1 Towards Latency-Aware 3D Streaming Perception for Autonomous Driving Although existing 3D perception algorithms have demonstrated significant improvements in performance, their deployment on edge devices continues to encounter critical challenges due to substantial runtime latency. We propose a new benchmark tailored for online evaluation by considering runtime latency. Based on the benchmark, we build a Latency-Aware 3D Streaming Perception (LASP) framework that addresses the latency issue through two primary components: 1) latency-aware history integration, which extends query propagation into a continuous process, ensuring the integration of historical feature regardless of varying latency; 2) latency-aware predictive detection, a module that compensates the detection results with the predicted trajectory and the posterior accessed latency. By incorporating the latency-aware mechanism, our method shows generalization across various latency levels, achieving an online performance that closely aligns with 80\% of its offline evaluation on the Jetson AGX Orin without any acceleration techniques. 4 authors · Apr 27, 2025
2 QD-BEV : Quantization-aware View-guided Distillation for Multi-view 3D Object Detection Multi-view 3D detection based on BEV (bird-eye-view) has recently achieved significant improvements. However, the huge memory consumption of state-of-the-art models makes it hard to deploy them on vehicles, and the non-trivial latency will affect the real-time perception of streaming applications. Despite the wide application of quantization to lighten models, we show in our paper that directly applying quantization in BEV tasks will 1) make the training unstable, and 2) lead to intolerable performance degradation. To solve these issues, our method QD-BEV enables a novel view-guided distillation (VGD) objective, which can stabilize the quantization-aware training (QAT) while enhancing the model performance by leveraging both image features and BEV features. Our experiments show that QD-BEV achieves similar or even better accuracy than previous methods with significant efficiency gains. On the nuScenes datasets, the 4-bit weight and 6-bit activation quantized QD-BEV-Tiny model achieves 37.2% NDS with only 15.8 MB model size, outperforming BevFormer-Tiny by 1.8% with an 8x model compression. On the Small and Base variants, QD-BEV models also perform superbly and achieve 47.9% NDS (28.2 MB) and 50.9% NDS (32.9 MB), respectively. 9 authors · Aug 21, 2023