhalos is derived from Monte Carlo simulations. In this model we take into account the differences in the distributions of associated and unassociated sources including both covariate and prior probability shifts (both being forms of ``dataset shifts''). Previous searches of DM subhalos were based on classify-and-count strategies, while the approach adopted in this work is based on quantification learning, which allows one to determine a well-defined statistical interpretation of the contribution of a population of DM subhalos to the unassociated Fermi-LAT sources. In the bb annihilation channel and for a range of DM masses from 10 GeV to 1 TeV, we don't find a significant contribution from DM subhalos and derive a statistical 95% confidence upper limit on the DM annihilation cross section in this channel. While the derived limits are consistent with previous classify-and-count approaches, our generative statistical model opens new avenues for population studies of Fermi-LAT sources and, more generally, for searches of anomalies on top of backgrounds in presence of statistical and systematic uncertainties.

  • 5 authors
·
Mar 18

Taming 3DGS: High-Quality Radiance Fields with Limited Resources

3D Gaussian Splatting (3DGS) has transformed novel-view synthesis with its fast, interpretable, and high-fidelity rendering. However, its resource requirements limit its usability. Especially on constrained devices, training performance degrades quickly and often cannot complete due to excessive memory consumption of the model. The method converges with an indefinite number of Gaussians -- many of them redundant -- making rendering unnecessarily slow and preventing its usage in downstream tasks that expect fixed-size inputs. To address these issues, we tackle the challenges of training and rendering 3DGS models on a budget. We use a guided, purely constructive densification process that steers densification toward Gaussians that raise the reconstruction quality. Model size continuously increases in a controlled manner towards an exact budget, using score-based densification of Gaussians with training-time priors that measure their contribution. We further address training speed obstacles: following a careful analysis of 3DGS' original pipeline, we derive faster, numerically equivalent solutions for gradient computation and attribute updates, including an alternative parallelization for efficient backpropagation. We also propose quality-preserving approximations where suitable to reduce training time even further. Taken together, these enhancements yield a robust, scalable solution with reduced training times, lower compute and memory requirements, and high quality. Our evaluation shows that in a budgeted setting, we obtain competitive quality metrics with 3DGS while achieving a 4--5x reduction in both model size and training time. With more generous budgets, our measured quality surpasses theirs. These advances open the door for novel-view synthesis in constrained environments, e.g., mobile devices.

  • 6 authors
·
Jun 21, 2024

A theory of representation learning gives a deep generalisation of kernel methods

The successes of modern deep machine learning methods are founded on their ability to transform inputs across multiple layers to build good high-level representations. It is therefore critical to understand this process of representation learning. However, standard theoretical approaches (formally NNGPs) involving infinite width limits eliminate representation learning. We therefore develop a new infinite width limit, the Bayesian representation learning limit, that exhibits representation learning mirroring that in finite-width models, yet at the same time, retains some of the simplicity of standard infinite-width limits. In particular, we show that Deep Gaussian processes (DGPs) in the Bayesian representation learning limit have exactly multivariate Gaussian posteriors, and the posterior covariances can be obtained by optimizing an interpretable objective combining a log-likelihood to improve performance with a series of KL-divergences which keep the posteriors close to the prior. We confirm these results experimentally in wide but finite DGPs. Next, we introduce the possibility of using this limit and objective as a flexible, deep generalisation of kernel methods, that we call deep kernel machines (DKMs). Like most naive kernel methods, DKMs scale cubically in the number of datapoints. We therefore use methods from the Gaussian process inducing point literature to develop a sparse DKM that scales linearly in the number of datapoints. Finally, we extend these approaches to NNs (which have non-Gaussian posteriors) in the Appendices.

  • 6 authors
·
Aug 30, 2021

Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning

The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.

  • 5 authors
·
Jul 1, 2021

The Emergence of Essential Sparsity in Large Pre-trained Models: The Weights that Matter

Large pre-trained transformers are show-stealer in modern-day deep learning, and it becomes crucial to comprehend the parsimonious patterns that exist within them as they grow in scale. With exploding parameter counts, Lottery Ticket Hypothesis (LTH) and its variants, have lost their pragmatism in sparsifying them due to high computation and memory bottleneck of repetitive train-prune-retrain routine of iterative magnitude pruning (IMP) which worsens with increasing model size. This paper comprehensively studies induced sparse patterns across multiple large pre-trained vision and language transformers. We propose the existence of -- essential sparsity defined with a sharp dropping point beyond which the performance declines much faster w.r.t the rise of sparsity level, when we directly remove weights with the smallest magnitudes in one-shot without re-training. We also find essential sparsity to hold valid for N:M sparsity patterns as well as on modern-scale large language models (Vicuna-7B). We also present an intriguing emerging phenomenon of abrupt sparsification during the pre-training of BERT, i.e., BERT suddenly becomes heavily sparse in pre-training after certain iterations. Moreover, our observations also indicate a counter-intuitive finding that BERT trained with a larger amount of pre-training data tends to have a better ability to condense knowledge in comparatively relatively fewer parameters. Lastly, we investigate the effect of the pre-training loss on essential sparsity and discover that self-supervised learning (SSL) objectives trigger stronger emergent sparsification properties than supervised learning (SL). Our codes are available at https://github.com/VITA-Group/essential_sparsity.

  • 4 authors
·
Jun 6, 2023

SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering

We propose a method to allow precise and extremely fast mesh extraction from 3D Gaussian Splatting. Gaussian Splatting has recently become very popular as it yields realistic rendering while being significantly faster to train than NeRFs. It is however challenging to extract a mesh from the millions of tiny 3D gaussians as these gaussians tend to be unorganized after optimization and no method has been proposed so far. Our first key contribution is a regularization term that encourages the gaussians to align well with the surface of the scene. We then introduce a method that exploits this alignment to extract a mesh from the Gaussians using Poisson reconstruction, which is fast, scalable, and preserves details, in contrast to the Marching Cubes algorithm usually applied to extract meshes from Neural SDFs. Finally, we introduce an optional refinement strategy that binds gaussians to the surface of the mesh, and jointly optimizes these Gaussians and the mesh through Gaussian splatting rendering. This enables easy editing, sculpting, rigging, animating, compositing and relighting of the Gaussians using traditional softwares by manipulating the mesh instead of the gaussians themselves. Retrieving such an editable mesh for realistic rendering is done within minutes with our method, compared to hours with the state-of-the-art methods on neural SDFs, while providing a better rendering quality.

  • 2 authors
·
Nov 21, 2023 3

EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images

3D Gaussian Splatting (3D-GS) has demonstrated exceptional capabilities in 3D scene reconstruction and novel view synthesis. However, its training heavily depends on high-quality, sharp images and accurate camera poses. Fulfilling these requirements can be challenging in non-ideal real-world scenarios, where motion-blurred images are commonly encountered in high-speed moving cameras or low-light environments that require long exposure times. To address these challenges, we introduce Event Stream Assisted Gaussian Splatting (EvaGaussians), a novel approach that integrates event streams captured by an event camera to assist in reconstructing high-quality 3D-GS from blurry images. Capitalizing on the high temporal resolution and dynamic range offered by the event camera, we leverage the event streams to explicitly model the formation process of motion-blurred images and guide the deblurring reconstruction of 3D-GS. By jointly optimizing the 3D-GS parameters and recovering camera motion trajectories during the exposure time, our method can robustly facilitate the acquisition of high-fidelity novel views with intricate texture details. We comprehensively evaluated our method and compared it with previous state-of-the-art deblurring rendering methods. Both qualitative and quantitative comparisons demonstrate that our method surpasses existing techniques in restoring fine details from blurry images and producing high-fidelity novel views.

  • 6 authors
·
May 29, 2024

Iterative Object Count Optimization for Text-to-image Diffusion Models

We address a persistent challenge in text-to-image models: accurately generating a specified number of objects. Current models, which learn from image-text pairs, inherently struggle with counting, as training data cannot depict every possible number of objects for any given object. To solve this, we propose optimizing the generated image based on a counting loss derived from a counting model that aggregates an object\'s potential. Employing an out-of-the-box counting model is challenging for two reasons: first, the model requires a scaling hyperparameter for the potential aggregation that varies depending on the viewpoint of the objects, and second, classifier guidance techniques require modified models that operate on noisy intermediate diffusion steps. To address these challenges, we propose an iterated online training mode that improves the accuracy of inferred images while altering the text conditioning embedding and dynamically adjusting hyperparameters. Our method offers three key advantages: (i) it can consider non-derivable counting techniques based on detection models, (ii) it is a zero-shot plug-and-play solution facilitating rapid changes to the counting techniques and image generation methods, and (iii) the optimized counting token can be reused to generate accurate images without additional optimization. We evaluate the generation of various objects and show significant improvements in accuracy. The project page is available at https://ozzafar.github.io/count_token.

  • 3 authors
·
Aug 21, 2024 2

NeuralGS: Bridging Neural Fields and 3D Gaussian Splatting for Compact 3D Representations

3D Gaussian Splatting (3DGS) demonstrates superior quality and rendering speed, but with millions of 3D Gaussians and significant storage and transmission costs. Recent 3DGS compression methods mainly concentrate on compressing Scaffold-GS, achieving impressive performance but with an additional voxel structure and a complex encoding and quantization strategy. In this paper, we aim to develop a simple yet effective method called NeuralGS that explores in another way to compress the original 3DGS into a compact representation without the voxel structure and complex quantization strategies. Our observation is that neural fields like NeRF can represent complex 3D scenes with Multi-Layer Perceptron (MLP) neural networks using only a few megabytes. Thus, NeuralGS effectively adopts the neural field representation to encode the attributes of 3D Gaussians with MLPs, only requiring a small storage size even for a large-scale scene. To achieve this, we adopt a clustering strategy and fit the Gaussians with different tiny MLPs for each cluster, based on importance scores of Gaussians as fitting weights. We experiment on multiple datasets, achieving a 45-times average model size reduction without harming the visual quality. The compression performance of our method on original 3DGS is comparable to the dedicated Scaffold-GS-based compression methods, which demonstrate the huge potential of directly compressing original 3DGS with neural fields.

  • 9 authors
·
Mar 29 2

LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS

Recent advancements in real-time neural rendering using point-based techniques have paved the way for the widespread adoption of 3D representations. However, foundational approaches like 3D Gaussian Splatting come with a substantial storage overhead caused by growing the SfM points to millions, often demanding gigabyte-level disk space for a single unbounded scene, posing significant scalability challenges and hindering the splatting efficiency. To address this challenge, we introduce LightGaussian, a novel method designed to transform 3D Gaussians into a more efficient and compact format. Drawing inspiration from the concept of Network Pruning, LightGaussian identifies Gaussians that are insignificant in contributing to the scene reconstruction and adopts a pruning and recovery process, effectively reducing redundancy in Gaussian counts while preserving visual effects. Additionally, LightGaussian employs distillation and pseudo-view augmentation to distill spherical harmonics to a lower degree, allowing knowledge transfer to more compact representations while maintaining reflectance. Furthermore, we propose a hybrid scheme, VecTree Quantization, to quantize all attributes, resulting in lower bitwidth representations with minimal accuracy losses. In summary, LightGaussian achieves an averaged compression rate over 15x while boosting the FPS from 139 to 215, enabling an efficient representation of complex scenes on Mip-NeRF 360, Tank and Temple datasets. Project website: https://lightgaussian.github.io/

  • 6 authors
·
Nov 28, 2023

Probabilistic Partitive Partitioning (PPP)

Clustering is a NP-hard problem. Thus, no optimal algorithm exists, heuristics are applied to cluster the data. Heuristics can be very resource-intensive, if not applied properly. For substantially large data sets computational efficiencies can be achieved by reducing the input space if a minimal loss of information can be achieved. Clustering algorithms, in general, face two common problems: 1) these converge to different settings with different initial conditions and; 2) the number of clusters has to be arbitrarily decided beforehand. This problem has become critical in the realm of big data. Recently, clustering algorithms have emerged which can speedup computations using parallel processing over the grid but face the aforementioned problems. Goals: Our goals are to find methods to cluster data which: 1) guarantee convergence to the same settings irrespective of the initial conditions; 2) eliminate the need to establish the number of clusters beforehand, and 3) can be applied to cluster large datasets. Methods: We introduce a method that combines probabilistic and combinatorial clustering methods to produce repeatable and compact clusters that are not sensitive to initial conditions. This method harnesses the power of k-means (a combinatorial clustering method) to cluster/partition very large dimensional datasets and uses the Gaussian Mixture Model (a probabilistic clustering method) to validate the k-means partitions. Results: We show that this method produces very compact clusters that are not sensitive to initial conditions. This method can be used to identify the most 'separable' set in a dataset which increases the 'clusterability' of a dataset. This method also eliminates the need to specify the number of clusters in advance.

  • 1 authors
·
Mar 9, 2020