new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

  • 11 authors
·
Jul 15, 2024

AstroMLab 4: Benchmark-Topping Performance in Astronomy Q&A with a 70B-Parameter Domain-Specialized Reasoning Model

General-purpose large language models, despite their broad capabilities, often struggle with specialized domain knowledge, a limitation particularly pronounced in more accessible, lower-parameter versions. This gap hinders their deployment as effective agents in demanding fields such as astronomy. Building on our prior work with AstroSage-8B, this study introduces AstroSage-70B, a significantly larger and more advanced domain-specialized natural-language AI assistant. It is designed for research and education across astronomy, astrophysics, space science, astroparticle physics, cosmology, and astronomical instrumentation. Developed from the Llama-3.1-70B foundation, AstroSage-70B underwent extensive continued pre-training on a vast corpus of astronomical literature, followed by supervised fine-tuning and model merging. Beyond its 70-billion parameter scale, this model incorporates refined datasets, judiciously chosen learning hyperparameters, and improved training procedures, achieving state-of-the-art performance on complex astronomical tasks. Notably, we integrated reasoning chains into the SFT dataset, enabling AstroSage-70B to either answer the user query immediately, or first emit a human-readable thought process. Evaluated on the AstroMLab-1 benchmark -- comprising 4,425 questions from literature withheld during training -- AstroSage-70B achieves state-of-the-art performance. It surpasses all other tested open-weight and proprietary models, including leading systems like o3, Gemini-2.5-Pro, Claude-3.7-Sonnet, Deepseek-R1, and Qwen-3-235B, even those with API costs two orders of magnitude higher. This work demonstrates that domain specialization, when applied to large-scale models, can enable them to outperform generalist counterparts in specialized knowledge areas like astronomy, thereby advancing the frontier of AI capabilities in the field.

  • 10 authors
·
May 23

AstroM$^3$: A self-supervised multimodal model for astronomy

While machine-learned models are now routinely employed to facilitate astronomical inquiry, model inputs tend to be limited to a primary data source (namely images or time series) and, in the more advanced approaches, some metadata. Yet with the growing use of wide-field, multiplexed observational resources, individual sources of interest often have a broad range of observational modes available. Here we construct an astronomical multimodal dataset and propose AstroM^3, a self-supervised pre-training approach that enables a model to learn from multiple modalities simultaneously. Specifically, we extend the CLIP (Contrastive Language-Image Pretraining) model to a trimodal setting, allowing the integration of time-series photometry data, spectra, and astrophysical metadata. In a fine-tuning supervised setting, our results demonstrate that CLIP pre-training improves classification performance for time-series photometry, where accuracy increases from 84.6% to 91.5%. Furthermore, CLIP boosts classification accuracy by up to 12.6% when the availability of labeled data is limited, showing the effectiveness of leveraging larger corpora of unlabeled data. In addition to fine-tuned classification, we can use the trained model in other downstream tasks that are not explicitly contemplated during the construction of the self-supervised model. In particular we show the efficacy of using the learned embeddings for misclassifications identification, similarity search, and anomaly detection. One surprising highlight is the "rediscovery" of Mira subtypes and two Rotational variable subclasses using manifold learning and dimension reduction algorithm. To our knowledge this is the first construction of an n>2 mode model in astronomy. Extensions to n>3 modes is naturally anticipated with this approach.

  • 2 authors
·
Nov 13, 2024

pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy

The exponential growth of astronomical literature poses significant challenges for researchers navigating and synthesizing general insights or even domain-specific knowledge. We present Pathfinder, a machine learning framework designed to enable literature review and knowledge discovery in astronomy, focusing on semantic searching with natural language instead of syntactic searches with keywords. Utilizing state-of-the-art large language models (LLMs) and a corpus of 350,000 peer-reviewed papers from the Astrophysics Data System (ADS), Pathfinder offers an innovative approach to scientific inquiry and literature exploration. Our framework couples advanced retrieval techniques with LLM-based synthesis to search astronomical literature by semantic context as a complement to currently existing methods that use keywords or citation graphs. It addresses complexities of jargon, named entities, and temporal aspects through time-based and citation-based weighting schemes. We demonstrate the tool's versatility through case studies, showcasing its application in various research scenarios. The system's performance is evaluated using custom benchmarks, including single-paper and multi-paper tasks. Beyond literature review, Pathfinder offers unique capabilities for reformatting answers in ways that are accessible to various audiences (e.g. in a different language or as simplified text), visualizing research landscapes, and tracking the impact of observatories and methodologies. This tool represents a significant advancement in applying AI to astronomical research, aiding researchers at all career stages in navigating modern astronomy literature.

  • 30 authors
·
Aug 2, 2024

Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation

Observational astronomy relies on visual feature identification to detect critical astrophysical phenomena. While machine learning (ML) increasingly automates this process, models often struggle with generalization in large-scale surveys due to the limited representativeness of labeled datasets -- whether from simulations or human annotation -- a challenge pronounced for rare yet scientifically valuable objects. To address this, we propose a conditional diffusion model to synthesize realistic galaxy images for augmenting ML training data. Leveraging the Galaxy Zoo 2 dataset which contains visual feature -- galaxy image pairs from volunteer annotation, we demonstrate that our model generates diverse, high-fidelity galaxy images closely adhere to the specified morphological feature conditions. Moreover, this model enables generative extrapolation to project well-annotated data into unseen domains and advancing rare object detection. Integrating synthesized images into ML pipelines improves performance in standard morphology classification, boosting completeness and purity by up to 30\% across key metrics. For rare object detection, using early-type galaxies with prominent dust lane features ( sim0.1\% in GZ2 dataset) as a test case, our approach doubled the number of detected instances from 352 to 872, compared to previous studies based on visual inspection. This study highlights the power of generative models to bridge gaps between scarce labeled data and the vast, uncharted parameter space of observational astronomy and sheds insight for future astrophysical foundation model developments. Our project homepage is available at https://galaxysd-webpage.streamlit.app/.

  • 7 authors
·
Jun 19

Detecting eclipsing double white dwarfs with electromagnetic and gravitational waves

Galactic double white dwarfs are predominant sources of gravitational waves in the millihertz frequencies accessible to space-borne gravitational wave detectors. With advances in multi-messenger astronomy, an increasing number of double white dwarf systems will be discovered through both electromagnetic and gravitational wave observations. In this paper, we simulated two populations of double white dwarfs originating from different star formation histories (hereafter referred to as Model 1 and Model 2) using the binary population synthesis method. We predicted the number of double white dwarfs in our Galaxy detectable by TianQin and Laser Interferometer Space Antenna (LISA) individually, as well as through their joint observation. In addition, we performed an analysis to evaluate the accuracy of the parameter estimation using the Fisher information matrix. Furthermore, we predicted the number of detached eclipsing double white dwarfs detectable by Gaia and the Vera C. Rubin Observatory (VRO). Our study found that over the nominal mission durations, TianQin, LISA, and their joint observation can detect at least five thousand and potentially several tens of thousands of double white dwarfs with signal-to-noise ratios greater than 7. Gaia and VRO are expected to detect at least several dozen and up to several hundred eclipsing double white dwarfs with orbital periods less than 30 hours. We also found that several dozen eclipsing double white dwarfs can be detected jointly through electromagnetic and gravitational wave observations.

  • 4 authors
·
Jun 24, 2024

Frequency-domain multiplexing of SNSPDs with tunable superconducting resonators

This work culminates in a demonstration of an alternative Frequency Domain Multiplexing (FDM) scheme for Superconducting Nanowire Single-Photon Detectors (SNSPDs) using the Kinetic inductance Parametric UP-converter (KPUP) made out of NbTiN. There are multiple multiplexing architectures for SNSPDs that are already in use, but FDM could prove superior in applications where the operational bias currents are very low, especially for mid- and far-infrared SNSPDs. Previous FDM schemes integrated the SNSPD within the resonator, while in this work we use an external resonator, which gives more flexibility to optimize the SNSPD architecture. The KPUP is a DC-biased superconducting resonator in which a nanowire is used as its inductive element to enable sensitivity to current perturbations. When coupled to an SNSPD, the KPUP can be used to read out current pulses on the few μA scale. The KPUP is made out of NbTiN, which has high non-linear kinetic inductance for increased sensitivity at higher current bias and high operating temperature. Meanwhile, the SNSPD is made from WSi, which is a popular material for broadband SNSPDs. To read out the KPUP and SNSPD array, a software-defined radio platform and a graphics processing unit are used. Frequency Domain Multiplexed SNSPDs have applications in astronomy, remote sensing, exoplanet science, dark matter detection, and quantum sensing.

  • 12 authors
·
Jan 30, 2024

The Tiny Time-series Transformer: Low-latency High-throughput Classification of Astronomical Transients using Deep Model Compression

A new golden age in astronomy is upon us, dominated by data. Large astronomical surveys are broadcasting unprecedented rates of information, demanding machine learning as a critical component in modern scientific pipelines to handle the deluge of data. The upcoming Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will raise the big-data bar for time-domain astronomy, with an expected 10 million alerts per-night, and generating many petabytes of data over the lifetime of the survey. Fast and efficient classification algorithms that can operate in real-time, yet robustly and accurately, are needed for time-critical events where additional resources can be sought for follow-up analyses. In order to handle such data, state-of-the-art deep learning architectures coupled with tools that leverage modern hardware accelerators are essential. We showcase how the use of modern deep compression methods can achieve a 18times reduction in model size, whilst preserving classification performance. We also show that in addition to the deep compression techniques, careful choice of file formats can improve inference latency, and thereby throughput of alerts, on the order of 8times for local processing, and 5times in a live production setting. To test this in a live setting, we deploy this optimised version of the original time-series transformer, t2, into the community alert broking system of FINK on real Zwicky Transient Facility (ZTF) alert data, and compare throughput performance with other science modules that exist in FINK. The results shown herein emphasise the time-series transformer's suitability for real-time classification at LSST scale, and beyond, and introduce deep model compression as a fundamental tool for improving deploy-ability and scalable inference of deep learning models for transient classification.

  • 3 authors
·
Mar 15, 2023

UNIONS: The Ultraviolet Near-Infrared Optical Northern Survey

The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is a "collaboration of collaborations" that is using the Canada-France-Hawai'i Telescope, the Pan-STARRS telescopes, and the Subaru Observatory to obtain ugriz images of a core survey region of 6250 deg^2 of the northern sky. The 10sigma point source depth of the data, as measured within a 2-arcsecond diameter aperture, are [u,g,r,i,z] = [23.7, 24.5, 24.2, 23.8, 23.3]\ in AB magnitudes. UNIONS is addressing some of the most fundamental questions in astronomy, including the properties of dark matter, the growth of structure in the Universe from the very smallest galaxies to large-scale structure, and the assembly of the Milky Way. It is set to become the major ground-based legacy survey for the northern hemisphere for the next decade and provides an essential northern complement to the static-sky science of the Vera C. Rubin Observatory's Legacy Survey of Space and Time. UNIONS supports the core science mission of the {\it Euclid} space mission by providing the data necessary in the northern hemisphere for the calibration of the wavelength dependence of the {\it Euclid} point-spread function and derivation of photometric redshifts in the North Galactic Cap. This region contains the highest quality sky for {\it Euclid}, with low backgrounds from the zodiacal light, stellar density, extinction, and emission from Galactic cirrus. Here, we describe the UNIONS survey components, science goals, data products, and the current status of the overall program.

  • 89 authors
·
Mar 17

Polarization aberrations in next-generation Giant Segmented Mirror Telescopes (GSMTs). II. Influence of segment-to-segment coating variations on high-contrast imaging and polarimetry

Direct exo-Earth imaging is a key science goal for astronomy in the next decade. This ambitious task imposes a target contrast of ~10^-7 at wavelengths from I to J-band. In our prior study, we determined that polarization aberrations can limit the achievable contrast to 10^-5 to 10^-6 in the infrared. However, these results assumed a perfect coronagraph coupled to a telescope with an ideal coating on each of the mirrors. In this study we seek to understand the influence of polarization aberrations from segment-to-segment coating variations on coronagraphy and polarimetry. We use the Poke open-source polarization ray tracing package to compute the Jones pupil of each GSMT with spatially-varying coatings applied to the segments. The influence of the resultant polarization aberrations is simulated by propagating the Jones pupil through physical optics models of coronagraphs using HCIPy. After applying wavefront control from an ideal adaptive optics system, we determine that the segment-to-segment variations applied limit the performance of coronagraphy to a raw contrast of approximately 10^-8 in I-band, which is 2-3 orders of magnitude lower the target performance for high-contrast imaging systems on the ground. This is a negligible addition to the nominal polarization aberrations for ground-based systems. We further observe negligible degradation in polarimetric imaging of debris disks from segment-to-segment aberrations above and beyond the impact of nominal polarization aberration.

  • 11 authors
·
Jan 7

An Experience Report on Machine Learning Reproducibility: Guidance for Practitioners and TensorFlow Model Garden Contributors

Machine learning techniques are becoming a fundamental tool for scientific and engineering progress. These techniques are applied in contexts as diverse as astronomy and spam filtering. However, correctly applying these techniques requires careful engineering. Much attention has been paid to the technical potential; relatively little attention has been paid to the software engineering process required to bring research-based machine learning techniques into practical utility. Technology companies have supported the engineering community through machine learning frameworks such as TensorFLow and PyTorch, but the details of how to engineer complex machine learning models in these frameworks have remained hidden. To promote best practices within the engineering community, academic institutions and Google have partnered to launch a Special Interest Group on Machine Learning Models (SIGMODELS) whose goal is to develop exemplary implementations of prominent machine learning models in community locations such as the TensorFlow Model Garden (TFMG). The purpose of this report is to define a process for reproducing a state-of-the-art machine learning model at a level of quality suitable for inclusion in the TFMG. We define the engineering process and elaborate on each step, from paper analysis to model release. We report on our experiences implementing the YOLO model family with a team of 26 student researchers, share the tools we developed, and describe the lessons we learned along the way.

  • 10 authors
·
Jul 2, 2021

Astroformer: More Data Might not be all you need for Classification

Recent advancements in areas such as natural language processing and computer vision rely on intricate and massive models that have been trained using vast amounts of unlabelled or partly labeled data and training or deploying these state-of-the-art methods to resource constraint environments has been a challenge. Galaxy morphologies are crucial to understanding the processes by which galaxies form and evolve. Efficient methods to classify galaxy morphologies are required to extract physical information from modern-day astronomy surveys. In this paper, we introduce Astroformer, a method to learn from less amount of data. We propose using a hybrid transformer-convolutional architecture drawing much inspiration from the success of CoAtNet and MaxViT. Concretely, we use the transformer-convolutional hybrid with a new stack design for the network, a different way of creating a relative self-attention layer, and pair it with a careful selection of data augmentation and regularization techniques. Our approach sets a new state-of-the-art on predicting galaxy morphologies from images on the Galaxy10 DECals dataset, a science objective, which consists of 17736 labeled images achieving 94.86% top-1 accuracy, beating the current state-of-the-art for this task by 4.62%. Furthermore, this approach also sets a new state-of-the-art on CIFAR-100 and Tiny ImageNet. We also find that models and training methods used for larger datasets would often not work very well in the low-data regime.

  • 1 authors
·
Apr 3, 2023

Evaluating small vision-language models as AI assistants for radio astronomical source analysis tasks

The advent of next-generation radio telescopes is set to transform radio astronomy by producing massive data volumes that challenge traditional processing methods. Deep learning techniques have shown strong potential in automating radio analysis tasks, yet are often constrained by the limited availability of large annotated datasets. Recent progress in self-supervised learning has led to foundational radio vision models, but adapting them for new tasks typically requires coding expertise, limiting their accessibility to a broader astronomical community. Text-based AI interfaces offer a promising alternative by enabling task-specific queries and example-driven learning. In this context, Large Language Models (LLMs), with their remarkable zero-shot capabilities, are increasingly used in scientific domains. However, deploying large-scale models remains resource-intensive, and there is a growing demand for AI systems that can reason over both visual and textual data in astronomical analysis. This study explores small-scale Vision-Language Models (VLMs) as AI assistants for radio astronomy, combining LLM capabilities with vision transformers. We fine-tuned the LLaVA VLM on a dataset of 59k radio images from multiple surveys, enriched with 38k image-caption pairs from the literature. The fine-tuned models show clear improvements over base models in radio-specific tasks, achieving ~30% F1-score gains in extended source detection, but they underperform pure vision models and exhibit ~20% drop on general multimodal tasks. Inclusion of caption data and LoRA fine-tuning enhances instruction-following and helps recover ~10% accuracy on standard benchmarks. This work lays the foundation for future advancements in radio VLMs, highlighting their potential and limitations, such as the need for better multimodal alignment, higher-quality datasets, and mitigation of catastrophic forgetting.

  • 8 authors
·
Mar 31

Knowledge Graph in Astronomical Research with Large Language Models: Quantifying Driving Forces in Interdisciplinary Scientific Discovery

Identifying and predicting the factors that contribute to the success of interdisciplinary research is crucial for advancing scientific discovery. However, there is a lack of methods to quantify the integration of new ideas and technological advancements in astronomical research and how these new technologies drive further scientific breakthroughs. Large language models, with their ability to extract key concepts from vast literature beyond keyword searches, provide a new tool to quantify such processes. In this study, we extracted concepts in astronomical research from 297,807 publications between 1993 and 2024 using large language models, resulting in a set of 24,939 concepts. These concepts were then used to form a knowledge graph, where the link strength between any two concepts was determined by their relevance through the citation-reference relationships. By calculating this relevance across different time periods, we quantified the impact of numerical simulations and machine learning on astronomical research. The knowledge graph demonstrates two phases of development: a phase where the technology was integrated and another where the technology was explored in scientific discovery. The knowledge graph reveals that despite machine learning has made much inroad in astronomy, there is currently a lack of new concept development at the intersection of AI and Astronomy, which may be the current bottleneck preventing machine learning from further transforming the field of astronomy.

  • 6 authors
·
Jun 3, 2024

Large Language Models As MOOCs Graders

Massive open online courses (MOOCs) unlock the doors to free education for anyone around the globe with access to a computer and the internet. Despite this democratization of learning, the massive enrollment in these courses means it is almost impossible for one instructor to assess every student's writing assignment. As a result, peer grading, often guided by a straightforward rubric, is the method of choice. While convenient, peer grading often falls short in terms of reliability and validity. In this study, using 18 distinct settings, we explore the feasibility of leveraging large language models (LLMs) to replace peer grading in MOOCs. Specifically, we focus on two state-of-the-art LLMs: GPT-4 and GPT-3.5, across three distinct courses: Introductory Astronomy, Astrobiology, and the History and Philosophy of Astronomy. To instruct LLMs, we use three different prompts based on a variant of the zero-shot chain-of-thought (Zero-shot-CoT) prompting technique: Zero-shot-CoT combined with instructor-provided correct answers; Zero-shot-CoT in conjunction with both instructor-formulated answers and rubrics; and Zero-shot-CoT with instructor-offered correct answers and LLM-generated rubrics. Our results show that Zero-shot-CoT, when integrated with instructor-provided answers and rubrics, produces grades that are more aligned with those assigned by instructors compared to peer grading. However, the History and Philosophy of Astronomy course proves to be more challenging in terms of grading as opposed to other courses. Finally, our study reveals a promising direction for automating grading systems for MOOCs, especially in subjects with well-defined rubrics.

  • 4 authors
·
Feb 6, 2024

3D radio data visualisation in open science platforms for next-generation observatories

Next-generation telescopes will bring groundbreaking discoveries but they will also present new technological challenges. The Square Kilometre Array Observatory (SKAO) will be one of the most demanding scientific infrastructures, with a projected data output of 700 PB per year to be distributed to a network of SKA Regional Centres. Current tools are not fully suited to manage such massive data volumes, therefore, new research is required to transform science archives from data providers into service providers. In this paper we examine how a science archive can deliver advanced visualisation capabilities for the SKA science archive. In particular, we have conducted a thorough exploration of existing visualisation software for astronomy and other fields to identify tools capable of addressing Big Data requirements. Using selected technologies, we have developed a prototype archive that provides access to interactive visualisations of 3D radio data through web-based interfaces, adhering to International Virtual Observatory Alliance (IVOA) recommendations to favour interoperability and Open Science practices. In addition, we discuss how current IVOA recommendations support these visualisation capabilities and how they could be expanded. Our prototype archive includes a service to generate 3D models on the fly as a server operation, enabling remote visualisations in a flexible manner; for instance, a set of parameters can be used to customise the models and their visualisation. We have used SKA precursor and pathfinder data to test its usability and scalability, concluding that remote visualisation is a viable solution for handling high-volume data. However, our prototype is constrained by memory limitations, requiring techniques to reduce memory usage.

  • 7 authors
·
Mar 20

ODS: A self-reporting system for radio telescopes to coexist with adaptive satellite constellations

Low Earth orbit (LEO) satellite constellations bring broadband internet and cellular service to the most remote locations on the planet. Unfortunately, many of these locations also host some of the world's best optical and radio astronomy (RA) observatories. With the number of LEO satellites expected to increase by an order of magnitude in the upcoming decade, satellite downlink radio frequency interference (RFI) is a growing concern in protected radio-quiet areas like the United States National Radio Quiet Zone. When these satellites transmit in the spectrum near protected RA bands, undesired out-of-band emission can leak into these protected bands and impact scientific observations. In this paper, we present a self-reporting system - Operational Data Sharing (ODS) - which enables mutual awareness by publishing radio telescopes' operational information to a protected database that is available to satellite operators through a representational state transfer application programming interface (REST API). Satellite operators can use the ODS data to adapt their downlink tasking algorithms in real time to avoid overwhelming sensitive RA facilities, particularly, through the novel Telescope Boresight Avoidance (TBA) technique. Preliminary results from recent experiments between the NRAO and the SpaceX Starlink teams demonstrate the effectiveness of the ODS and TBA in reducing downlink RFI in the Karl G. Jansky Very Large Array's observations in the 1990-1995 MHz and 10.7-12.7 GHz bands. This automated ODS system is beginning to be implemented by other RA facilities and could be utilized by other satellite operators in the near future.

  • 17 authors
·
Feb 20

Practical Galaxy Morphology Tools from Deep Supervised Representation Learning

Astronomers have typically set out to solve supervised machine learning problems by creating their own representations from scratch. We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful semantic representations of galaxies that are useful for new tasks on which the models were never trained. We exploit these representations to outperform several recent approaches at practical tasks crucial for investigating large galaxy samples. The first task is identifying galaxies of similar morphology to a query galaxy. Given a single galaxy assigned a free text tag by humans (e.g. "#diffuse"), we can find galaxies matching that tag for most tags. The second task is identifying the most interesting anomalies to a particular researcher. Our approach is 100% accurate at identifying the most interesting 100 anomalies (as judged by Galaxy Zoo 2 volunteers). The third task is adapting a model to solve a new task using only a small number of newly-labelled galaxies. Models fine-tuned from our representation are better able to identify ring galaxies than models fine-tuned from terrestrial images (ImageNet) or trained from scratch. We solve each task with very few new labels; either one (for the similarity search) or several hundred (for anomaly detection or fine-tuning). This challenges the longstanding view that deep supervised methods require new large labelled datasets for practical use in astronomy. To help the community benefit from our pretrained models, we release our fine-tuning code Zoobot. Zoobot is accessible to researchers with no prior experience in deep learning.

  • 12 authors
·
Oct 25, 2021

CSIM: A Copula-based similarity index sensitive to local changes for Image quality assessment

Image similarity metrics play an important role in computer vision applications, as they are used in image processing, computer vision and machine learning. Furthermore, those metrics enable tasks such as image retrieval, object recognition and quality assessment, essential in fields like healthcare, astronomy and surveillance. Existing metrics, such as PSNR, MSE, SSIM, ISSM and FSIM, often face limitations in terms of either speed, complexity or sensitivity to small changes in images. To address these challenges, a novel image similarity metric, namely CSIM, that combines real-time while being sensitive to subtle image variations is investigated in this paper. The novel metric uses Gaussian Copula from probability theory to transform an image into vectors of pixel distribution associated to local image patches. These vectors contain, in addition to intensities and pixel positions, information on the dependencies between pixel values, capturing the structural relationships within the image. By leveraging the properties of Copulas, CSIM effectively models the joint distribution of pixel intensities, enabling a more nuanced comparison of image patches making it more sensitive to local changes compared to other metrics. Experimental results demonstrate that CSIM outperforms existing similarity metrics in various image distortion scenarios, including noise, compression artifacts and blur. The metric's ability to detect subtle differences makes it suitable for applications requiring high precision, such as medical imaging, where the detection of minor anomalies can be of a high importance. The results obtained in this work can be reproduced from this Github repository: https://github.com/safouaneelg/copulasimilarity.

  • 4 authors
·
Oct 2, 2024

The FAST HI 21-cm absorption blind survey. II. -- Statistic Exploration for Associated and Intervening systems

We present an extragalactic HI 21-cm absorption lines catalog from a blind search at z leqslant 0.35, using drift-scan data collected in 1325.6 hours by the ongoing Commensal Radio Astronomy FasT Survey (CRAFTS) and FAST All Sky HI Survey (FASHI), which spans a sky area of 6072.0 deg^{2} and covers 84533 radio sources with a flux density greater than 12 mJy. 14 previously identified HI absorbers and 20 newly discovered HI absorbers were detected, comprising 15 associated systems, 10 intervening systems, and 9 systems with undetermined classifications. Through spectral stacking, the mean peak optical path, mean velocity-integrated optical path, mean FWHM and mean HI column density are measured to be 0.47 and 0.30; 27.19 and 4.36 km s^{-1}; 42.61 and 9.33 km s^{-1}; 0.49 and 0.08 T_{s} times 10^{20}cm^{-2}K^{-1}, for the associated and intervening samples, respectively. Statistical analysis also reveals that associated systems tend to be hosted by red (g-r>0.7) galaxies at lower redshifts, whereas galaxies hosting intervening HI absorption are typically found at higher redshifts and are of a bluer (g-rleqslant0.7) type. A noticeable difference is observed in the positions of foregrounds, backgrounds of intervening systems, and high-redshift and low-redshift associated systems on the WISE color-color diagram. All identified foreground sources in our sample have W1-W2 magnitudes below 0.8, suggesting no Active Galactic Nuclei (AGN). In contrast, backgrounds of intervening systems tend to have W1-W2 magnitudes above 0.8, indicating AGN presence. For associated absorption, most low-redshift (zleqslant0.5) systems show W1-W2 values below 0.8, while higher-redshift associated absorption (z>0.5) displays a broader range of W1-W2 values.

  • 15 authors
·
Jul 19, 2024

Self-Normalizing Neural Networks

Deep Learning has revolutionized vision via convolutional neural networks (CNNs) and natural language processing via recurrent neural networks (RNNs). However, success stories of Deep Learning with standard feed-forward neural networks (FNNs) are rare. FNNs that perform well are typically shallow and, therefore cannot exploit many levels of abstract representations. We introduce self-normalizing neural networks (SNNs) to enable high-level abstract representations. While batch normalization requires explicit normalization, neuron activations of SNNs automatically converge towards zero mean and unit variance. The activation function of SNNs are "scaled exponential linear units" (SELUs), which induce self-normalizing properties. Using the Banach fixed-point theorem, we prove that activations close to zero mean and unit variance that are propagated through many network layers will converge towards zero mean and unit variance -- even under the presence of noise and perturbations. This convergence property of SNNs allows to (1) train deep networks with many layers, (2) employ strong regularization, and (3) to make learning highly robust. Furthermore, for activations not close to unit variance, we prove an upper and lower bound on the variance, thus, vanishing and exploding gradients are impossible. We compared SNNs on (a) 121 tasks from the UCI machine learning repository, on (b) drug discovery benchmarks, and on (c) astronomy tasks with standard FNNs and other machine learning methods such as random forests and support vector machines. SNNs significantly outperformed all competing FNN methods at 121 UCI tasks, outperformed all competing methods at the Tox21 dataset, and set a new record at an astronomy data set. The winning SNN architectures are often very deep. Implementations are available at: github.com/bioinf-jku/SNNs.

  • 4 authors
·
Jun 8, 2017

A multi-messenger hierarchical triple merger gravitational-wave event pair GW190514-GW190521 inside AGN J124942.3 + 344929

There is a candidate electromagnetic counterpart to the binary black hole merger GW190521, identified as ZTF19abanrhr within AGN J124942.3 + 344929. Additionally, GW190514 is proposed as a plausible precursor merger to GW190521 within a hierarchical merger scenario. In this study, we investigate the potential association between GW190514 and GW190521 as a hierarchical triple merger associated with ZTF19abanrhr, taking into account of sky position, distance, and mass of the sources using a Bayesian criterion. Our analysis reveals that the association is favored over a random coincidence, with a log Bayes factor of 16.8, corresponding to an odds ratio of sim199:1, assuming an astrophysical prior odds of 10^{-5}. Notably, when accounting for the primary masses of the two gravitational wave events as potential products of mergers in the AGN formation channel, the Bayes factor increases significantly, further enhancing the preference for this association by a factor of sim10^2, corresponding to a log Bayes factor of 21.5 and an odds ratio of sim2times10^4:1. Our results suggest strong evidence for the first hierarchical triple merger associated with an electromagnetic counterpart in the AGN formation channel. This work is crucial for understanding the formation mechanisms of massive black holes, the role of AGNs in hierarchical mergers, and the implications of multi-messenger astronomy.

  • 2 authors
·
Mar 21

First Light And Reionisation Epoch Simulations (FLARES) VII: The Star Formation and Metal Enrichment Histories of Galaxies in the early Universe

The star formation and metal enrichment histories of galaxies - at any epoch - constitute one of the key properties of galaxies, and their measurement is a core aim of observational extragalactic astronomy. The lack of deep rest-frame optical coverage at high-redshift has made robust constraints elusive, but this is now changing thanks to the James Webb Space Telescope (JWST). In preparation for the constraints provided by JWST we explore the star formation and metal enrichment histories of galaxies at z=5-13 using the First Light And Reionisation Epoch Simulations (FLARES) suite. Built on the EAGLE model, the unique strategy of FLARES allows us to simulate a wide range of stellar masses (and luminosities) and environments. While we predict significant redshift evolution of average ages and specific star formation rates our core result is a mostly flat relationship of age and specific star formation rate with stellar mass. We also find that galaxies in this epoch predominantly have strongly rising star formation histories, albeit with the magnitude dropping with redshift and stellar mass. In terms of chemical enrichment we predict a strong stellar mass - metallicity relation present at z=10 and beyond alongside significant alpha-enhancement. Finally, we find no environmental dependence of the relationship between age, specific star formation rate, or metallicity with stellar mass.

  • 11 authors
·
Aug 1, 2022

Optical night sky brightness measurements from the stratosphere

This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three commissioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurements from the stratosphere with measurements from mountain-top ground-based observatories (taken at zenith on the darkest moonless night at high Galactic and high ecliptic latitudes), the stratospheric brightness levels were zodiacal light and diffuse Galactic light subtracted, and the airglow brightness was projected to zenith. The stratospheric brightness was measured around 5.5 hours, 3 hours, and 2 hours before the local sunrise time in 2016, 2018, and 2019 respectively. The B, V, R, and I brightness levels in 2016 were 2.7, 1.0, 1.1, and 0.6 mag arcsec^{-2} darker than the darkest ground-based measurements. The B, V, and R brightness levels in 2018 were 1.3, 1.0, and 1.3 mag arcsec^{-2} darker than the darkest ground-based measurements. The U and I brightness levels in 2019 were 0.1 mag arcsec^{-2} brighter than the darkest ground-based measurements, whereas the B and V brightness levels were 0.8 and 0.6 mag arcsec^{-2} darker than the darkest ground-based measurements. The lower sky brightness levels, stable photometry, and lower atmospheric absorption make stratospheric observations from a balloon-borne platform a unique tool for astronomy. We plan to continue this work in a future mid-latitude long duration balloon flight with SuperBIT.

  • 30 authors
·
Oct 10, 2020

ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.

  • 21 authors
·
May 26 3

Robust diffraction-limited NIR-to-NUV wide-field imaging from stratospheric balloon-borne platforms -- SuperBIT science telescope commissioning flight & performance

At a fraction the total cost of an equivalent orbital mission, scientific balloon-borne platforms, operating above 99.7% of the Earth's atmosphere, offer attractive, competitive, and effective observational capabilities -- namely space-like resolution, transmission, and backgrounds -- that are well suited for modern astronomy and cosmology. SuperBIT is a diffraction-limited, wide-field, 0.5 m telescope capable of exploiting these observing conditions in order to provide exquisite imaging throughout the near-IR to near-UV. It utilizes a robust active stabilization system that has consistently demonstrated a 1 sigma sky-fixed pointing stability at 48 milliarcseconds over multiple 1 hour observations at float. This is achieved by actively tracking compound pendulations via a three-axis gimballed platform, which provides sky-fixed telescope stability at < 500 milliarcseconds and corrects for field rotation, while employing high-bandwidth tip/tilt optics to remove residual disturbances across the science imaging focal plane. SuperBIT's performance during the 2019 commissioning flight benefited from a customized high-fidelity science-capable telescope designed with exceptional thermo- and opto-mechanical stability as well as tightly constrained static and dynamic coupling between high-rate sensors and telescope optics. At the currently demonstrated level of flight performance, SuperBIT capabilities now surpass the science requirements for a wide variety of experiments in cosmology, astrophysics and stellar dynamics.

  • 29 authors
·
Nov 25, 2019