2 Point Cloud to Mesh Reconstruction: A Focus on Key Learning-Based Paradigms Reconstructing meshes from point clouds is an important task in fields such as robotics, autonomous systems, and medical imaging. This survey examines state-of-the-art learning-based approaches to mesh reconstruction, categorizing them into five paradigms: PointNet family, autoencoder architectures, deformation-based methods, point-move techniques, and primitive-based approaches. Each paradigm is explored in depth, detailing the primary approaches and their underlying methodologies. By comparing these techniques, our study serves as a comprehensive guide, and equips researchers and practitioners with the knowledge to navigate the landscape of learning-based mesh reconstruction techniques. The findings underscore the transformative potential of these methods, which often surpass traditional techniques in allowing detailed and efficient reconstructions. 4 authors · Dec 14, 2024
1 AECV-Bench: Benchmarking Multimodal Models on Architectural and Engineering Drawings Understanding AEC drawings encode geometry and semantics through symbols, layout conventions, and dense annotation, yet it remains unclear whether modern multimodal and vision-language models can reliably interpret this graphical language. We present AECV-Bench, a benchmark for evaluating multimodal and vision-language models on realistic AEC artefacts via two complementary use cases: (i) object counting on 120 high-quality floor plans (doors, windows, bedrooms, toilets), and (ii) drawing-grounded document QA spanning 192 question-answer pairs that test text extraction (OCR), instance counting, spatial reasoning, and comparative reasoning over common drawing regions. Object-counting performance is reported using per-field exact-match accuracy and MAPE results, while document-QA performance is reported using overall accuracy and per-category breakdowns with an LLM-as-a-judge scoring pipeline and targeted human adjudication for edge cases. Evaluating a broad set of state-of-the-art models under a unified protocol, we observe a stable capability gradient; OCR and text-centric document QA are strongest (up to 0.95 accuracy), spatial reasoning is moderate, and symbol-centric drawing understanding - especially reliable counting of doors and windows - remains unsolved (often 0.40-0.55 accuracy) with substantial proportional errors. These results suggest that current systems function well as document assistants but lack robust drawing literacy, motivating domain-specific representations and tool-augmented, human-in-the-loop workflows for an efficient AEC automation. 4 authors · Jan 8