new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

Constraining atmospheric composition from the outflow: helium observations reveal the fundamental properties of two planets straddling the radius gap

TOI-836 is a ~2-3 Gyr K dwarf with an inner super Earth (R=1.7 R_oplus, P=3.8 d) and an outer mini Neptune (R=2.6 R_oplus, P=8.6 d). JWST/NIRSpec 2.8--5.2 mum transmission spectra are flat for both planets. We present Keck/NIRSPEC observations of escaping helium for super-Earth b, which shows no excess absorption in the 1083 nm triplet to deep limits (<0.2%), and mini-Neptune c, which shows strong (0.7%) excess absorption in both visits. These results demonstrate that planet c retains at least some primordial atmosphere, while planet b is consistent with having lost its entire primordial envelope. Self-consistent 1D radiative-hydrodynamic models of planet c reveal that the helium excess absorption signal is highly sensitive to metallicity: its equivalent width collapses by a factor of 13 as metallicity increases from 10x to 100x solar, and by a further factor of 12 as it increases to 200x solar. The observed equivalent width is 88\% the model prediction for 100x metallicity, suggesting an atmospheric metallicity similar to K2-18b and TOI-270d, the first two mini-Neptunes with detected absorption features in JWST transmission spectra. We highlight the helium triplet as a potentially powerful probe of atmospheric composition, with complementary strengths and weaknesses to atmospheric retrievals. The main strength is its extreme sensitivity to metallicity in the scientifically significant range of 10--200x solar, and the main weakness is the enormous model uncertainties in outflow suppression and confinement mechanisms, such as magnetic fields and stellar winds, which can suppress the signal by at least a factor of ~several.

  • 16 authors
·
Sep 12, 2024

Bayesian Deep Learning for Exoplanet Atmospheric Retrieval

Over the past decade, the study of extrasolar planets has evolved rapidly from plain detection and identification to comprehensive categorization and characterization of exoplanet systems and their atmospheres. Atmospheric retrieval, the inverse modeling technique used to determine an exoplanetary atmosphere's temperature structure and composition from an observed spectrum, is both time-consuming and compute-intensive, requiring complex algorithms that compare thousands to millions of atmospheric models to the observational data to find the most probable values and associated uncertainties for each model parameter. For rocky, terrestrial planets, the retrieved atmospheric composition can give insight into the surface fluxes of gaseous species necessary to maintain the stability of that atmosphere, which may in turn provide insight into the geological and/or biological processes active on the planet. These atmospheres contain many molecules, some of them biosignatures, spectral fingerprints indicative of biological activity, which will become observable with the next generation of telescopes. Runtimes of traditional retrieval models scale with the number of model parameters, so as more molecular species are considered, runtimes can become prohibitively long. Recent advances in machine learning (ML) and computer vision offer new ways to reduce the time to perform a retrieval by orders of magnitude, given a sufficient data set to train with. Here we present an ML-based retrieval framework called Intelligent exoplaNet Atmospheric RetrievAl (INARA) that consists of a Bayesian deep learning model for retrieval and a data set of 3,000,000 synthetic rocky exoplanetary spectra generated using the NASA Planetary Spectrum Generator. Our work represents the first ML retrieval model for rocky, terrestrial exoplanets and the first synthetic data set of terrestrial spectra generated at this scale.

  • 11 authors
·
Nov 8, 2018

Conditions for radiative zones in the molecular hydrogen envelope of Jupiter and Saturn: The role of alkali metals

Interior models of gas giants in the Solar System traditionally assume a fully convective molecular hydrogen envelope. However, recent observations from the Juno mission suggest a possible depletion of alkali metals in Jupiter's molecular hydrogen envelope, indicating that a stable radiative layer could exist at the kilobar level. Recent studies propose that deep stable layers help reconcile various Jupiter observations, including its atmospheric water and CO abundances and the depth of its zonal winds. However, opacity tables used to infer stable layers are often outdated and incomplete, leaving the precise molecular hydrogen envelope composition required for a deep radiative zone uncertain. In this paper, we determine atmospheric compositions that can lead to the formation of a radiative zone at the kilobar level in Jupiter and Saturn today. We computed radiative opacity tables covering pressures up to 10^5 bar, including the most abundant molecules present in the gas giants of the Solar System, as well as contributions from free electrons, metal hydrides, oxides, and atomic species, using the most up-to-date line lists published in the literature. These tables were used to calculate Rosseland-mean opacities for the molecular hydrogen envelopes of Jupiter and Saturn, which were then compared to the critical mean opacity required to maintain convection. We find that the presence of a radiative zone is controlled by the existence of K, Na, and NaH in the atmosphere of Jupiter and Saturn. For Jupiter, the elemental abundance of K and Na must be less than sim 10^{-3} times solar to form a radiative zone. In contrast, for Saturn, the required abundance for K and Na is below sim 10^{-4} times solar.

  • 4 authors
·
Jan 7

Characterising the Atmosphere of 55 Cancri e: 1D Forward Model Grid for Current and Future JWST Observations

Recent JWST observations with NIRCam and MIRI of the ultra-short-period super-Earth 55 Cancri e indicate a possible volatile atmosphere surrounding the planet. Previous analysis of the NIRCam spectra suggested potential absorption features from CO2 or CO and significant sub-weekly variability. The MIRI low-resolution spectrum does not contain substantial features but was found to be consistent with effective heat redistribution models. In this work, we computed a grid of over 25000 self-consistent 1D forward models incorporating H-N-O-C-S-P-Si-Ti equilibrium chemistry and assessed plausible atmospheric compositions based on the current JWST data. Despite exhaustive analysis, the composition and properties of the atmosphere remain elusive. While our results statistically favour a global, hydrogen-free, nitrogen-dominated atmosphere enriched in PO and CO2, various alternative compositions, including H2O-,CO-, PH3-, or Si-bearing remain viable explanations. Unconstrained heat redistribution efficiency and absolute NIRCam flux are among the largest sources of uncertainty in our analysis. We also find that the heat redistribution factor and surface pressure are highly degenerate with atmospheric composition, and that these parameters cannot be independently constrained using current JWST observations. Furthermore, we show that the observed variability may arise from dynamic interactions between the atmosphere and an underlying magma ocean, driving rapid shifts in atmospheric chemistry and thermal emission. Our results highlight the importance of using self-consistent forward models when analysing novel JWST spectra with limited signal-to-noise ratios -- such as those of 55 Cancri e -- as it allows for a more comprehensive evaluation of potential atmospheric scenarios while also being less sensitive to subtle spectral differences than retrievals...

  • 12 authors
·
Mar 20

Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1c from JWST NIRISS Transmission Spectra

Attempts to probe the atmospheres of rocky planets around M dwarfs present both promise and peril. While their favorable planet-to-star radius ratios enable searches for even thin secondary atmospheres, their high activity levels and high-energy outputs threaten atmosphere survival. Here, we present the 0.6--2.85\,mum transmission spectrum of the 1.1\,rm R_oplus, sim340\,K rocky planet TRAPPIST-1\,c obtained over two JWST NIRISS/SOSS transit observations. Each of the two spectra displays 100--500\,ppm signatures of stellar contamination. Despite being separated by 367\,days, the retrieved spot and faculae properties are consistent between the two visits, resulting in nearly identical transmission spectra. Jointly retrieving for stellar contamination and a planetary atmosphere reveals that our spectrum can rule out hydrogen-dominated, lesssim300times solar metallicity atmospheres with effective surface pressures down to 10\,mbar at the 3-sigma level. For high-mean molecular weight atmospheres, where O_2 or N_2 is the background gas, our spectrum disfavors partial pressures of more than sim10\,mbar for H_2O, CO, NH_3 and CH_4 at the 2-sigma level. Similarly, under the assumption of a 100\% H_2O, NH_3, CO, or CH_4 atmosphere, our spectrum disfavors thick, >1\,bar atmospheres at the 2-sigma level. These non-detections of spectral features are in line with predictions that even heavier, CO_2-rich, atmospheres would be efficiently lost on TRAPPIST-1\,c given the cumulative high-energy irradiation experienced by the planet. Our results further stress the importance of robustly accounting for stellar contamination when analyzing JWST observations of exo-Earths around M dwarfs, as well as the need for high-fidelity stellar models to search for the potential signals of thin secondary atmospheres.

  • 12 authors
·
Sep 28, 2024

Protosolar D-to-H abundance and one part-per-billion PH_{3} in the coldest brown dwarf

The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (sim200 -- 400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species like water, methane, and ammonia; species that trace chemical reactions like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (GTO program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855-0714 (using NIRSpec G395M spectra), which has an effective temperature of sim 264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH_{3}D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH_{3}). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution.

  • 27 authors
·
Nov 21, 2024

Gas dynamics around a Jupiter mass planet: II. Chemical evolution of circumplanetary material

In an ongoing effort to understand planet formation the link between the chemistry of the protoplanetary disk and the properties of resulting planets have long been a subject of interest. These connections have generally been made between mature planets and young protoplanetary disks through the carbon-to-oxygen (C/O) ratio. In a rare number of systems, young protoplanets have been found within their natal protoplanetary disks. These systems offer a unique opportunity to directly study the delivery of gas from the protoplanetary disk to the planet. In this work we post-process 3D numerical simulations of an embedded Jupiter-massed planet in its protoplanetary disk to explore the chemical evolution of gas as it flows from the disk to the planet. The relevant dust to this chemical evolution is assumed to be small, co-moving grains with a reduced dust-to-gas ratio indicative of the upper atmosphere of a protoplanetary disk. We find that as the gas enters deep into the planet's gravitational well, it warms significantly (up to sim 800 K), releasing all of the volatile content from the ice phase. This change in phase can influence our understanding of the delivery of volatile species to the atmospheres of giant planets. The primary carbon, oxygen, and sulfur carrying ices: CO_2, H_2O, and H_2S are released into the gas phase and along with the warm gas temperatures near the embedded planets lead to the production of unique species like CS, SO, and SO_2 compared to the protoplanetary disk. We compute the column densities of SO, SO_2, CS, and H_2CS in our model and find that their values are consistent with previous observational studies.

  • 3 authors
·
Nov 26, 2024

Beyond monoculture: Polydisperse moment methods for sub-stellar atmosphere cloud microphysics II. A three-moment gamma distribution formulation for GCM applications

Context. Understanding how the shape of cloud particle size distributions affects the atmospheric properties of sub-stellar atmospheres is a key area to explore, particularly in the JWST era of broad wavelength coverage, where observations are sensitive to particle size distributions. It is therefore important to elucidate how underlying cloud microphysical processes influence the size distribution, in order to better understand how clouds affect observed atmospheric properties. Aims. In this follow-up paper, we aim to extend our sub-stellar atmosphere microphysical cloud formation framework from Paper I to include effects of assuming a polydisperse gamma particle size distribution, requiring a three-moment solution set of equations. Methods. We develop a three-moment framework for sub-stellar mineral cloud particle microphysical nucleation, condensation, evaporation and collisional growth assuming a gamma distribution. As in the previous paper, we demonstrate the effects of polydispersity using a simple one-dimensional Y-dwarf KCl cloud formation scenario, and compare the results with the monodisperse case. Results. Our three-moment scheme provides a generalised framework applicable to any size distribution with a defined moment generation expression. In our test case, we show that the gamma distribution evolves with altitude, initially broad at the cloud base and narrowing at lower pressures. We find that differences between the gamma and monodisperse cloud structures can be significant, depending on the surface gravity of the atmosphere. Conclusions. We present a self-consistent framework for including the effects of polydispersity for sub-stellar microphysical cloud studies using the moment method.

  • 2 authors
·
Jul 17

Using remotely sensed data for air pollution assessment

Air pollution constitutes a global problem of paramount importance that affects not only human health, but also the environment. The existence of spatial and temporal data regarding the concentrations of pollutants is crucial for performing air pollution studies and monitor emissions. However, although observation data presents great temporal coverage, the number of stations is very limited and they are usually built in more populated areas. The main objective of this work is to create models capable of inferring pollutant concentrations in locations where no observation data exists. A machine learning model, more specifically the random forest model, was developed for predicting concentrations in the Iberian Peninsula in 2019 for five selected pollutants: NO_2, O_3 SO_2, PM10, and PM2.5. Model features include satellite measurements, meteorological variables, land use classification, temporal variables (month, day of year), and spatial variables (latitude, longitude, altitude). The models were evaluated using various methods, including station 10-fold cross-validation, in which in each fold observations from 10\% of the stations are used as testing data and the rest as training data. The R^2, RMSE and mean bias were determined for each model. The NO_2 and O_3 models presented good values of R^2, 0.5524 and 0.7462, respectively. However, the SO_2, PM10, and PM2.5 models performed very poorly in this regard, with R^2 values of -0.0231, 0.3722, and 0.3303, respectively. All models slightly overestimated the ground concentrations, except the O_3 model. All models presented acceptable cross-validation RMSE, except the O_3 and PM10 models where the mean value was a little higher (12.5934 mu g/m^3 and 10.4737 mu g/m^3, respectively).

  • 3 authors
·
Feb 4, 2024

Solar System Elemental Abundances from the Solar Photosphere and CI-Chondrites

Solar photospheric abundances and CI-chondrite compositions are reviewed and updated to obtain representative solar system abundances of the elements and their isotopes. The new photospheric abundances obtained here lead to higher solar metallicity. Full 3D NLTE photospheric analyses are only available for 11 elements. A quality index for analyses is introduced. For several elements, uncertainties remain large. Protosolar mass fractions are H (X = 0.7060), He (Y = 0.2753), and for metals Li to U (Z = 0.0187). The protosolar (C+N)/H agrees within 13% with the ratio for the solar core from the Borexino experiment. Elemental abundances in CI-chondrites were screened by analytical methods, sample sizes, and evaluated using concentration frequency distributions. Aqueously mobile elements (e.g., alkalis, alkaline earths, etc.) often deviate from normal distributions indicating mobilization and/or sequestration into carbonates, phosphates, and sulfates. Revised CI-chondrite abundances of non-volatile elements are similar to earlier estimates. The moderately volatile elements F and Sb are higher than before, as are C, Br and I, whereas the CI-abundances of Hg and N are now significantly lower. The solar system nuclide distribution curves of s-process elements agree within 4% with s-process predictions of Galactic chemical evolution models. P-process nuclide distributions are assessed. No obvious correlation of CI-chondritic to solar elemental abundance ratios with condensation temperatures is observed, nor is there one for ratios of CI-chondrites/solar wind abundances.

  • 3 authors
·
Feb 14

Accurate Machine Learning Atmospheric Retrieval via a Neural Network Surrogate Model for Radiative Transfer

Atmospheric retrieval determines the properties of an atmosphere based on its measured spectrum. The low signal-to-noise ratio of exoplanet observations require a Bayesian approach to determine posterior probability distributions of each model parameter, given observed spectra. This inference is computationally expensive, as it requires many executions of a costly radiative transfer (RT) simulation for each set of sampled model parameters. Machine learning (ML) has recently been shown to provide a significant reduction in runtime for retrievals, mainly by training inverse ML models that predict parameter distributions, given observed spectra, albeit with reduced posterior accuracy. Here we present a novel approach to retrieval by training a forward ML surrogate model that predicts spectra given model parameters, providing a fast approximate RT simulation that can be used in a conventional Bayesian retrieval framework without significant loss of accuracy. We demonstrate our method on the emission spectrum of HD 189733 b and find good agreement with a traditional retrieval from the Bayesian Atmospheric Radiative Transfer (BART) code (Bhattacharyya coefficients of 0.9843--0.9972, with a mean of 0.9925, between 1D marginalized posteriors). This accuracy comes while still offering significant speed enhancements over traditional RT, albeit not as much as ML methods with lower posterior accuracy. Our method is ~9x faster per parallel chain than BART when run on an AMD EPYC 7402P central processing unit (CPU). Neural-network computation using an NVIDIA Titan Xp graphics processing unit is 90--180x faster per chain than BART on that CPU.

  • 11 authors
·
Mar 4, 2020

First detections of CO absorption in the Magellanic Clouds and direct measurement of the CO-to-H_2 ratio

Molecular hydrogen (H_2) is by far the most abundant molecule in the Universe. However, due to the low emissivity of H_2, carbon monoxide (CO) is widely used instead to trace molecular gas in galaxies. The relative abundances of these molecules is expected to depend on both physical (e.g., density) and chemical (e.g., metal enrichment) properties of the gas, making direct measurements in diverse environments crucial. We present a systematic search for CO in absorption toward 34 stars behind H_2 gas in the Magellanic Clouds using the Hubble Space Telescope. We report the first two definitive detections of CO absorption in the Large Magellanic Cloud (LMC) and one in the Small Magellanic Cloud (SMC), along with stringent upper limits for the remaining sightlines. Non-detections of CO are consistent with models of low thermal pressures and/or low metallicities while detections at the lower metallicities of the Magellanic Clouds require higher thermal pressures, P_{rm th}=10^5-10^6,K,cm^{-3} than detections the Milky Way at similar N({rm H_2}). Notably, the high density derived from the rotational excitation of CO towards SK,143 in the SMC suggests full molecularization of CO in the absorbing cloud, with CO/H_2 = 8.3^{+2.0}_{-1.6}times10^{-5} consistent with the standard ratio (3.2times10^{-4}) measured in dense molecular gas in the Milky Way, scaled to the SMC's 0.2,Z_{odot} metallicity.

  • 3 authors
·
Mar 16

Atmospheric Transport Modeling of CO_2 with Neural Networks

Accurately describing the distribution of CO_2 in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems to aid implementation of international climate agreements. Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere. While similar in this regard, atmospheric transport modeling is subject to new challenges. Both, stable predictions for longer time horizons and mass conservation throughout need to be achieved, while IO plays a larger role compared to computational costs. In this study we explore four different deep neural networks (UNet, GraphCast, Spherical Fourier Neural Operator and SwinTransformer) which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling. For this, we assemble the CarbonBench dataset, a systematic benchmark tailored for machine learning emulators of Eulerian atmospheric transport. Through architectural adjustments, we decouple the performance of our emulators from the distribution shift caused by a steady rise in atmospheric CO_2. More specifically, we center CO_2 input fields to zero mean and then use an explicit flux scheme and a mass fixer to assure mass balance. This design enables stable and mass conserving transport for over 6 months with all four neural network architectures. In our study, the SwinTransformer displays particularly strong emulation skill (90-day R^2 > 0.99), with physically plausible emulation even for forward runs of multiple years. This work paves the way forward towards high resolution forward and inverse modeling of inert trace gases with neural networks.

  • 6 authors
·
Aug 20, 2024

AtmoRep: A stochastic model of atmosphere dynamics using large scale representation learning

The atmosphere affects humans in a multitude of ways, from loss of life due to adverse weather effects to long-term social and economic impacts on societies. Computer simulations of atmospheric dynamics are, therefore, of great importance for the well-being of our and future generations. Here, we propose AtmoRep, a novel, task-independent stochastic computer model of atmospheric dynamics that can provide skillful results for a wide range of applications. AtmoRep uses large-scale representation learning from artificial intelligence to determine a general description of the highly complex, stochastic dynamics of the atmosphere from the best available estimate of the system's historical trajectory as constrained by observations. This is enabled by a novel self-supervised learning objective and a unique ensemble that samples from the stochastic model with a variability informed by the one in the historical record. The task-independent nature of AtmoRep enables skillful results for a diverse set of applications without specifically training for them and we demonstrate this for nowcasting, temporal interpolation, model correction, and counterfactuals. We also show that AtmoRep can be improved with additional data, for example radar observations, and that it can be extended to tasks such as downscaling. Our work establishes that large-scale neural networks can provide skillful, task-independent models of atmospheric dynamics. With this, they provide a novel means to make the large record of atmospheric observations accessible for applications and for scientific inquiry, complementing existing simulations based on first principles.

  • 6 authors
·
Aug 25, 2023

Mass-Radius Relationships for Solid Exoplanets

We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, considering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius relationships for cold terrestrial-mass planets of all compositions we considered follow a generic functional form that is not a simple power law: log_{10} R_s = k_1 + 1/3 log_{10}(M_s) - k_2 M_s^{k_3} for up to M_p approx 20 M_{oplus}, where M_s and R_s are scaled mass and radius values. This functional form arises because the common building blocks of solid planets all have equations of state that are well approximated by a modified polytrope of the form rho = rho_0 + c P^n. We find that highly detailed planet interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk composition from mass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found that: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed predominantly of iron or silicates or water ice but not more detailed compositions; with sim~5% uncertainty water ice planets with gtrsim 25% water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar zero-pressure densities and equations of state. We propose a definition of "super Earths'' based on the clear distinction in radii between planets with significant gas envelopes and those without.

  • 4 authors
·
Jul 19, 2007

Observational signatures of mixing-induced cooling in the Kelvin-Helmholtz instability

Cool (approx 10^4K), dense material permeates the hot (approx 10^6K), tenuous solar corona in form of coronal condensations, for example prominences and coronal rain. As the solar atmosphere evolves, turbulence can drive mixing between the condensations and the surrounding corona, with the mixing layer exhibiting an enhancement in emission from intermediate temperature (approx10^5K) spectral lines, which is often attributed to turbulent heating within the mixing layer. However, radiative cooling is highly efficient at intermediate temperatures and numerical simulations have shown that radiative cooling can far exceed turbulent heating in prominence-corona mixing scenarios. As such the mixing layer can have a net loss of thermal energy, i.e., the mixing layer is cooling rather than heating. Here, we investigate the observational signatures of cooling processes in Kelvin-Helmholtz mixing between a prominence thread and the surrounding solar corona through 2D numerical simulations. Optically thin emission is synthesised for Si IV, along with optically thick emission for Halpha, Ca II K and Mg II h using Lightweaver The Mg II h probes the turbulent mixing layer, whereas Halpha and Ca II K form within the thread and along its boundary respectively. As the mixing evolves, intermediate temperatures form leading to an increase in Si IV emission, which coincides with increased radiative losses. The simulation is dominated by cooling in the mixing layer, rather than turbulent heating, and yet enhanced emission in warm lines is produced. As such, an observational signature of decreased emission in cooler lines and increased emission in hotter lines may be a signature of mixing, rather than an implication of heating.

  • 3 authors
·
Jan 20

The chemical inventory of the planet-hosting disk PDS 70

As host to two accreting planets, PDS 70 provides a unique opportunity to probe the chemical complexity of atmosphere-forming material. We present ALMA Band 6 observations of the PDS~70 disk and report the first chemical inventory of the system. With a spatial resolution of 0.4''-0.5'' (sim50 au), 12 species are detected, including CO isotopologues and formaldehyde, small hydrocarbons, HCN and HCO+ isotopologues, and S-bearing molecules. SO and CH3OH are not detected. All lines show a large cavity at the center of the disk, indicative of the deep gap carved by the massive planets. The radial profiles of the line emission are compared to the (sub-)mm continuum and infrared scattered light intensity profiles. Different molecular transitions peak at different radii, revealing the complex interplay between density, temperature and chemistry in setting molecular abundances. Column densities and optical depth profiles are derived for all detected molecules, and upper limits obtained for the non detections. Excitation temperature is obtained for H2CO. Deuteration and nitrogen fractionation profiles from the hydro-cyanide lines show radially increasing fractionation levels. Comparison of the disk chemical inventory to grids of chemical models from the literature strongly suggests a disk molecular layer hosting a carbon to oxygen ratio C/O>1, thus providing for the first time compelling evidence of planets actively accreting high C/O ratio gas at present time.

  • 6 authors
·
Jan 20, 2021

The survival of aromatic molecules in protoplanetary disks

Aromaticity is a common chemical functionalities in bioactive molecules. In interstellar and circumstellar environments benzene and other small aromatics are considered the precursor for more complex prebiotic molecules and they have shown to potentially have rich ice-phase photochemistry. The availability of small organic molecules in prebiotic networks depends on their photostability in astrophysical environments preceding planet formation, particularly during the protoplanetary disk stage, as the disk composition is linked to the chemical make-up of planets and planetesimals. We study the ultraviolet (UV) photodestruction (120-160 nm) of five aromatic molecules in undiluted ices and, for selected cases, in astrophysically relevant ice matrices (H2O, CO, CO2). For each ice, we measure the destruction cross sections as a function of photon exposure. In undiluted ices, aromatic molecules exhibit substantially lower photodestruction cross sections (sigma < 10-19 cm2) than aliphatic hydrocarbons, including cyclohexane, (sigma = 2.8-4x10-18 cm2). Furthermore, neither substituent nature nor size affects the aromatic stability in pure ices, suggesting that the strong intermolecular interactions among aromatic molecules provide protection against VUV exposure, even with small to mid-sized ring substituents. In mixed ices, the photodestruction and reactivity of aromatic molecules (sigma = 2.5-6.1x10-18 cm2) increases by more than an order of magnitude, but are still lower than in the gas-phase. We attribute this to a weaker cage effect and matrix-specific interactions. We use the experimental photodestruction cross sections to estimate the lifetime of aromatic molecules in protoplanetary disks, denileating the disks regions in which aromatic photochemistry is expected to be the most active.

  • 6 authors
·
Oct 10

Robust Binding Energy Distribution Sampling on Amorphous Solid Water Models. Method testing and validation with NH3, CO and CH4

This work aims to develop a method based on a structurally reliable ice model and a statistically and physico-chemically robust approach for BE distribution inference, with the aim to be applicable to various relevant interstellar species. A multiscale computational approach is presented, with a Molecular Dynamics (MD) Heat & Quench protocol for the amorphous water ice model, and an ONIOM(B3LYP-D3(BJ)/6-311+G**:GFN2-xtb) scheme for the BE inference, with a prime emphasis onto the BE/real system size convergence. The sampling of the binding configurations is twofold, exploring both regularly spaced binding sites, as well as various adsorbate-to-substrate orientations on each locally distinct site. This second source of BE diversity accounts for the local roughness of the potential energy landscape of the substrate. Three different adsorbate test cases are considered, i.e. NH3, CO and CH4, owing to their significance in dust icy mantles, and their distinct binding behavior with water ices. The BE distributions for NH3, CO and CH4 have been inferred, with converged statistics. The distribution for NH3 is better represented by a double Gaussian component profile. Three starting adsorbate orientations per site are required to reach convergence for both Gaussian components of NH3, while 2 orientations are sufficient for CO, and one unique for CH4 (symmetric). Further geometrical and molecular surrounding insights have been provided. These results encompass previously reported results.

  • 4 authors
·
Apr 25

AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality Prediction

Air quality prediction and modelling plays a pivotal role in public health and environment management, for individuals and authorities to make informed decisions. Although traditional data-driven models have shown promise in this domain, their long-term prediction accuracy can be limited, especially in scenarios with sparse or incomplete data and they often rely on black-box deep learning structures that lack solid physical foundation leading to reduced transparency and interpretability in predictions. To address these limitations, this paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet). Specifically, we leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks. Then, we utilize a graph structure to integrate physics knowledge into a neural network architecture and exploit latent representations to capture spatio-temporal relationships within the air quality data. Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios including different lead time (24h, 48h, 72h), sparse data and sudden change prediction, achieving reduction in prediction errors up to 10%. Moreover, a case study further validates that our model captures underlying physical processes of particle movement and generates accurate predictions with real physical meaning.

  • 6 authors
·
Feb 6, 2024

Thermal Desorption Kinetics, Binding Energies, and Entrapment of Methyl Mercaptan Ices

Organosulfur species are potential major carriers of sulfur in the interstellar medium, as well as interesting ingredients in prebiotic chemistry. The most fundamental question regarding these species is under which conditions they reside in the gas versus solid phase. Here, we characterize the thermal desorption kinetics, binding energies, and entrapment of the organosulfur methyl mercaptan (CH_3SH, or MeSH) in different ice environments, comparing them with those of methanol (CH_3OH, or MeOH) ices. The derived multi-layer (pure MeSH-MeSH) and sub-monolayer (layered MeSH-H_2O) binding energies are surprisingly similar, corresponding to snow line locations where the disk midplane temperature is ~105 K. In both H_2O-dominated and more realistic H_2O:CO_2-dominated ices, 100% of the MeSH is entrapped, almost exclusively desorbing at the molecular volcano desorption peak, indicating that MeSH is retained at the water snow line if initially mixed with water ice during formation. Additionally, the presence of MeSH in an ice mixture enhances the entrapment of CO_2 and MeOH (up to 100%) until the onset of volcano desorption; without MeSH, both desorb at their respective pure desorption temperatures and also co-desorb with water. Compared to MeOH, MeSH binds less well to water, explaining why MeSH escapes during water ice crystallization rather than co-desorbing with water. These results show the larger relative size of MeSH compared to MeOH significantly impacts its ability to bind to water and its entrapment efficiency. Therefore, molecular size plays an important role in the adsorption and retention of S-bearing organics and, in turn, other volatiles in ices.

  • 4 authors
·
Apr 1

PDRs4All. XII. FUV-driven formation of hydrocarbon radicals and their relation with PAHs

We present subarcsecond-resolution ALMA mosaics of the Orion Bar PDR in [CI] 609 um, C2H (4-3), and C18O (3-2) emission lines, complemented by JWST images of H2 and aromatic infrared band (AIB) emission. The rim of the Bar shows very corrugated structures made of small-scale H2 dissociation fronts (DFs). The [CI] 609 um emission peaks very close (~0.002 pc) to the main H2-emitting DFs, suggesting the presence of gas density gradients. These DFs are also bright and remarkably similar in C2H emission, which traces 'hydrocarbon radical peaks' characterized by very high C2H abundances, reaching up to several x10^-7. The high abundance of C2H and of related hydrocarbon radicals, such as CH3, CH2, and CH, can be attributed to gas-phase reactions driven by elevated temperatures, the presence of C+ and C, and the reactivity of FUV-pumped H2. The hydrocarbon radical peaks roughly coincide with maxima of the 3.4/3.3 um AIB intensity ratio, a proxy for the aliphatic-to-aromatic content of PAHs. This implies that the conditions triggering the formation of simple hydrocarbons also favor the formation (and survival) of PAHs with aliphatic side groups, potentially via the contribution of bottom-up processes in which abundant hydrocarbon radicals react in situ with PAHs. Ahead of the DFs, in the atomic PDR zone (where [H]>>[H2]), the AIB emission is brightest, but small PAHs and carbonaceous grains undergo photo-processing due to the stronger FUV field. Our detection of trace amounts of C2H in this zone may result from the photoerosion of these species. This study provides a spatially resolved view of the chemical stratification of key carbon carriers in a PDR. Overall, both bottom-up and top-down processes appear to link simple hydrocarbon molecules with PAHs in molecular clouds; however, the exact chemical pathways and their relative contributions remain to be quantified.

  • 28 authors
·
Mar 5

WeatherQA: Can Multimodal Language Models Reason about Severe Weather?

Severe convective weather events, such as hail, tornadoes, and thunderstorms, often occur quickly yet cause significant damage, costing billions of dollars every year. This highlights the importance of forecasting severe weather threats hours in advance to better prepare meteorologists and residents in at-risk areas. Can modern large foundation models perform such forecasting? Existing weather benchmarks typically focus only on predicting time-series changes in certain weather parameters (e.g., temperature, moisture) with text-only features. In this work, we introduce WeatherQA, the first multimodal dataset designed for machines to reason about complex combinations of weather parameters (a.k.a., ingredients) and predict severe weather in real-world scenarios. The dataset includes over 8,000 (multi-images, text) pairs for diverse severe weather events. Each pair contains rich information crucial for forecasting -- the images describe the ingredients capturing environmental instability, surface observations, and radar reflectivity, and the text contains forecast analyses written by human experts. With WeatherQA, we evaluate state-of-the-art vision language models, including GPT4, Claude3.5, Gemini-1.5, and a fine-tuned Llama3-based VLM, by designing two challenging tasks: (1) multi-choice QA for predicting affected area and (2) classification of the development potential of severe convection. These tasks require deep understanding of domain knowledge (e.g., atmospheric dynamics) and complex reasoning over multimodal data (e.g., interactions between weather parameters). We show a substantial gap between the strongest VLM, GPT4o, and human reasoning. Our comprehensive case study with meteorologists further reveals the weaknesses of the models, suggesting that better training and data integration are necessary to bridge this gap. WeatherQA link: https://github.com/chengqianma/WeatherQA.

  • 6 authors
·
Jun 17, 2024

Evidence for Widespread Hydrogen Sequestration within the Moon's South Polar Cold Traps

The measured neutron flux from the Moons south polar region shows evidence of locally enhanced hydrogen concentrations, likely in the form of water ice, within most permanently shadowed regions (PSR), poleward of 77 deg S latitude. Results are consistent with the original findings of Watson et al, 1961, which found that the PSRs cryogenic surfaces create exclusive conditions for the sequestration of water ice, due to their extremely low sublimation rates. Widespread PSR hydrogenation is demonstrated in several studies by showing that the contrasting PSR area distribution is being instrumentally blurred. The PSRs expected hydrogen observations are correlated by their area fraction of the fixed 30 km diameter footprint area of the Collimated Sensor for Epithermal Neutrons (CSETN), which is part of the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO). The correlation indicates that the PSRs are similarly hydrogenated, with an expected concentration = 0.27 wt%, relative to that of the anhydrous reference terrain (lower bounds). Hydrogen concentrations are demonstrated to be correlated to maximum temperature distributions within the basins of Haworth, Shoemaker and Faustini PSRs. Cabeus-1 PSR shows an anomalously enhanced hydrogen concentration indicating a second process contributes to its hydrogen budget. Results are consistent with ongoing processes that introduce volatiles to the surface including outgassing, solar wind production with regolith silicates, and mixing from small scale meteor impacts and diurnal temperature variation. We validate the bandpass filter used to subtract CSETNs detection of uncollimated neutrons with profiles of several PSRs neutron suppression before and after processing. Keywords: Moon, Epithermal Neutron, Hydrogen, Water, Ice, Volatiles, LRO, LEND, Diviner, LOLA

  • 8 authors
·
Mar 7, 2023

CloudTracks: A Dataset for Localizing Ship Tracks in Satellite Images of Clouds

Clouds play a significant role in global temperature regulation through their effect on planetary albedo. Anthropogenic emissions of aerosols can alter the albedo of clouds, but the extent of this effect, and its consequent impact on temperature change, remains uncertain. Human-induced clouds caused by ship aerosol emissions, commonly referred to as ship tracks, provide visible manifestations of this effect distinct from adjacent cloud regions and therefore serve as a useful sandbox to study human-induced clouds. However, the lack of large-scale ship track data makes it difficult to deduce their general effects on cloud formation. Towards developing automated approaches to localize ship tracks at scale, we present CloudTracks, a dataset containing 3,560 satellite images labeled with more than 12,000 ship track instance annotations. We train semantic segmentation and instance segmentation model baselines on our dataset and find that our best model substantially outperforms previous state-of-the-art for ship track localization (61.29 vs. 48.65 IoU). We also find that the best instance segmentation model is able to identify the number of ship tracks in each image more accurately than the previous state-of-the-art (1.64 vs. 4.99 MAE). However, we identify cases where the best model struggles to accurately localize and count ship tracks, so we believe CloudTracks will stimulate novel machine learning approaches to better detect elongated and overlapping features in satellite images. We release our dataset openly at {zenodo.org/records/10042922}.

  • 8 authors
·
Jan 25, 2024

An Ensemble of Bayesian Neural Networks for Exoplanetary Atmospheric Retrieval

Machine learning is now used in many areas of astrophysics, from detecting exoplanets in Kepler transit signals to removing telescope systematics. Recent work demonstrated the potential of using machine learning algorithms for atmospheric retrieval by implementing a random forest to perform retrievals in seconds that are consistent with the traditional, computationally-expensive nested-sampling retrieval method. We expand upon their approach by presenting a new machine learning model, plan-net, based on an ensemble of Bayesian neural networks that yields more accurate inferences than the random forest for the same data set of synthetic transmission spectra. We demonstrate that an ensemble provides greater accuracy and more robust uncertainties than a single model. In addition to being the first to use Bayesian neural networks for atmospheric retrieval, we also introduce a new loss function for Bayesian neural networks that learns correlations between the model outputs. Importantly, we show that designing machine learning models to explicitly incorporate domain-specific knowledge both improves performance and provides additional insight by inferring the covariance of the retrieved atmospheric parameters. We apply plan-net to the Hubble Space Telescope Wide Field Camera 3 transmission spectrum for WASP-12b and retrieve an isothermal temperature and water abundance consistent with the literature. We highlight that our method is flexible and can be expanded to higher-resolution spectra and a larger number of atmospheric parameters.

  • 10 authors
·
May 25, 2019

Eulerian-Lagrangian particle-based model for diffusional growth for the better parameterization of ISM clouds: A road map for improving climate model through small-scale model using observations

The quantitative prediction of the intensity of rainfall events (light or heavy) has remained a challenge in Numerical Weather Prediction (NWP) models. For the first time the mean coefficient of diffusional growth rates are calculated using an Eulerian-Lagrangian particle-based small-scale model on in situ airborne measurement data of Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) during monsoon over Indian sub-continent. The results show that diffusional growth rates varies in the range of 0.00025 - 0.0015(cm/s). The generic problem of the overestimation of light rain in NWP models might be related with the choice of cm in the model. It is also shown from DNS experiment using Eulerian-Lagrangian particle-based small-scale model that the relative dispersion is constrained with average values in the range of ~ 0.2 - 0.37 (~ 0.1- 0.26) in less humid (more humid) conditions. This is in agreement with in situ airborne observation (dispersion ~ 0.36) and previous study over Indian sub-continent. The linear relationship between relative dispersion and cloud droplet number concentration (NC) is obtained from this study using CAIPEEX observation over Indian subcontinent. The dispersion based autoconversion-scheme for Indian region must be useful for the Indian summer monsoon precipitation calculation in the general circulation model. The present study also provide valuable guidance for the parameterization of effective radius, important for radiation scheme.

  • 4 authors
·
Mar 2, 2023

Water Enrichment from Pebble Drift in Disks with Gap-forming Planets

Volatiles like H_2O are present as ice in solids in the outer cold regions of protoplanetary disks and as vapor in the warm inner regions within the water snow line. Icy pebbles drifting inwards from the outer disk sublimate after crossing the snow line, enriching the inner disk with solid mass and water vapor. Meanwhile, proto-planets forming within the disk open gaps in the disk gas, creating traps against the inward drift of pebbles and in turn reducing water enrichment in the inner disk. Recent disk observations from millimeter interferometry and infrared spectroscopy have supported this broad picture by finding a correlation between the outer radial distribution of pebbles and the properties of inner water vapor spectra. In this work, we aim at further informing previous and future observations by building on previous models to explore pebble drift in disks with multiple gaps. We systematically explore multiple gap locations and their depths (equivalent to specific masses of planets forming within), and different particle sizes to study their impact on inner disk water enrichment. We find that the presence of close-in deep gaps carved by a Jupiter-mass planet is likely crucial for blocking icy pebble delivery into the inner disk, while planets with lower masses only provide leaky traps. We also find that disks with multiple gaps show lower vapor enrichment in the inner disk. Altogether, these model results support the idea that inner disk water delivery and planet formation are regulated by the mass and location of the most massive planets.

  • 3 authors
·
Dec 5, 2024

Water Snowline in Young Stellar Objects with Various Density Structures Using Radiative Transfer Models

Tracing the water snowline in low-mass young stellar objects (YSOs) is important because dust grain growth is promoted and the chemical composition varies at the water snowline, which influences planet formation and its properties. In protostellar envelopes, the water snowline can be estimated as a function of luminosity using a relation derived from radiative transfer models, and these predictions are consistent with observations. However, accurately estimating the water snowline in protoplanetary disks requires new relations that account for the disk structure. We present the relations between luminosity and water snowline using the dust continuum radiative transfer models with various density structures. We adopt two-dimensional density structures for an envelope-only model (Model E), an envelope+disk+cavity model (Model E+D), and a protoplanetary disk model (Model PPD). The relations between the water snowline, where T_dust = 100 K, and the total luminosity, ranging 0.1-1,000 solar luminosity, are well fitted by a power-law relation, R_snow=a * (L/L_solar)^p au. The factor a decreases with increasing disk density, while the power index p has values around 0.5 in all models. As the disk becomes denser, the water snowline forms at smaller radii even at the same luminosity, since dense dust hinders photon propagation. We also explore the effect of viscous heating on the water snowline. In Model PPD with viscous heating, the water snowline shifts outward by a few au up to 15 au, increasing the factor a and decreasing the power index p. In Model E+D with lower disk mass, the effect of viscous heating is negligible, indicating that the disk mass controls the effect. The discrepancy between our models and direct observations provides insights into the recent outburst event and the presence of a disk structure in low-mass YSOs.

  • 4 authors
·
Oct 16

Optical night sky brightness measurements from the stratosphere

This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three commissioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurements from the stratosphere with measurements from mountain-top ground-based observatories (taken at zenith on the darkest moonless night at high Galactic and high ecliptic latitudes), the stratospheric brightness levels were zodiacal light and diffuse Galactic light subtracted, and the airglow brightness was projected to zenith. The stratospheric brightness was measured around 5.5 hours, 3 hours, and 2 hours before the local sunrise time in 2016, 2018, and 2019 respectively. The B, V, R, and I brightness levels in 2016 were 2.7, 1.0, 1.1, and 0.6 mag arcsec^{-2} darker than the darkest ground-based measurements. The B, V, and R brightness levels in 2018 were 1.3, 1.0, and 1.3 mag arcsec^{-2} darker than the darkest ground-based measurements. The U and I brightness levels in 2019 were 0.1 mag arcsec^{-2} brighter than the darkest ground-based measurements, whereas the B and V brightness levels were 0.8 and 0.6 mag arcsec^{-2} darker than the darkest ground-based measurements. The lower sky brightness levels, stable photometry, and lower atmospheric absorption make stratospheric observations from a balloon-borne platform a unique tool for astronomy. We plan to continue this work in a future mid-latitude long duration balloon flight with SuperBIT.

  • 30 authors
·
Oct 10, 2020

The bulk metallicity of giant planets around M stars

The bulk-metallicity determination of giant exoplanets is essential to constrain their formation and evolution pathways and to compare them to the solar system. Previous studies inferred an inverse relation between the mass and bulk metallicity. However, the data almost exclusively contained planets that orbit FGK stars. The recent discoveries of giant exoplanets around M-dwarf stars present an opportunity to probe whether they follow a mass-metallicity trend different from that of their FGK counterparts. Using evolution models we characterised the interiors of giant exoplanets with reliable mass-radius measurements that orbit FGK and M-dwarf stars. We then inferred the mass-metallicity trends for both populations. We found that the bulk metallicity of giant planets around M stars is overall lower compared to those around FGK stars. This yielded mass-metallicity relations for the two populations with similar slopes but significantly different offsets. The lack of metal-rich giant planets around M dwarfs could explain the difference in the inferred offset and be a result of different formation conditions. However, there were only 20 successful bulk-metallicity retrievals for the giant planets around M dwarfs, which resulted in rather large uncertainties. Therefore, it is of great importance to continue detecting these planets with both transit and radial velocities. Additionally, the characterisation of the atmospheres of giant planets around M-stars can further help to constrain their interiors and to investigate the atmosp

  • 2 authors
·
Nov 25, 2024

WxC-Bench: A Novel Dataset for Weather and Climate Downstream Tasks

High-quality machine learning (ML)-ready datasets play a foundational role in developing new artificial intelligence (AI) models or fine-tuning existing models for scientific applications such as weather and climate analysis. Unfortunately, despite the growing development of new deep learning models for weather and climate, there is a scarcity of curated, pre-processed machine learning (ML)-ready datasets. Curating such high-quality datasets for developing new models is challenging particularly because the modality of the input data varies significantly for different downstream tasks addressing different atmospheric scales (spatial and temporal). Here we introduce WxC-Bench (Weather and Climate Bench), a multi-modal dataset designed to support the development of generalizable AI models for downstream use-cases in weather and climate research. WxC-Bench is designed as a dataset of datasets for developing ML-models for a complex weather and climate system, addressing selected downstream tasks as machine learning phenomenon. WxC-Bench encompasses several atmospheric processes from meso-beta (20 - 200 km) scale to synoptic scales (2500 km), such as aviation turbulence, hurricane intensity and track monitoring, weather analog search, gravity wave parameterization, and natural language report generation. We provide a comprehensive description of the dataset and also present a technical validation for baseline analysis. The dataset and code to prepare the ML-ready data have been made publicly available on Hugging Face -- https://huggingface.co/datasets/nasa-impact/WxC-Bench

  • 13 authors
·
Dec 3, 2024

Met^2Net: A Decoupled Two-Stage Spatio-Temporal Forecasting Model for Complex Meteorological Systems

The increasing frequency of extreme weather events due to global climate change urges accurate weather prediction. Recently, great advances have been made by the end-to-end methods, thanks to deep learning techniques, but they face limitations of representation inconsistency in multivariable integration and struggle to effectively capture the dependency between variables, which is required in complex weather systems. Treating different variables as distinct modalities and applying a two-stage training approach from multimodal models can partially alleviate this issue, but due to the inconformity in training tasks between the two stages, the results are often suboptimal. To address these challenges, we propose an implicit two-stage training method, configuring separate encoders and decoders for each variable. In detailed, in the first stage, the Translator is frozen while the Encoders and Decoders learn a shared latent space, in the second stage, the Encoders and Decoders are frozen, and the Translator captures inter-variable interactions for prediction. Besides, by introducing a self-attention mechanism for multivariable fusion in the latent space, the performance achieves further improvements. Empirically, extensive experiments show the state-of-the-art performance of our method. Specifically, it reduces the MSE for near-surface air temperature and relative humidity predictions by 28.82\% and 23.39\%, respectively. The source code is available at https://github.com/ShremG/Met2Net.

  • 4 authors
·
Jul 23 1

The first measurements of carbon isotopic ratios in post-RGB stars: SZ Mon and DF Cyg. E-iSpec: A spectral analysis tool to derive elemental abundances and isotopic ratios for evolved stars

Dusty post-red giant branch (post-RGB) stars are low- and intermediate-mass stars where the RGB evolution was prematurely terminated by a poorly understood binary interaction. These binary stars are considered to be low-luminosity analogues of post-asymptotic giant branch (post-AGB) binary stars. In this study, we investigated the chemical composition of two dusty post-RGB binary stars, SZ Mon and DF Cyg, using multi-wavelength spectroscopic data from HERMES/Mercator (optical) and the APOGEE survey (near-infrared). Owing to challenges posed by existing spectral analysis tools for the study of evolved stars with complex atmospheres, we developed E-iSpec: a dedicated spectral analysis tool for evolved stars, to consistently determine atmospheric parameters, elemental abundances, and carbon isotopic ratios. Our abundance analysis revealed that observed depletion patterns and estimated depletion efficiencies resemble those found in post-AGB binary stars. However, the onset of chemical depletion in post-RGB targets occurs at higher condensation temperatures (T_{rm turn-off, post-RGB}approx1400 K), than in most post-AGB stars (T_{rm turn-off, post-AGB}approx1100 K). Additionally, our study resulted in the first estimates of carbon isotopic ratios for post-RGB stars (^{12}C/^{13}C_{rm SZ Mon}=8pm4, ^{12}C/^{13}C_{rm DF Cyg}=12pm3). We found that the observationally derived CNO abundances and the carbon isotopic ratios of our post-RGB binary targets are in good agreement with theoretical predictions from the ATON single star evolutionary models involving first dredge-up and moderately-deep extra mixing. This agreement emphasises that in post-RGB binary targets, the observed CNO abundances reflect the chemical composition expected from single star nucleosynthesis (i.e., convective and non-convective mixing processes) occurring during the RGB phase before it is terminated.

  • 7 authors
·
Mar 14, 2024

WeatherEdit: Controllable Weather Editing with 4D Gaussian Field

In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit

  • 4 authors
·
May 26

Pre-perihelion Development of Interstellar Comet 3I/ATLAS

We describe pre-perihelion optical observations of interstellar comet 3I/ATLAS taken during July - September 2025 using the Nordic Optical Telescope. Fixed aperture photometry of the comet is well described by a power law function of heliocentric distance, rH, with the exponent (``index") n = 3.8+/-0.3 across the 4.6 au to 1.8 au distance range (phase function 0.04+/-0.02 magnitude/degree assumed). This indicates that the dust production rates vary in proportion to rH**(-1.8+/-0.3). An rH**(-2) variation is expected of a strongly volatile material, and consistent with independent spectroscopic observations showing that carbon dioxide is the primary driver of activity. The measured heliocentric index is unremarkable in the context of solar system comets, for which n is widely dispersed, and provides no basis on which to describe 3I as either dynamically old (thermally processed) or new (pristine). The morphology of the comet changes from a Sun-facing dust fan in the early 2025 July observations, to one dominated by an antisolar dust tail at later dates. We attribute the delayed emergence of the tail to the large size (effective radius 0.1 mm) and slow ejection (5 m/s) of the optically dominant dust particles, and their consequently sluggish response to solar radiation pressure. Small (micron-sized) particles may be present but not in numbers sufficient to dominate the scattering cross-section. Their relative depletion possibly reflects interparticle cohesion, which binds small particles more effectively than large ones. A similar preponderance of 0.1 mm grains was reported in 2I/Borisov. However, 2I differed from 3I in having a much smaller (asteroid-like) heliocentric index, n = 1.9+/-0.1. Dust production rates in 3I are 180 kg/s at 2 au, compared with 70 kg/s in 2I/Borisov at the same distance.

  • 2 authors
·
Oct 21

AtmosSci-Bench: Evaluating the Recent Advance of Large Language Model for Atmospheric Science

The rapid advancements in large language models (LLMs), particularly in their reasoning capabilities, hold transformative potential for addressing complex challenges and boosting scientific discovery in atmospheric science. However, leveraging LLMs effectively in this domain requires a robust and comprehensive evaluation benchmark. Toward this end, we present AtmosSci-Bench, a novel benchmark designed to systematically assess LLM performance across five core categories of atmospheric science problems: hydrology, atmospheric dynamics, atmospheric physics, geophysics, and physical oceanography. AtmosSci-Bench features a dual-format design comprising both multiple-choice questions (MCQs) and open-ended questions (OEQs), enabling scalable automated evaluation alongside deeper analysis of conceptual understanding. We employ a template-based MCQ generation framework to create diverse, graduate-level problems with symbolic perturbation, while OEQs are used to probe open-ended reasoning. We conduct a comprehensive evaluation of representative LLMs, categorized into four groups: instruction-tuned models, advanced reasoning models, math-augmented models, and domain-specific climate models. Our analysis provides some interesting insights into the reasoning and problem-solving capabilities of LLMs in atmospheric science. We believe AtmosSci-Bench can serve as a critical step toward advancing LLM applications in climate services by offering a standard and rigorous evaluation framework. Our source code is available at https://github.com/Relaxed-System-Lab/AtmosSci-Bench.

Multimodal Atmospheric Super-Resolution With Deep Generative Models

Score-based diffusion modeling is a generative machine learning algorithm that can be used to sample from complex distributions. They achieve this by learning a score function, i.e., the gradient of the log-probability density of the data, and reversing a noising process using the same. Once trained, score-based diffusion models not only generate new samples but also enable zero-shot conditioning of the generated samples on observed data. This promises a novel paradigm for data and model fusion, wherein the implicitly learned distributions of pretrained score-based diffusion models can be updated given the availability of online data in a Bayesian formulation. In this article, we apply such a concept to the super-resolution of a high-dimensional dynamical system, given the real-time availability of low-resolution and experimentally observed sparse sensor measurements from multimodal data. Additional analysis on how score-based sampling can be used for uncertainty estimates is also provided. Our experiments are performed for a super-resolution task that generates the ERA5 atmospheric dataset given sparse observations from a coarse-grained representation of the same and/or from unstructured experimental observations of the IGRA radiosonde dataset. We demonstrate accurate recovery of the high dimensional state given multiple sources of low-fidelity measurements. We also discover that the generative model can balance the influence of multiple dataset modalities during spatiotemporal reconstructions.

  • 6 authors
·
Jun 28 1

Real-Time Long Horizon Air Quality Forecasting via Group-Relative Policy Optimization

Accurate long horizon forecasting of particulate matter (PM) concentration fields is essential for operational public health decisions. However, achieving reliable forecasts remains challenging in regions with complex terrain and strong atmospheric dynamics such as East Asia. While foundation models such as Aurora offer global generality, they often miss region-specific dynamics and rely on non-real-time inputs, limiting their practical utility for localized warning systems. To address this gap, we construct and release the real-world observations and high-resolution CMAQ-OBS dataset for East Asia, reducing regional error by 59.5% and enabling real-time 48-120 hour forecasts critical for public health alerts. However, standard point-wise objectives cannot reflect asymmetric operational costs, where false alarms deteriorate public trust while missed severe events endanger populations. This cost mismatch causes SFT models to over-predict and yield high False Alarm Rates. We introduce Group-Relative Policy Optimization (GRPO) with class-wise rewards and curriculum rollout to align predictions with operational priorities. Experimental results demonstrate that our framework significantly improves the reliability of the forecast. Compared to the SFT-only baseline, our model reduces the False Alarm Rate by 47.3% while achieving a competitive F1-score, proving its effectiveness for practical, real-world air quality forecasting systems on long lead time scenarios.

  • 10 authors
·
Nov 27

The interstellar flux gap: From dust to kilometer-scale objects

Context. Three kilometer-sized interstellar objects (ISOs) have been detected transiting the Solar System, and spacecraft have directly measured micrometer-scale interstellar dust (ISD). Yet no intermediate-size interstellar meteoroids have been identified in current meteor surveys. Aims. We test whether a power-law flux extrapolation connecting spacecraft ISD and kilometer-scale ISOs is consistent with meteor surveys, and we quantify the expected interstellar impacting flux based on various observational reports. Methods. We compiled differential fluxes and limits from spacecraft ISD, radar and optical meteor surveys, and theoretical estimates. We evaluated the power-law size-frequency fits, computed the 3I-like flux, and compared measured fluxes to predictions. Results. The spacecraft-measured dust flux exceeds extrapolations constrained by meteor surveys and kilometer-scale ISOs by sim2-7 orders of magnitude. An r^{-3.0} fit combining spacecraft ISD detections with kilometer-scale ISOs overpredicts the number of meteors with hyperbolic orbits, whereas slopes of r^{-2.7}-r^{-2.3} (derived from radar and optical meteor upper limits, respectively) instead yield interplanetary-to-interstellar flux ratios of 10^{3}-10^{6}. Conclusions. A simple power-law from ISD to ISOs is inconsistent with meteor survey constraints and yields unrealistic predictions for interstellar meteoroids. The data reveal a gap between submicron dust entrained in the Local Interstellar Cloud (LIC) and macroscopic bodies ejected from planetary systems. This gap may reflect distinct origins and destruction-transport processes rather than a continuous size-frequency distribution. This would imply either the dominance of a small-particle LIC component or the need to reassess spacecraft dust fluxes.

  • 2 authors
·
Nov 3

Hydrodynamic Predictions for the Next Outburst of T Coronae Borealis: It will be the Brightest Classical or Recurrent Nova Ever Observed in X-rays

T Coronae Borealis (TCrB) is a recurrent nova (RN) with recorded outbursts in 1866, and 1946 and possible outbursts in 1217 and 1787. It is predicted to explode again in 2025 or 2026 based on multiple observational studies. The system consists of a massive (M_{wd} gtrsim 1.35 M_odot) white dwarf (WD) and a red giant (M3-M4 III). We have performed 1-D hydrodynamic simulations with NOVA to predict the behavior of the next outburst. These simulations consist of a range of mass accretion rates onto sim1.35 M_odot WDs, designed to bound the conditions necessary to achieve ignition of an explosion after an approx80 year inter-outburst period. We have used both carbon-oxygen and oxygen-neon initial compositions, in order to include the possible ejecta abundances to be measured in the observations of the next outburst. As the WD in the TCrB system is observed to be massive, theoretical predictions reported here imply that the WD is growing in mass as a consequence of the TNR. Therefore, the secular evolution of the WD may allow it to approach the Chandrasekhar limit and either explode as a Type Ia supernova or undergo accretion induced collapse, depending on its underlying composition. We have followed the evolution of just the WD, after removing the ejected matter from the surface layers. Our intent is to illuminate the mystery of the unique, second, maximum in the two well observed outbursts and we have found conditions that bracket the predictions.

  • 14 authors
·
Feb 15

The impact of stellar winds and tidal locking effects on the habitability of Earth-like exoplanets around M dwarf stars

We present an assessment of the effects of stellar wind magnetic and mechanical components on the habitability of Earth-like exoplanets orbiting the inner and outer radii of the habitable zone (HZ) of M dwarfs. We consider stars with masses in the range of 0.09 - 0.75 M_odot and planets with a surface dipolar magnetic field of 0.5 G. We estimate the size of the magnetospheres of such exoplanets using the pressure balance equation including the contribution of magnetic and ram pressures from stellar winds. We explore different scenarios, including fast and slow stellar winds, to assess the relevance of kinetic contribution. Furthermore, the effect of tidal locking and potential deviations from the Parker spiral, typically used to describe the interplanetary magnetic field, are analyzed. We show that for low mass stars (M < 0.15 M_odot), the ram pressure exerted by stellar winds affects the size of the magnetosphere more than the stellar wind magnetic pressure. Interestingly, when the ram pressure is not much stronger than the magnetic pressure, typically for higher mass stars, the inclusion of ram pressure can be beneficial to the magnetosphere due to the magnetopause currents. A magnetosphere with the size of that of modern Earth is difficult to achieve with the current assumptions. However, an early Earth magnetosphere is achieved by roughly half of our hypothetical planets orbiting the outer radius of the HZ in most of the considered cases. We find that deviations from the Parker spiral can affect the results significantly, reducing the magnetosphere by 56% in extreme cases. Most of the hypothetical planets are most likely (or might be) tidally locked, with the notable exception of those orbiting the outer HZ of GJ 846 and V1005 Ori.

  • 3 authors
·
Oct 23

Huge Ensembles Part I: Design of Ensemble Weather Forecasts using Spherical Fourier Neural Operators

Studying low-likelihood high-impact extreme weather events in a warming world is a significant and challenging task for current ensemble forecasting systems. While these systems presently use up to 100 members, larger ensembles could enrich the sampling of internal variability. They may capture the long tails associated with climate hazards better than traditional ensemble sizes. Due to computational constraints, it is infeasible to generate huge ensembles (comprised of 1,000-10,000 members) with traditional, physics-based numerical models. In this two-part paper, we replace traditional numerical simulations with machine learning (ML) to generate hindcasts of huge ensembles. In Part I, we construct an ensemble weather forecasting system based on Spherical Fourier Neural Operators (SFNO), and we discuss important design decisions for constructing such an ensemble. The ensemble represents model uncertainty through perturbed-parameter techniques, and it represents initial condition uncertainty through bred vectors, which sample the fastest growing modes of the forecast. Using the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) as a baseline, we develop an evaluation pipeline composed of mean, spectral, and extreme diagnostics. Using large-scale, distributed SFNOs with 1.1 billion learned parameters, we achieve calibrated probabilistic forecasts. As the trajectories of the individual members diverge, the ML ensemble mean spectra degrade with lead time, consistent with physical expectations. However, the individual ensemble members' spectra stay constant with lead time. Therefore, these members simulate realistic weather states, and the ML ensemble thus passes a crucial spectral test in the literature. The IFS and ML ensembles have similar Extreme Forecast Indices, and we show that the ML extreme weather forecasts are reliable and discriminating.

  • 16 authors
·
Aug 6, 2024

XRISM Observations of Cassiopeia A: Overview, Atomic Data, and Spectral Models

Cassiopeia A (Cas A) is the youngest known core-collapse supernova remnant (SNR) in the Galaxy and is perhaps the best-studied SNR in X-rays. Cas A has a line-rich spectrum dominated by thermal emission and given its high flux, it is an appealing target for high-resolution X-ray spectroscopy. Cas A was observed at two different locations during the Performance Verification phase of the XRISM mission, one location in the southeastern part (SE) of the remnant and one in the northwestern part (NW). This paper serves as an overview of these observations and discusses some of the issues relevant for the analysis of the data. We present maps of the so-called ``spatial-spectral mixing'' effect due to the fact that the XRISM point-spread function is larger than a pixel in the Resolve calorimeter array. We analyze spectra from two bright, on-axis regions such that the effects of spatial-spectral mixing are minimized. We find that it is critical to include redshifts/blueshifts and broadening of the emission lines in the two thermal components to achieve a reasonable fit given the high spectral resolution of the Resolve calorimeter. We fit the spectra with two versions of the AtomDB atomic database (3.0.9 and 3.1.0) and two versions of the SPEX (3.08.00 and 3.08.01*) spectral fitting software. Overall we find good agreement between AtomDB 3.1.0 and SPEX 3.08.01* for the spectral models considered in this paper. The most significant difference we found between AtomDB 3.0.9 and 3.1.0 and between AtomDB 3.1.0 and SPEX 3.08.01* is the Ni abundance, with the new atomic data favoring a considerably lower (up to a factor of 3) Ni abundance. Both regions exhibit significantly enhanced abundances compared to Solar values indicating that supernova ejecta dominate the emission in these regions. We find that the abundance ratios of Ti/Fe, Mn/Fe, \& Ni/Fe are significantly lower in the NW than the SE.

  • 17 authors
·
Aug 1

JWST observations of photodissociation regions III. Dust modelling at the illuminated edge of the Horsehead PDR

Carbonaceous nano-grains are a significant component of interstellar dust and dominate the mid-infrared emission of photodissociation regions (PDRs). We study the evolution of nano-grains across the illuminated edge of the Horsehead PDR, especially their abundance and size properties. This work is part of the Physics and Chemistry of PDR Fronts program studying dust and gas in PDRs with JWST. We use NIRCam+MIRI photometric bands and NIRSpec+MRS spectroscopy to map the illuminated edge. We model dust emission using the THEMIS dust model with the SOC radiative transfer code. Detailed modeling of high angular resolution JWST data allows us to obtain constraints on nano-grain properties. We find that diffuse ISM dust cannot account for the observed data, requiring evolved grains. A sharp density increase is observed at the illuminated edge, consistent with ALMA observations revealing a sharp transition between molecular and ionized gas. Although the PDR length could not be directly determined, we estimate an upper limit of approximately 0.015 pc. This implies a lower limit on small grain abundance (greater than 0.003), showing small grains are not depleted at the Horsehead edge, unlike in the Orion Bar. Our findings indicate a high-density environment and less steep size distribution for nano-grains at the illuminated edge versus the diffuse ISM. This implies nano-grain destruction mechanisms might be less efficient in the Horsehead's moderate-UV field than in more intense PDRs. These results support a model where nano-grain population recovery is slower in moderate-UV environments, leading to a unique dust size distribution at the edge of the Horsehead Nebula.

  • 22 authors
·
Oct 28

Unveiling two deeply embedded young protostars in the S68N Class 0 protostellar core with JWST/NIRSpec

The near-infrared (NIR) emission of the youngest protostars still needs to be characterized to better understand the evolution of their accretion and ejection activity. We analyze James Webb Space Telescope NIRSpec 1.7 -- 5.3 mum observations of two deeply embedded sources in the S68N protostellar core in Serpens. The North Central (NC) source exhibits a highly obscured spectrum (A_K ~ 4.8 mag) that is modeled with a pre-main-sequence photosphere and a hot disk component. The photospheric parameters are consistent with a young, low-mass photosphere, as suggested by the low surface gravity, log g of 1.95 pm 0.15 cm s^{-2}. The hot disk suggests that accretion onto the central protostellar embryo is ongoing, although prototypical accretion-tracing emission lines HI are not detected. The South Central (SC) source, which is even more embedded (A_K ~ 8 mag; no continuum is detected shortward of 3.6 mum) appears to be driving the large-scale S68N protostellar outflow, and launches a collimated hot molecular jet detected in \Ht and CO ro-vibrational lines. Shock modeling of the \Ht (ro)vibrational lines establishes that fast C-type shocks (geq 30 km s^{-1}), with high pre-shock density (geq 10^7 cm^{-3}), and strong magnetic field (b ~ 3--10, where B = b,times,textrm{n_{H} (cm^{-3})},muG) best match the data. The bright CO fundamental line forest suggests energetic excitation, with the contribution of non-LTE effects, ie irradiation pumping. Detected OH and CH^{+} ro-vibrational lines support this hypothesis. These two Class 0 protostars seem to be in very young evolutionary stages and still have to acquire the bulk of their final stellar masses. These results demonstrate that JWST enables unprecedented diagnostics of these first stages of the protostellar evolutionary phase.

  • 14 authors
·
Oct 14, 2024

Coronal Abundance Fractionation Linked to Chromospheric Transverse MHD Waves in a Solar Active Region Observed with FISS/GST and EIS/Hinode

Elemental abundances in the solar corona differ from those in the photosphere, with low first ionization potential (FIP) elements being enhanced, a phenomenon known as the FIP effect. This enhancement is attributed to ponderomotive forces linked to magnetohydrodynamic (MHD) waves, particularly incompressible transverse waves. Our study investigates the relationship between coronal abundance fractionation and chromospheric transverse MHD waves by examining the spatial correlation between FIP fractionation and these waves and by analyzing their properties to test the ponderomotive force model. We used H alpha data from the Fast Imaging Solar Spectrograph at the Goode Solar Telescope to detect chromospheric transverse MHD waves and Si{X} (low FIP) and S{X} (high FIP) spectra from Hinode EUV Imaging Spectrometer to determine relative abundances in an active region. Extrapolated linear force free magnetic fields from Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetograms further linked the observed chromospheric waves with coronal composition. Approximately 400 wave packets were identified and characterized by their period, velocity amplitude, propagation speed, and direction. These incompressible or weakly compressible waves were mainly observed near loop footpoints in the sunspot penumbra and superpenumbral fibrils. Regions of high FIP fractionation coincided with closed magnetic fields where these waves were present, and low-frequency, downward-propagating waves comprised about 43/% of the total. Our results demonstrate a strong correlation between coronal abundance fractionation and chromospheric transverse MHD waves, supporting the view that the FIP effect is driven by the ponderomotive force from these waves.

  • 8 authors
·
Feb 26

ClimaX: A foundation model for weather and climate

Most state-of-the-art approaches for weather and climate modeling are based on physics-informed numerical models of the atmosphere. These approaches aim to model the non-linear dynamics and complex interactions between multiple variables, which are challenging to approximate. Additionally, many such numerical models are computationally intensive, especially when modeling the atmospheric phenomenon at a fine-grained spatial and temporal resolution. Recent data-driven approaches based on machine learning instead aim to directly solve a downstream forecasting or projection task by learning a data-driven functional mapping using deep neural networks. However, these networks are trained using curated and homogeneous climate datasets for specific spatiotemporal tasks, and thus lack the generality of numerical models. We develop and demonstrate ClimaX, a flexible and generalizable deep learning model for weather and climate science that can be trained using heterogeneous datasets spanning different variables, spatio-temporal coverage, and physical groundings. ClimaX extends the Transformer architecture with novel encoding and aggregation blocks that allow effective use of available compute while maintaining general utility. ClimaX is pre-trained with a self-supervised learning objective on climate datasets derived from CMIP6. The pre-trained ClimaX can then be fine-tuned to address a breadth of climate and weather tasks, including those that involve atmospheric variables and spatio-temporal scales unseen during pretraining. Compared to existing data-driven baselines, we show that this generality in ClimaX results in superior performance on benchmarks for weather forecasting and climate projections, even when pretrained at lower resolutions and compute budgets.

  • 5 authors
·
Jan 24, 2023

ALMA observations of massive clouds in the central molecular zone: slim filaments tracing parsec-scale shocks

The central molecular zone (CMZ) of our Galaxy exhibits widespread emission from SiO and various complex organic molecules (COMs), yet the exact origin of such emission is uncertain. Here we report the discovery of a unique class of long (>0.5 pc) and narrow (<0.03 pc) filaments in the emission of SiO 5-4 and eight additional molecular lines, including several COMs, in our ALMA 1.3 mm spectral line observations toward two massive molecular clouds in the CMZ, which we name as slim filaments. However, these filaments are not detected in the 1.3 mm continuum at the 5sigma level. Their line-of-sight velocities are coherent and inconsistent with being outflows. The column densities and relative abundances of the detected molecules are statistically similar to those in protostellar outflows but different from those in dense cores within the same clouds. Turbulent pressure in these filaments dominates over self gravity and leads to hydrostatic inequilibrium, indicating that they are a different class of objects than the dense gas filaments in dynamical equilibrium ubiquitously found in nearby molecular clouds. We argue that these newly detected slim filaments are associated with parsec-scale shocks, likely arising from dynamic interactions between shock waves and molecular clouds. The dissipation of the slim filaments may replenish SiO and COMs in the interstellar medium and lead to their widespread emission in the CMZ.

  • 25 authors
·
Feb 6

Vision-Language Models Meet Meteorology: Developing Models for Extreme Weather Events Detection with Heatmaps

Real-time detection and prediction of extreme weather protect human lives and infrastructure. Traditional methods rely on numerical threshold setting and manual interpretation of weather heatmaps with Geographic Information Systems (GIS), which can be slow and error-prone. Our research redefines Extreme Weather Events Detection (EWED) by framing it as a Visual Question Answering (VQA) problem, thereby introducing a more precise and automated solution. Leveraging Vision-Language Models (VLM) to simultaneously process visual and textual data, we offer an effective aid to enhance the analysis process of weather heatmaps. Our initial assessment of general-purpose VLMs (e.g., GPT-4-Vision) on EWED revealed poor performance, characterized by low accuracy and frequent hallucinations due to inadequate color differentiation and insufficient meteorological knowledge. To address these challenges, we introduce ClimateIQA, the first meteorological VQA dataset, which includes 8,760 wind gust heatmaps and 254,040 question-answer pairs covering four question types, both generated from the latest climate reanalysis data. We also propose Sparse Position and Outline Tracking (SPOT), an innovative technique that leverages OpenCV and K-Means clustering to capture and depict color contours in heatmaps, providing ClimateIQA with more accurate color spatial location information. Finally, we present Climate-Zoo, the first meteorological VLM collection, which adapts VLMs to meteorological applications using the ClimateIQA dataset. Experiment results demonstrate that models from Climate-Zoo substantially outperform state-of-the-art general VLMs, achieving an accuracy increase from 0% to over 90% in EWED verification. The datasets and models in this study are publicly available for future climate science research: https://github.com/AlexJJJChen/Climate-Zoo.

  • 9 authors
·
Jun 14, 2024

Digitization of Weather Records of Seungjeongwon Ilgi: A Historical Weather Dynamics Dataset of the Korean Peninsula in 1623-1910

Historical weather records from Europe indicate that the Earth experienced substantial climate variability, which caused, for instance, the Little Ice Age and the global crisis in the period between the 14th and 19th centuries. However, it is still unclear how global this climate variability was because of the scarce meteorological data availability in other regions including East Asia, especially around the 17th century. In this context, Seungjeongwon Ilgi, a daily record of the Royal Secretariat of the Joseon Dynasty of Korea, is a precious source of historical meteorological records for the Korean Peninsula, as it covers 288 years of weather observations made during 1623-1910. We used the digital database of Seungjeongwon Ilgi to construct a machine-readable weather condition dataset. To this end, we extracted valid weather information from the original weather description text and compiled them into predefined weather categories. Additionally, we attempted to improve the usability of the dataset by converting the reported dates in the traditional calendar system to those in the Gregorian calendar. Finally, we outlined the promising implications of this dataset for meteorological and climatological studies, while describing the limitations of the dataset. Overall, future studies focusing on the climate and weather of the past could use this meteorological database for investigating long-term climate variability. Our datasets are publicly available at 10.5281/zenodo.8142701.

  • 5 authors
·
Oct 4, 2023

Formation of supermassive stars and dense star clusters in metal-poor clouds exposed to strong FUV radiation

The direct collapse scenario, which predicts the formation of supermassive stars (SMSs) as precursors to supermassive black holes (SMBHs), has been explored primarily under the assumption of metal-free conditions. However, environments exposed to strong far-ultraviolet (FUV) radiation, which is another requirement for the direct collapse, are often chemically enriched to varying degrees. In this study, we perform radiation hydrodynamic simulations of star-cluster formation in clouds with finite metallicities, Z=10^{-6} to 10^{-2} Z_{odot}, incorporating detailed thermal and chemical processes and radiative feedback from forming stars. Extending the simulations to approximately two million years, we demonstrate that SMSs with masses exceeding 10^4~M_odot can form even in metal-enriched clouds with Z lesssim 10^{-3} Z_{odot}. The accretion process in these cases, driven by "super-competitive accretion," preferentially channels gas into central massive stars in spite of small (sub-pc) scale fragmentation. At Z simeq 10^{-2} Z_{odot}, however, enhanced cooling leads to intense fragmentation on larger scales, resulting in the formation of dense star clusters dominated by very massive stars with 10^3 M_{odot} rather than SMSs. These clusters resemble young massive or globular clusters observed in the distant and local universe, exhibiting compact morphologies and high stellar surface densities. Our findings suggest that SMS formation is viable below a metallicity threshold of approximately 10^{-3} Z_{odot}, significantly increasing the number density of massive seed black holes to levels sufficient to account for the ubiquitous SMBHs observed in the local universe. Moreover, above this metallicity, this scenario naturally explains the transition from SMS formation to dense stellar cluster formation.

  • 2 authors
·
Dec 19, 2024

The ALPINE-CRISTAL-JWST Survey: The Fast Metal Enrichment of Massive Galaxies at z~5

We present the stellar mass-metallicity relation (MZR) and mass-metallicity-star formation relation ("fundamental metallicity relation"; FMR) of 18 massive (log(M/M_odot) = 9.5-11) main-sequence galaxies at z~5 from the ALPINE-CRISTAL-JWST sample. This sample complements recent studies by JWST at up to two orders of magnitude lower stellar masses. The metallicities are derived using strong optical lines, and verified by temperature-based oxygen abundance measurements for five galaxies for which faint auroral lines are detected. We find little evolution at the massive end of the MZR between z~5 and cosmic noon at z~2, suggesting a fast metal enrichment at early times. The FMR at z=5 exhibits a 5x larger scatter (preferentially to lower metallicities) compared the local FMR relation. This scatter can be explained by a bursty star formation and the direct build-up of metals in early galaxies as well as differences in age and outflow efficiencies. Capitalizing on all available samples, we find that the observed MZR and FMR over three orders of stellar mass is generally in good agreement with results from cosmological simulation, although some underestimate the metal enrichment at low stellar masses. This may be due to too efficient metal-rich outflows. We show that the ALPINE-CRISTAL-JWST galaxies likely joined the current FMR at z~10 and will evolve into massive (log(M/M_odot)~11.4) galaxies with super-solar metallicities by z=0.

  • 56 authors
·
Oct 17

ACE2-SOM: Coupling to a slab ocean and learning the sensitivity of climate to changes in CO_2

While autoregressive machine-learning-based emulators have been trained to produce stable and accurate rollouts in the climate of the present-day and recent past, none so far have been trained to emulate the sensitivity of climate to substantial changes in CO_2 or other greenhouse gases. As an initial step we couple the Ai2 Climate Emulator version 2 to a slab ocean model (hereafter ACE2-SOM) and train it on output from a collection of equilibrium-climate physics-based reference simulations with varying levels of CO_2. We test it in equilibrium and non-equilibrium climate scenarios with CO_2 concentrations seen and unseen in training. ACE2-SOM performs well in equilibrium-climate inference with both in-sample and out-of-sample CO_2 concentrations, accurately reproducing the emergent time-mean spatial patterns of surface temperature and precipitation change with CO_2 doubling, tripling, or quadrupling. In addition, the vertical profile of atmospheric warming and change in extreme precipitation rates with increased CO_2 closely agree with the reference model. Non-equilibrium-climate inference is more challenging. With CO_2 increasing gradually at a rate of 2% year^{-1}, ACE2-SOM can accurately emulate the global annual mean trends of surface and lower-to-middle atmosphere fields but produces unphysical jumps in stratospheric fields. With an abrupt quadrupling of CO_2, ML-controlled fields transition unrealistically quickly to the 4xCO_2 regime. In doing so they violate global energy conservation and exhibit unphysical sensitivities of and surface and top of atmosphere radiative fluxes to instantaneous changes in CO_2. Future emulator development needed to address these issues should improve its generalizability to diverse climate change scenarios.

  • 9 authors
·
Dec 5, 2024

Deep Learning and Foundation Models for Weather Prediction: A Survey

Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.

  • 13 authors
·
Jan 12

MMCOMPOSITION: Revisiting the Compositionality of Pre-trained Vision-Language Models

The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal understanding, enabling more sophisticated and accurate integration of visual and textual information across various tasks, including image and video captioning, visual question answering, and cross-modal retrieval. Despite VLMs' superior capabilities, researchers lack a comprehensive understanding of their compositionality -- the ability to understand and produce novel combinations of known visual and textual components. Prior benchmarks provide only a relatively rough compositionality evaluation from the perspectives of objects, relations, and attributes while neglecting deeper reasoning about object interactions, counting, and complex compositions. However, compositionality is a critical ability that facilitates coherent reasoning and understanding across modalities for VLMs. To address this limitation, we propose MMCOMPOSITION, a novel human-annotated benchmark for comprehensively and accurately evaluating VLMs' compositionality. Our proposed benchmark serves as a complement to these earlier works. With MMCOMPOSITION, we can quantify and explore the compositionality of the mainstream VLMs. Surprisingly, we find GPT-4o's compositionality inferior to the best open-source model, and we analyze the underlying reasons. Our experimental analysis reveals the limitations of VLMs in fine-grained compositional perception and reasoning, and points to areas for improvement in VLM design and training. Resources available at: https://hanghuacs.github.io/MMComposition/

  • 8 authors
·
Oct 13, 2024 2

Compositional Scene Representation Learning via Reconstruction: A Survey

Visual scenes are composed of visual concepts and have the property of combinatorial explosion. An important reason for humans to efficiently learn from diverse visual scenes is the ability of compositional perception, and it is desirable for artificial intelligence to have similar abilities. Compositional scene representation learning is a task that enables such abilities. In recent years, various methods have been proposed to apply deep neural networks, which have been proven to be advantageous in representation learning, to learn compositional scene representations via reconstruction, advancing this research direction into the deep learning era. Learning via reconstruction is advantageous because it may utilize massive unlabeled data and avoid costly and laborious data annotation. In this survey, we first outline the current progress on reconstruction-based compositional scene representation learning with deep neural networks, including development history and categorizations of existing methods from the perspectives of the modeling of visual scenes and the inference of scene representations; then provide benchmarks, including an open source toolbox to reproduce the benchmark experiments, of representative methods that consider the most extensively studied problem setting and form the foundation for other methods; and finally discuss the limitations of existing methods and future directions of this research topic.

  • 4 authors
·
Feb 14, 2022

The Impact of Stellar Flares on the Atmospheric Escape of Exoplanets orbiting M stars I: Insights from the AU Mic System

The X-rays and Extreme Ultraviolet (XUV) emission from M stars can drive the atmospheric escape on planets orbiting them. M stars are also known for their frequent emission of stellar flares, which will increase the high-energy flux received by their orbiting planets. To understand how stellar flares impact the primordial atmospheres of planets orbiting young M stars, we use UV spectroscopic data of flares from the Habitable Zones and M dwarf Activity across Time (HAZMAT) and Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) programs as a proxy to the XUV flare emission. Using the software package VPLanet, we simulate the young AU Mic planetary system composed of two Neptune-sized and one Earth-sized planet orbiting a 23-Myr-old M1 star. Our findings show that the Earth-sized planet AU Mic d should be in the process of losing completely its atmosphere in the next couple million years, solely due to the quiescent emission, with flares not significantly contributing to its atmospheric escape due to the small size of AU mic d and its close-in distance from the star. However, our results indicate that flares would play a crucial role for such planets further away, in the habitable zone (i.e. 0.2935 AU) of AU Mic-like stars during the post-saturation phase, accelerating the total atmospheric loss process by a few billion years. For planets between 0.365 AU and the HZ outer edge, the additional XUV from flares is necessary to deplete primordial atmospheres fully since the quiescent emission alone is insufficient.

  • 4 authors
·
Mar 17

Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves

Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.

  • 2 authors
·
Dec 9, 2024

Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware

Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.

  • 3 authors
·
Jul 2

Huge Ensembles Part II: Properties of a Huge Ensemble of Hindcasts Generated with Spherical Fourier Neural Operators

In Part I, we created an ensemble based on Spherical Fourier Neural Operators. As initial condition perturbations, we used bred vectors, and as model perturbations, we used multiple checkpoints trained independently from scratch. Based on diagnostics that assess the ensemble's physical fidelity, our ensemble has comparable performance to operational weather forecasting systems. However, it requires orders of magnitude fewer computational resources. Here in Part II, we generate a huge ensemble (HENS), with 7,424 members initialized each day of summer 2023. We enumerate the technical requirements for running huge ensembles at this scale. HENS precisely samples the tails of the forecast distribution and presents a detailed sampling of internal variability. HENS has two primary applications: (1) as a large dataset with which to study the statistics and drivers of extreme weather and (2) as a weather forecasting system. For extreme climate statistics, HENS samples events 4sigma away from the ensemble mean. At each grid cell, HENS increases the skill of the most accurate ensemble member and enhances coverage of possible future trajectories. As a weather forecasting model, HENS issues extreme weather forecasts with better uncertainty quantification. It also reduces the probability of outlier events, in which the verification value lies outside the ensemble forecast distribution.

  • 15 authors
·
Aug 2, 2024

SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence

Multimodal Large Language Models (MLLMs) have achieved remarkable progress in various multimodal tasks. To pursue higher intelligence in space, MLLMs require integrating multiple atomic spatial capabilities to handle complex and dynamic tasks. However, existing benchmarks struggle to comprehensively evaluate the spatial intelligence of common MLLMs from the atomic level to the compositional level. To fill this gap, we present SpaCE-10, a comprehensive benchmark for compositional spatial evaluations. In SpaCE-10, we define 10 atomic spatial capabilities, which are combined to form 8 compositional capabilities. Based on these definitions, we propose a novel hierarchical annotation pipeline to generate high-quality and diverse question-answer (QA) pairs. With over 150+ hours of human expert effort, we obtain over 5k QA pairs for 811 real indoor scenes in SpaCE-10, which covers various evaluation settings like point cloud input and multi-choice QA. We conduct an extensive evaluation of common MLLMs on SpaCE-10 and find that even the most advanced MLLM still lags behind humans by large margins. Through our careful study, we also draw several significant findings that benefit the MLLM community. For example, we reveal that the shortcoming of counting capability greatly limits the compositional spatial capabilities of existing MLLMs. The evaluation code and benchmark datasets are available at https://github.com/Cuzyoung/SpaCE-10.

  • 9 authors
·
Jun 9

Using Explainable AI and Transfer Learning to understand and predict the maintenance of Atlantic blocking with limited observational data

Blocking events are an important cause of extreme weather, especially long-lasting blocking events that trap weather systems in place. The duration of blocking events is, however, underestimated in climate models. Explainable Artificial Intelligence are a class of data analysis methods that can help identify physical causes of prolonged blocking events and diagnose model deficiencies. We demonstrate this approach on an idealized quasigeostrophic model developed by Marshall and Molteni (1993). We train a convolutional neural network (CNN), and subsequently, build a sparse predictive model for the persistence of Atlantic blocking, conditioned on an initial high-pressure anomaly. Shapley Additive ExPlanation (SHAP) analysis reveals that high-pressure anomalies in the American Southeast and North Atlantic, separated by a trough over Atlantic Canada, contribute significantly to prediction of sustained blocking events in the Atlantic region. This agrees with previous work that identified precursors in the same regions via wave train analysis. When we apply the same CNN to blockings in the ERA5 atmospheric reanalysis, there is insufficient data to accurately predict persistent blocks. We partially overcome this limitation by pre-training the CNN on the plentiful data of the Marshall-Molteni model, and then using Transfer Learning to achieve better predictions than direct training. SHAP analysis before and after transfer learning allows a comparison between the predictive features in the reanalysis and the quasigeostrophic model, quantifying dynamical biases in the idealized model. This work demonstrates the potential for machine learning methods to extract meaningful precursors of extreme weather events and achieve better prediction using limited observational data.

  • 5 authors
·
Apr 12, 2024

The JWST EXCELS survey: direct estimates of C, N, and O abundances in two relatively metal-rich galaxies at zsimeq5

We present a spectroscopic analysis of two star-forming galaxies at z~5 observed with JWST/NIRSpec as part of the Early eXtragalactic Continuum and Emission Line Science (EXCELS) survey. The detection of the C III]lambdalambda1906,09, [O II]lambdalambda3726,29, [O III]lambdalambda4363,5007, and [N II]lambda6584 nebular emission lines enables investigation of the C/O, N/O, and C/N abundance ratios using the temperature-sensitive method. The two galaxies have stellar masses of log(M_{star}/M_{odot} ) = 8.13pm0.09 and log(M_{star}/M_{odot} )=8.52pm0.13 and corresponding metallicities of Z~0.2Z_{odot} and Z~0.3Z_{odot}. These metallicities are somewhat higher than is typical for other z>5 galaxies with similar stellar mass and are in fact comparable to high-redshift analogue galaxies at z~0. Both galaxies display evidence for N/O enhancement with respect to the z~0 sample, with log(N/O)=-1.07pm0.17 and log(N/O)=-0.86pm0.15 respectively. In contrast, we find low C abundances, with log(C/O)=-0.82pm0.22 and log(C/O)=-1.02pm0.22, consistent with the predicted yields of core-collapse supernovae. Following the trend observed in other high-redshift sources, we find that the C/N ratios are lower at fixed O/H compared to the majority of local galaxies. In contrast to the top-heavy IMF invoked in some studies to explain low C/N ratios in metal-poor galaxies, we find, via comparison to chemical evolution models, that a standard or bottom-heavy IMF better explains the observed abundance ratios in more enriched systems due to an increase in N-enrichment from intermediate mass (4-7M_{odot}) stars. Our results demonstrate that robust measurements of CNO abundances with JWST can reveal unique enrichment pathways in galaxies as a function of both metallicity and redshift.

  • 17 authors
·
Dec 13, 2024

Diffusion Beats Autoregressive: An Evaluation of Compositional Generation in Text-to-Image Models

Text-to-image (T2I) generative models, such as Stable Diffusion and DALL-E, have shown remarkable proficiency in producing high-quality, realistic, and natural images from textual descriptions. However, these models sometimes fail to accurately capture all the details specified in the input prompts, particularly concerning entities, attributes, and spatial relationships. This issue becomes more pronounced when the prompt contains novel or complex compositions, leading to what are known as compositional generation failure modes. Recently, a new open-source diffusion-based T2I model, FLUX, has been introduced, demonstrating strong performance in high-quality image generation. Additionally, autoregressive T2I models like LlamaGen have claimed competitive visual quality performance compared to diffusion-based models. In this study, we evaluate the compositional generation capabilities of these newly introduced models against established models using the T2I-CompBench benchmark. Our findings reveal that LlamaGen, as a vanilla autoregressive model, is not yet on par with state-of-the-art diffusion models for compositional generation tasks under the same criteria, such as model size and inference time. On the other hand, the open-source diffusion-based model FLUX exhibits compositional generation capabilities comparable to the state-of-the-art closed-source model DALL-E3.

  • 4 authors
·
Oct 30, 2024

Kilometer-Scale Convection Allowing Model Emulation using Generative Diffusion Modeling

Storm-scale convection-allowing models (CAMs) are an important tool for predicting the evolution of thunderstorms and mesoscale convective systems that result in damaging extreme weather. By explicitly resolving convective dynamics within the atmosphere they afford meteorologists the nuance needed to provide outlook on hazard. Deep learning models have thus far not proven skilful at km-scale atmospheric simulation, despite being competitive at coarser resolution with state-of-the-art global, medium-range weather forecasting. We present a generative diffusion model called StormCast, which emulates the high-resolution rapid refresh (HRRR) model-NOAA's state-of-the-art 3km operational CAM. StormCast autoregressively predicts 99 state variables at km scale using a 1-hour time step, with dense vertical resolution in the atmospheric boundary layer, conditioned on 26 synoptic variables. We present evidence of successfully learnt km-scale dynamics including competitive 1-6 hour forecast skill for composite radar reflectivity alongside physically realistic convective cluster evolution, moist updrafts, and cold pool morphology. StormCast predictions maintain realistic power spectra for multiple predicted variables across multi-hour forecasts. Together, these results establish the potential for autoregressive ML to emulate CAMs -- opening up new km-scale frontiers for regional ML weather prediction and future climate hazard dynamical downscaling.

  • 11 authors
·
Aug 20, 2024

FuXi Weather: A data-to-forecast machine learning system for global weather

Weather forecasting traditionally relies on numerical weather prediction (NWP) systems that integrates global observational systems, data assimilation (DA), and forecasting models. Despite steady improvements in forecast accuracy over recent decades, further advances are increasingly constrained by high computational costs, the underutilization of vast observational datasets, and the challenges of obtaining finer resolution. These limitations, alongside the uneven distribution of observational networks, result in global disparities in forecast accuracy, leaving some regions vulnerable to extreme weather. Recent advances in machine learning present a promising alternative, providing more efficient and accurate forecasts using the same initial conditions as NWP. However, current machine learning models still depend on the initial conditions generated by NWP systems, which require extensive computational resources and expertise. Here we introduce FuXi Weather, a machine learning weather forecasting system that assimilates data from multiple satellites. Operating on a 6-hourly DA and forecast cycle, FuXi Weather generates reliable and accurate 10-day global weather forecasts at a spatial resolution of 0.25^circ. FuXi Weather is the first system to achieve all-grid, all-surface, all-channel, and all-sky DA and forecasting, extending skillful forecast lead times beyond those of the European Centre for Medium-range Weather Forecasts (ECMWF) high-resolution forecasts (HRES) while using significantly fewer observations. FuXi Weather consistently outperforms ECMWF HRES in observation-sparse regions, such as central Africa, demonstrating its potential to improve forecasts where observational infrastructure is limited.

  • 11 authors
·
Aug 10, 2024

Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case

Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.

  • 3 authors
·
Sep 22, 2023

Air Quality and Greenhouse Gas Emissions Assessment of Data Centers in Texas: Quantifying Impacts and Environmental Tradeoffs

This study assesses air quality (AQ) and greenhouse gas (GHG) emissions from the rapid expansion of data centers in Texas, a major hub due to infrastructure, electricity markets, and business conditions. AQ impacts were separated from GHG emissions to clarify sources, regulations, and mitigation strategies. Electricity consumption and cooling systems dominate GHG emissions, with a 10 megawatt data center generating about 37,668 metric tons CO2 annually, while construction materials and IT equipment add substantial embodied emissions. Local AQ impacts, often overlooked, arise from diesel backup generators, construction equipment, and commuting. Generator testing alone can emit about 12 metric tons of NOx annually per facility, worsening ozone issues in regions such as Houston and Dallas-Fort Worth. Mitigation strategies include advanced cooling, renewable energy procurement, cleaner backup power (fuel cells, batteries), sustainable construction, and standardized reporting. ERCOT forecasts project 39 to 78 gigawatts of new data center load by 2030, potentially leading to 170 to 205 million metric tons of annual CO2 emissions. Aggressive adoption of renewables and advanced technologies could cut emissions by 50 to 80 percent, avoiding 85 to 165 million metric tons of CO2. The study identifies research and policy gaps, including the need for cumulative air dispersion modeling, AQ-specific regulations, and mandatory efficiency standards. Findings underscore the importance of aligning Texas digital infrastructure growth with environmental and community health protections.

  • 1 authors
·
Sep 25

Community Research Earth Digital Intelligence Twin (CREDIT)

Recent advancements in artificial intelligence (AI) for numerical weather prediction (NWP) have significantly transformed atmospheric modeling. AI NWP models outperform traditional physics-based systems, such as the Integrated Forecast System (IFS), across several global metrics while requiring fewer computational resources. However, existing AI NWP models face limitations related to training datasets and timestep choices, often resulting in artifacts that reduce model performance. To address these challenges, we introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR. CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models on high-performance computing systems. It offers an end-to-end pipeline for data preprocessing, model training, and evaluation, democratizing access to advanced AI NWP capabilities. We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively, addressing common AI NWP issues like compounding error growth with techniques such as spectral normalization, padding, and multi-step training. Additionally, to illustrate CREDIT's flexibility and state-of-the-art model comparisons, we train the FUXI architecture within this framework. Our findings show that both FUXI and WXFormer, trained on six-hourly ERA5 hybrid sigma-pressure levels, generally outperform IFS HRES in 10-day forecasts, offering potential improvements in efficiency and forecast accuracy. CREDIT's modular design enables researchers to explore various models, datasets, and training configurations, fostering innovation within the scientific community.

  • 10 authors
·
Nov 8, 2024

FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting

Ensemble forecasting is crucial for improving weather predictions, especially for forecasts of extreme events. Constructing an ensemble prediction system (EPS) based on conventional NWP models is highly computationally expensive. ML models have emerged as valuable tools for deterministic weather forecasts, providing forecasts with significantly reduced computational requirements and even surpassing the forecast performance of traditional NWP models. However, challenges arise when applying ML models to ensemble forecasting. Recent ML models, such as GenCast and SEEDS model, rely on the ERA5 EDA or operational NWP ensemble members for forecast generation. Their spatial resolution is also considered too coarse for many applications. To overcome these limitations, we introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days. This model runs at a significantly increased spatial resolution of 0.25\textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables. By leveraging the inherent probabilistic nature of Variational AutoEncoder (VAE), FuXi-ENS optimizes a loss function that combines the CRPS and the KL divergence between the predicted and target distribution, facilitating the incorporation of flow-dependent perturbations in both initial conditions and forecast. This innovative approach makes FuXi-ENS an advancement over the traditional ones that use L1 loss combined with the KL loss in standard VAE models for ensemble weather forecasting. Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations. This achievement underscores the potential of the FuXi-ENS model to enhance ensemble weather forecasts, offering a promising direction for further development in this field.

  • 10 authors
·
May 9, 2024

Advancing global aerosol forecasting with artificial intelligence

Aerosol forecasting is essential for air quality warnings, health risk assessment, and climate change mitigation. However, it is more complex than weather forecasting due to the intricate interactions between aerosol physicochemical processes and atmospheric dynamics, resulting in significant uncertainty and high computational costs. Here, we develop an artificial intelligence-driven global aerosol-meteorology forecasting system (AI-GAMFS), which provides reliable 5-day, 3-hourly forecasts of aerosol optical components and surface concentrations at a 0.5° x 0.625° resolution. AI-GAMFS combines Vision Transformer and U-Net in a backbone network, robustly capturing the complex aerosol-meteorology interactions via global attention and spatiotemporal encoding. Trained on 42 years of advanced aerosol reanalysis data and initialized with GEOS Forward Processing (GEOS-FP) analyses, AI-GAMFS delivers operational 5-day forecasts in one minute. It outperforms the Copernicus Atmosphere Monitoring Service (CAMS) global forecasting system, GEOS-FP forecasts, and several regional dust forecasting systems in forecasting most aerosol variables including aerosol optical depth and dust components. Our results mark a significant step forward in leveraging AI to refine physics-based aerosol forecasting, facilitating more accurate global warnings for aerosol pollution events, such as dust storms and wildfires.

  • 22 authors
·
Dec 3, 2024