Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Large Scale Survey of Motivation in Software Development and Analysis of its Validity
Context: Motivation is known to improve performance. In software development in particular, there has been considerable interest in the motivation of contributors to open source. Objective: We identify 11 motivators from the literature (enjoying programming, ownership of code, learning, self use, etc.), and evaluate their relative effect on motivation. Since motivation is an internal subjective feeling, we also analyze the validity of the answers. Method: We conducted a survey with 66 questions on motivation which was completed by 521 developers. Most of the questions used an 11 point scale. We evaluated the validity of the answers validity by comparing related questions, comparing to actual behavior on GitHub, and comparison with the same developer in a follow up survey. Results: Validity problems include moderate correlations between answers to related questions, as well as self promotion and mistakes in the answers. Despite these problems, predictive analysis, investigating how diverse motivators influence the probability of high motivation, provided valuable insights. The correlations between the different motivators are low, implying their independence. High values in all 11 motivators predict increased probability of high motivation. In addition, improvement analysis shows that an increase in most motivators predicts an increase in general motivation.
EmoSet: A Large-scale Visual Emotion Dataset with Rich Attributes
Visual Emotion Analysis (VEA) aims at predicting people's emotional responses to visual stimuli. This is a promising, yet challenging, task in affective computing, which has drawn increasing attention in recent years. Most of the existing work in this area focuses on feature design, while little attention has been paid to dataset construction. In this work, we introduce EmoSet, the first large-scale visual emotion dataset annotated with rich attributes, which is superior to existing datasets in four aspects: scale, annotation richness, diversity, and data balance. EmoSet comprises 3.3 million images in total, with 118,102 of these images carefully labeled by human annotators, making it five times larger than the largest existing dataset. EmoSet includes images from social networks, as well as artistic images, and it is well balanced between different emotion categories. Motivated by psychological studies, in addition to emotion category, each image is also annotated with a set of describable emotion attributes: brightness, colorfulness, scene type, object class, facial expression, and human action, which can help understand visual emotions in a precise and interpretable way. The relevance of these emotion attributes is validated by analyzing the correlations between them and visual emotion, as well as by designing an attribute module to help visual emotion recognition. We believe EmoSet will bring some key insights and encourage further research in visual emotion analysis and understanding. Project page: https://vcc.tech/EmoSet.
Uni-Mol2: Exploring Molecular Pretraining Model at Scale
In recent years, pretraining models have made significant advancements in the fields of natural language processing (NLP), computer vision (CV), and life sciences. The significant advancements in NLP and CV are predominantly driven by the expansion of model parameters and data size, a phenomenon now recognized as the scaling laws. However, research exploring scaling law in molecular pretraining models remains unexplored. In this work, we present Uni-Mol2 , an innovative molecular pretraining model that leverages a two-track transformer to effectively integrate features at the atomic level, graph level, and geometry structure level. Along with this, we systematically investigate the scaling law within molecular pretraining models, characterizing the power-law correlations between validation loss and model size, dataset size, and computational resources. Consequently, we successfully scale Uni-Mol2 to 1.1 billion parameters through pretraining on 800 million conformations, making it the largest molecular pretraining model to date. Extensive experiments show consistent improvement in the downstream tasks as the model size grows. The Uni-Mol2 with 1.1B parameters also outperforms existing methods, achieving an average 27% improvement on the QM9 and 14% on COMPAS-1D dataset.
Cross-functional transferability in universal machine learning interatomic potentials
The rapid development of universal machine learning interatomic potentials (uMLIPs) has demonstrated the possibility for generalizable learning of the universal potential energy surface. In principle, the accuracy of uMLIPs can be further improved by bridging the model from lower-fidelity datasets to high-fidelity ones. In this work, we analyze the challenge of this transfer learning problem within the CHGNet framework. We show that significant energy scale shifts and poor correlations between GGA and r^2SCAN pose challenges to cross-functional data transferability in uMLIPs. By benchmarking different transfer learning approaches on the MP-r^2SCAN dataset of 0.24 million structures, we demonstrate the importance of elemental energy referencing in the transfer learning of uMLIPs. By comparing the scaling law with and without the pre-training on a low-fidelity dataset, we show that significant data efficiency can still be achieved through transfer learning, even with a target dataset of sub-million structures. We highlight the importance of proper transfer learning and multi-fidelity learning in creating next-generation uMLIPs on high-fidelity data.
DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders
Image colorization is a challenging problem due to multi-modal uncertainty and high ill-posedness. Directly training a deep neural network usually leads to incorrect semantic colors and low color richness. While transformer-based methods can deliver better results, they often rely on manually designed priors, suffer from poor generalization ability, and introduce color bleeding effects. To address these issues, we propose DDColor, an end-to-end method with dual decoders for image colorization. Our approach includes a pixel decoder and a query-based color decoder. The former restores the spatial resolution of the image, while the latter utilizes rich visual features to refine color queries, thus avoiding hand-crafted priors. Our two decoders work together to establish correlations between color and multi-scale semantic representations via cross-attention, significantly alleviating the color bleeding effect. Additionally, a simple yet effective colorfulness loss is introduced to enhance the color richness. Extensive experiments demonstrate that DDColor achieves superior performance to existing state-of-the-art works both quantitatively and qualitatively. The codes and models are publicly available at https://github.com/piddnad/DDColor.
ReSURE: Regularizing Supervision Unreliability for Multi-turn Dialogue Fine-tuning
Fine-tuning multi-turn dialogue systems requires high-quality supervision but often suffers from degraded performance when exposed to low-quality data. Supervision errors in early turns can propagate across subsequent turns, undermining coherence and response quality. Existing methods typically address data quality via static prefiltering, which decouples quality control from training and fails to mitigate turn-level error propagation. In this context, we propose ReSURE (Regularizing Supervision UnREliability), an adaptive learning method that dynamically down-weights unreliable supervision without explicit filtering. ReSURE estimates per-turn loss distributions using Welford's online statistics and reweights sample losses on the fly accordingly. Experiments on both single-source and mixed-quality datasets show improved stability and response quality. Notably, ReSURE enjoys positive Spearman correlations (0.21 ~ 1.0 across multiple benchmarks) between response scores and number of samples regardless of data quality, which potentially paves the way for utilizing large-scale data effectively. Code is publicly available at https://github.com/Elvin-Yiming-Du/ReSURE_Multi_Turn_Training.
MAC-VO: Metrics-aware Covariance for Learning-based Stereo Visual Odometry
We propose the MAC-VO, a novel learning-based stereo VO that leverages the learned metrics-aware matching uncertainty for dual purposes: selecting keypoint and weighing the residual in pose graph optimization. Compared to traditional geometric methods prioritizing texture-affluent features like edges, our keypoint selector employs the learned uncertainty to filter out the low-quality features based on global inconsistency. In contrast to the learning-based algorithms that model the scale-agnostic diagonal weight matrix for covariance, we design a metrics-aware covariance model to capture the spatial error during keypoint registration and the correlations between different axes. Integrating this covariance model into pose graph optimization enhances the robustness and reliability of pose estimation, particularly in challenging environments with varying illumination, feature density, and motion patterns. On public benchmark datasets, MAC-VO outperforms existing VO algorithms and even some SLAM algorithms in challenging environments. The covariance map also provides valuable information about the reliability of the estimated poses, which can benefit decision-making for autonomous systems.
EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for Continuous Space-Time Video Super-Resolution with Events
Continuous space-time video super-resolution (C-STVSR) endeavors to upscale videos simultaneously at arbitrary spatial and temporal scales, which has recently garnered increasing interest. However, prevailing methods struggle to yield satisfactory videos at out-of-distribution spatial and temporal scales. On the other hand, event streams characterized by high temporal resolution and high dynamic range, exhibit compelling promise in vision tasks. This paper presents EvEnhancer, an innovative approach that marries the unique advantages of event streams to elevate effectiveness, efficiency, and generalizability for C-STVSR. Our approach hinges on two pivotal components: 1) Event-adapted synthesis capitalizes on the spatiotemporal correlations between frames and events to discern and learn long-term motion trajectories, enabling the adaptive interpolation and fusion of informative spatiotemporal features; 2) Local implicit video transformer integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations utilized to generate plausible videos at arbitrary resolutions and frame rates. Experiments show that EvEnhancer achieves superiority on synthetic and real-world datasets and preferable generalizability on out-of-distribution scales against state-of-the-art methods. Code is available at https://github.com/W-Shuoyan/EvEnhancer.
EMelodyGen: Emotion-Conditioned Melody Generation in ABC Notation with the Musical Feature Template
The EMelodyGen system focuses on emotional melody generation in ABC notation controlled by the musical feature template. Owing to the scarcity of well-structured and emotionally labeled sheet music, we designed a template for controlling emotional melody generation by statistical correlations between musical features and emotion labels derived from small-scale emotional symbolic music datasets and music psychology conclusions. We then automatically annotated a large, well-structured sheet music collection with rough emotional labels by the template, converted them into ABC notation, and reduced label imbalance by data augmentation, resulting in a dataset named Rough4Q. Our system backbone pre-trained on Rough4Q can achieve up to 99% music21 parsing rate and melodies generated by our template can lead to a 91% alignment on emotional expressions in blind listening tests. Ablation studies further validated the effectiveness of the feature controls in the template. Available code and demos are at https://github.com/monetjoe/EMelodyGen.
Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging
The transition from System 1 to System 2 reasoning in large language models (LLMs) has marked significant advancements in handling complex tasks through deliberate, iterative thinking. However, this progress often comes at the cost of efficiency, as models tend to overthink, generating redundant reasoning steps without proportional improvements in output quality. Long-to-Short (L2S) reasoning has emerged as a promising solution to this challenge, aiming to balance reasoning depth with practical efficiency. While existing approaches, such as supervised fine-tuning (SFT), reinforcement learning (RL), and prompt engineering, have shown potential, they are either computationally expensive or unstable. Model merging, on the other hand, offers a cost-effective and robust alternative by integrating the quick-thinking capabilities of System 1 models with the methodical reasoning of System 2 models. In this work, we present a comprehensive empirical study on model merging for L2S reasoning, exploring diverse methodologies, including task-vector-based, SVD-based, and activation-informed merging. Our experiments reveal that model merging can reduce average response length by up to 55% while preserving or even improving baseline performance. We also identify a strong correlation between model scale and merging efficacy with extensive evaluations on 1.5B/7B/14B/32B models. Furthermore, we investigate the merged model's ability to self-critique and self-correct, as well as its adaptive response length based on task complexity. Our findings highlight model merging as a highly efficient and effective paradigm for L2S reasoning, offering a practical solution to the overthinking problem while maintaining the robustness of System 2 reasoning. This work can be found on Github https://github.com/hahahawu/Long-to-Short-via-Model-Merging.
Interpretable Physics Reasoning and Performance Taxonomy in Vision-Language Models
As Vision-Language Models (VLMs) grow in sophistication, their ability to perform reasoning is coming under increasing supervision. While they excel at many tasks, their grasp of fundamental scientific principles, such as physics, remains an underexplored frontier. To reflect the advancements in these capabilities, we introduce a novel and accessible framework designed to rigorously evaluate VLMs on their understanding of 2D physics. Our framework features a pragmatic scenario generator that creates a diverse testbed of over 400 problems across four core domains: Projectile Motion, Collision Dynamics, Mechanics, and Fluid Dynamics. Through comprehensive evaluation of four state-of-the-art VLMs, we demonstrate a strong correlation between model scale and reasoning ability, with our top-performing model, Qwen2.5-VL-7B, achieving an overall score of 0.815. We find that while models excel at formulaic problems, they struggle significantly with domains requiring abstract spatial reasoning. By designing this framework, we aim to democratize the study of scientific reasoning in VLMs and foster deeper insights into their capabilities and limitations.
Interference in Fuzzy Dark Matter Filaments: Idealised Models and Statistics
Fuzzy (wave) dark matter (FDM), the dynamical model underlying an ultralight bosonic dark matter species, produces a rich set of non-gravitational signatures that distinguishes it markedly from the phenomenologically related warm (particle) dark matter (WDM) scenario. The emergence of extended interference fringes hosted by cosmic filaments is one such phenomenon reported by cosmological simulations, and a detailed understanding of such may strengthen existing limits on the boson mass but also break the degeneracy with WDM, and provide a unique fingerprint of interference in cosmology. In this paper, we provide initial steps towards this goal. In particular, we show in a bottom-up approach, how the presence of interference in an idealised filament population can lead to a non-suppressive feature in the matter power spectrum -- an observation supported by fully-cosmological FDM simulations. To this end, we build on a theoretically motivated and numerically observed steady-state approximation for filaments and express the equilibrium dynamics of such in an expansion of FDM eigenstates. We optimise the size of the expansion by incorporating classical phase-space information. Ellipsoidal collapse considerations are used to construct a fuzzy filament mass function which, together with the reconstructed FDM wave function, allow us to efficiently compute the one-filament power spectrum. We showcase our non-perturbative interference model for a selection of boson masses and confirm our approach is able to produce the matter power boost observed in fully-cosmological FDM simulations. More precisely, we find an excess in correlation between the spatial scale associated with the FDM ground state and the quantum pressure scale. We speculate about applications of this effect in data analysis.
Morphological evolution and galactic sizes in the L-Galaxies SA model
In this work we update the L-Galaxies semi-analytic model (SAM) to better follow the physical processes responsible for the growth of bulges via disc instabilities (leading to pseudo-bulges) and mergers (leading to classical bulges). We address the former by considering the contribution of both stellar and gaseous discs in the stability of the galaxy, and we update the latter by including dissipation of energy in gas-rich mergers. Furthermore, we introduce angular momentum losses during cooling and find that an accurate match to the observed correlation between stellar disc scale length and mass at z ~ 0.0 requires that the gas loses 20% of its initial specific angular momentum to the corresponding dark matter halo during the formation of the cold gas disc. We reproduce the observed trends between the stellar mass and specific angular momentum for both disc- and bulge-dominated galaxies, with the former rotating faster than the latter of the same mass. We conclude that a two-component instability recipe provides a morphologically diverse galaxy sample which matches the observed fractional breakdown of galaxies into different morphological types. This recipe also enables us to obtain an excellent fit to the morphology-mass relation and stellar mass function of different galactic types. Finally, we find that energy dissipation during mergers reduces the merger remnant sizes and allows us to match the observed mass-size relation for bulge-dominated systems.
Partial Correlations in Compositional Data Analysis
Partial correlations quantify linear association between two variables adjusting for the influence of the remaining variables. They form the backbone for graphical models and are readily obtained from the inverse of the covariance matrix. For compositional data, the covariance structure is specified from log ratios of variables, so unless we try to "open" the data via a normalization, this implies changes in the definition and interpretation of partial correlations. In the present work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial correlation that has a number of advantages over current measures of association. For this, we show that the residuals of log-ratios between a variable with a reference, when adjusting for all remaining variables including the reference, are reference-independent. Since the reference itself can be controlled for, correlations between residuals are defined for the variables directly without the necessity to recur to ratios except when specifying which variables are partialled out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found with measures of pairwise association on compositional data. They are well-defined between two variables, are properly scaled, and allow for negative association. By design, they are subcompositionally incoherent, but they share this property with conventional partial correlations (where results change when adjusting for the influence of fewer variables). We discuss the equivalence with normalization-based approaches whenever the normalizing variables are controlled for. We also discuss the partial variances and correlations we obtain from a previously studied data set of Roman glass cups.
Systematic Bias in Ionizing Radiation Escape Fraction Measurements from Foreground Large-Scale Structures
We investigate the relationship between the Lyman-alpha (Lya) forest transmission in the intergalactic medium (IGM) and the environmental density of galaxies, focusing on its implications for the measurement of ionizing radiation escape fractions. Using a sample of 268 spectroscopically confirmed background galaxies at 2.7<z<3.0 and a galaxy density map at z~2.5 within the COSMOS field, we measure the Lya transmission photometrically, leveraging the multiwavelength data available from the COSMOS2020 catalog. Our results reveal a weak but statistically significant positive correlation between Lya optical depth and galaxy density contrast, suggesting that overdense regions are enriched in neutral gas, which could bias escape fraction measurements. This emphasizes the need to account for the large-scale structure of the IGM in analyses of ionizing radiation escape fractions, and highlights the advantages of a photometric approach for increasing the number of sampled lines of sight across large fields. The photometric redshifts provided by upcoming all-sky surveys, such as Euclid, will make it possible to account for this effect across widely separated fields.
Probing Gravity at Large Scales with kSZ-Reconstructed Velocities and CMB Lensing
We present a new method for measuring the E_G statistic that combines two CMB secondaries -- the kinematic Sunyaev-Zeldovich (kSZ) effect and CMB lensing -- for the first time to probe gravity on linear scales. The E_G statistic is a discriminating tool for modified gravity theories, which leave imprints in lensing observables and peculiar velocities. Existing E_G measurements rely on redshift space distortions (RSD) to infer the velocity field. Here, we employ kSZ velocity-reconstruction instead of RSD, a complementary technique that constrains the largest-scale modes better than the galaxy survey it uses. We construct a novel V_G estimator that involves a ratio between cross-correlations of a galaxy sample with a CMB convergence map and that with a 3D kSZ-reconstructed velocity field. We forecast for current and upcoming CMB maps from the Atacama Cosmology Telescope (ACT) and the Simons Observatory (SO), respectively, in combination with three spectroscopic galaxy samples from the Dark Energy Spectroscopic Instrument (DESI). We find cumulative detection significances in the range S/N sim 20-55, which can robustly test the scale-independent E_G prediction under general relativity (GR) at different effective redshifts of the galaxy samples (zapprox 0.73, 1.33, 1.84). In particular, the SOtimesDESI LRG measurement would be able to distinguish between GR and certain modified gravity models, including Hu-Sawicki f(R) and Chameleon theories, with high confidence. The proposed V_G estimator opens up a new avenue for stress-testing gravity and the LambdaCDM+GR model at the largest observable scales.
Security Challenges in AI Agent Deployment: Insights from a Large Scale Public Competition
Recent advances have enabled LLM-powered AI agents to autonomously execute complex tasks by combining language model reasoning with tools, memory, and web access. But can these systems be trusted to follow deployment policies in realistic environments, especially under attack? To investigate, we ran the largest public red-teaming competition to date, targeting 22 frontier AI agents across 44 realistic deployment scenarios. Participants submitted 1.8 million prompt-injection attacks, with over 60,000 successfully eliciting policy violations such as unauthorized data access, illicit financial actions, and regulatory noncompliance. We use these results to build the Agent Red Teaming (ART) benchmark - a curated set of high-impact attacks - and evaluate it across 19 state-of-the-art models. Nearly all agents exhibit policy violations for most behaviors within 10-100 queries, with high attack transferability across models and tasks. Importantly, we find limited correlation between agent robustness and model size, capability, or inference-time compute, suggesting that additional defenses are needed against adversarial misuse. Our findings highlight critical and persistent vulnerabilities in today's AI agents. By releasing the ART benchmark and accompanying evaluation framework, we aim to support more rigorous security assessment and drive progress toward safer agent deployment.
Rectifying Noisy Labels with Sequential Prior: Multi-Scale Temporal Feature Affinity Learning for Robust Video Segmentation
Noisy label problems are inevitably in existence within medical image segmentation causing severe performance degradation. Previous segmentation methods for noisy label problems only utilize a single image while the potential of leveraging the correlation between images has been overlooked. Especially for video segmentation, adjacent frames contain rich contextual information beneficial in cognizing noisy labels. Based on two insights, we propose a Multi-Scale Temporal Feature Affinity Learning (MS-TFAL) framework to resolve noisy-labeled medical video segmentation issues. First, we argue the sequential prior of videos is an effective reference, i.e., pixel-level features from adjacent frames are close in distance for the same class and far in distance otherwise. Therefore, Temporal Feature Affinity Learning (TFAL) is devised to indicate possible noisy labels by evaluating the affinity between pixels in two adjacent frames. We also notice that the noise distribution exhibits considerable variations across video, image, and pixel levels. In this way, we introduce Multi-Scale Supervision (MSS) to supervise the network from three different perspectives by re-weighting and refining the samples. This design enables the network to concentrate on clean samples in a coarse-to-fine manner. Experiments with both synthetic and real-world label noise demonstrate that our method outperforms recent state-of-the-art robust segmentation approaches. Code is available at https://github.com/BeileiCui/MS-TFAL.
RenderIH: A Large-scale Synthetic Dataset for 3D Interacting Hand Pose Estimation
The current interacting hand (IH) datasets are relatively simplistic in terms of background and texture, with hand joints being annotated by a machine annotator, which may result in inaccuracies, and the diversity of pose distribution is limited. However, the variability of background, pose distribution, and texture can greatly influence the generalization ability. Therefore, we present a large-scale synthetic dataset RenderIH for interacting hands with accurate and diverse pose annotations. The dataset contains 1M photo-realistic images with varied backgrounds, perspectives, and hand textures. To generate natural and diverse interacting poses, we propose a new pose optimization algorithm. Additionally, for better pose estimation accuracy, we introduce a transformer-based pose estimation network, TransHand, to leverage the correlation between interacting hands and verify the effectiveness of RenderIH in improving results. Our dataset is model-agnostic and can improve more accuracy of any hand pose estimation method in comparison to other real or synthetic datasets. Experiments have shown that pretraining on our synthetic data can significantly decrease the error from 6.76mm to 5.79mm, and our Transhand surpasses contemporary methods. Our dataset and code are available at https://github.com/adwardlee/RenderIH.
WenLan: Bridging Vision and Language by Large-Scale Multi-Modal Pre-Training
Multi-modal pre-training models have been intensively explored to bridge vision and language in recent years. However, most of them explicitly model the cross-modal interaction between image-text pairs, by assuming that there exists strong semantic correlation between the text and image modalities. Since this strong assumption is often invalid in real-world scenarios, we choose to implicitly model the cross-modal correlation for large-scale multi-modal pre-training, which is the focus of the Chinese project `WenLan' led by our team. Specifically, with the weak correlation assumption over image-text pairs, we propose a two-tower pre-training model called BriVL within the cross-modal contrastive learning framework. Unlike OpenAI CLIP that adopts a simple contrastive learning method, we devise a more advanced algorithm by adapting the latest method MoCo into the cross-modal scenario. By building a large queue-based dictionary, our BriVL can incorporate more negative samples in limited GPU resources. We further construct a large Chinese multi-source image-text dataset called RUC-CAS-WenLan for pre-training our BriVL model. Extensive experiments demonstrate that the pre-trained BriVL model outperforms both UNITER and OpenAI CLIP on various downstream tasks.
When Can We Trust LLMs in Mental Health? Large-Scale Benchmarks for Reliable LLM Evaluation
Evaluating Large Language Models (LLMs) for mental health support is challenging due to the emotionally and cognitively complex nature of therapeutic dialogue. Existing benchmarks are limited in scale, reliability, often relying on synthetic or social media data, and lack frameworks to assess when automated judges can be trusted. To address the need for large-scale dialogue datasets and judge reliability assessment, we introduce two benchmarks that provide a framework for generation and evaluation. MentalBench-100k consolidates 10,000 one-turn conversations from three real scenarios datasets, each paired with nine LLM-generated responses, yielding 100,000 response pairs. MentalAlign-70k}reframes evaluation by comparing four high-performing LLM judges with human experts across 70,000 ratings on seven attributes, grouped into Cognitive Support Score (CSS) and Affective Resonance Score (ARS). We then employ the Affective Cognitive Agreement Framework, a statistical methodology using intraclass correlation coefficients (ICC) with confidence intervals to quantify agreement, consistency, and bias between LLM judges and human experts. Our analysis reveals systematic inflation by LLM judges, strong reliability for cognitive attributes such as guidance and informativeness, reduced precision for empathy, and some unreliability in safety and relevance. Our contributions establish new methodological and empirical foundations for reliable, large-scale evaluation of LLMs in mental health. We release the benchmarks and codes at: https://github.com/abeerbadawi/MentalBench/
Honey, I Shrunk the Language: Language Model Behavior at Reduced Scale
In recent years, language models have drastically grown in size, and the abilities of these models have been shown to improve with scale. The majority of recent scaling laws studies focused on high-compute high-parameter count settings, leaving the question of when these abilities begin to emerge largely unanswered. In this paper, we investigate whether the effects of pre-training can be observed when the problem size is reduced, modeling a smaller, reduced-vocabulary language. We show the benefits of pre-training with masked language modeling (MLM) objective in models as small as 1.25M parameters, and establish a strong correlation between pre-training perplexity and downstream performance (GLUE benchmark). We examine downscaling effects, extending scaling laws to models as small as ~1M parameters. At this scale, we observe a break of the power law for compute-optimal models and show that the MLM loss does not scale smoothly with compute-cost (FLOPs) below 2.2 times 10^{15} FLOPs. We also find that adding layers does not always benefit downstream performance.
Extending the Massive Text Embedding Benchmark to French
In recent years, numerous embedding models have been made available and widely used for various NLP tasks. Choosing a model that performs well for several tasks in English has been largely simplified by the Massive Text Embedding Benchmark (MTEB), but extensions to other languages remain challenging. This is why we expand MTEB to propose the first massive benchmark of sentence embeddings for French. Not only we gather 22 existing datasets in an easy-to-use interface, but we also create three new French datasets for a global evaluation over 8 different tasks. We perform a large scale comparison with 46 carefully selected embedding models, conduct comprehensive statistical tests, and analyze the correlation between model performance and many of their characteristics. We find out that even if no model is the best on all tasks, large multilingual models pre-trained on sentence similarity perform particularly well. Our work comes with open-source code, new datasets and a public leaderboard.
AID-AppEAL: Automatic Image Dataset and Algorithm for Content Appeal Enhancement and Assessment Labeling
We propose Image Content Appeal Assessment (ICAA), a novel metric that quantifies the level of positive interest an image's content generates for viewers, such as the appeal of food in a photograph. This is fundamentally different from traditional Image-Aesthetics Assessment (IAA), which judges an image's artistic quality. While previous studies often confuse the concepts of ``aesthetics'' and ``appeal,'' our work addresses this by being the first to study ICAA explicitly. To do this, we propose a novel system that automates dataset creation and implements algorithms to estimate and boost content appeal. We use our pipeline to generate two large-scale datasets (70K+ images each) in diverse domains (food and room interior design) to train our models, which revealed little correlation between content appeal and aesthetics. Our user study, with more than 76% of participants preferring the appeal-enhanced images, confirms that our appeal ratings accurately reflect user preferences, establishing ICAA as a unique evaluative criterion. Our code and datasets are available at https://github.com/SherryXTChen/AID-Appeal.
TopNet: Transformer-based Object Placement Network for Image Compositing
We investigate the problem of automatically placing an object into a background image for image compositing. Given a background image and a segmented object, the goal is to train a model to predict plausible placements (location and scale) of the object for compositing. The quality of the composite image highly depends on the predicted location/scale. Existing works either generate candidate bounding boxes or apply sliding-window search using global representations from background and object images, which fail to model local information in background images. However, local clues in background images are important to determine the compatibility of placing the objects with certain locations/scales. In this paper, we propose to learn the correlation between object features and all local background features with a transformer module so that detailed information can be provided on all possible location/scale configurations. A sparse contrastive loss is further proposed to train our model with sparse supervision. Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass, which is over 10 times faster than the previous sliding-window method. It also supports interactive search when users provide a pre-defined location or scale. The proposed method can be trained with explicit annotation or in a self-supervised manner using an off-the-shelf inpainting model, and it outperforms state-of-the-art methods significantly. The user study shows that the trained model generalizes well to real-world images with diverse challenging scenes and object categories.
Phase Transitions in the Detection of Correlated Databases
We study the problem of detecting the correlation between two Gaussian databases XinR^{ntimes d} and Y^{ntimes d}, each composed of n users with d features. This problem is relevant in the analysis of social media, computational biology, etc. We formulate this as a hypothesis testing problem: under the null hypothesis, these two databases are statistically independent. Under the alternative, however, there exists an unknown permutation sigma over the set of n users (or, row permutation), such that X is rho-correlated with Y^sigma, a permuted version of Y. We determine sharp thresholds at which optimal testing exhibits a phase transition, depending on the asymptotic regime of n and d. Specifically, we prove that if rho^2dto0, as dtoinfty, then weak detection (performing slightly better than random guessing) is statistically impossible, irrespectively of the value of n. This compliments the performance of a simple test that thresholds the sum all entries of X^TY. Furthermore, when d is fixed, we prove that strong detection (vanishing error probability) is impossible for any rho<rho^star, where rho^star is an explicit function of d, while weak detection is again impossible as long as rho^2dto0. These results close significant gaps in current recent related studies.
CSTS: A Benchmark for the Discovery of Correlation Structures in Time Series Clustering
Time series clustering promises to uncover hidden structural patterns in data with applications across healthcare, finance, industrial systems, and other critical domains. However, without validated ground truth information, researchers cannot objectively assess clustering quality or determine whether poor results stem from absent structures in the data, algorithmic limitations, or inappropriate validation methods, raising the question whether clustering is "more art than science" (Guyon et al., 2009). To address these challenges, we introduce CSTS (Correlation Structures in Time Series), a synthetic benchmark for evaluating the discovery of correlation structures in multivariate time series data. CSTS provides a clean benchmark that enables researchers to isolate and identify specific causes of clustering failures by differentiating between correlation structure deterioration and limitations of clustering algorithms and validation methods. Our contributions are: (1) a comprehensive benchmark for correlation structure discovery with distinct correlation structures, systematically varied data conditions, established performance thresholds, and recommended evaluation protocols; (2) empirical validation of correlation structure preservation showing moderate distortion from downsampling and minimal effects from distribution shifts and sparsification; and (3) an extensible data generation framework enabling structure-first clustering evaluation. A case study demonstrates CSTS's practical utility by identifying an algorithm's previously undocumented sensitivity to non-normal distributions, illustrating how the benchmark enables precise diagnosis of methodological limitations. CSTS advances rigorous evaluation standards for correlation-based time series clustering.
Perceptual Scales Predicted by Fisher Information Metrics
Perception is often viewed as a process that transforms physical variables, external to an observer, into internal psychological variables. Such a process can be modeled by a function coined perceptual scale. The perceptual scale can be deduced from psychophysical measurements that consist in comparing the relative differences between stimuli (i.e. difference scaling experiments). However, this approach is often overlooked by the modeling and experimentation communities. Here, we demonstrate the value of measuring the perceptual scale of classical (spatial frequency, orientation) and less classical physical variables (interpolation between textures) by embedding it in recent probabilistic modeling of perception. First, we show that the assumption that an observer has an internal representation of univariate parameters such as spatial frequency or orientation while stimuli are high-dimensional does not lead to contradictory predictions when following the theoretical framework. Second, we show that the measured perceptual scale corresponds to the transduction function hypothesized in this framework. In particular, we demonstrate that it is related to the Fisher information of the generative model that underlies perception and we test the predictions given by the generative model of different stimuli in a set a of difference scaling experiments. Our main conclusion is that the perceptual scale is mostly driven by the stimulus power spectrum. Finally, we propose that this measure of perceptual scale is a way to push further the notion of perceptual distances by estimating the perceptual geometry of images i.e. the path between images instead of simply the distance between those.
Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps?
We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation.
Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations
Understanding the performance of machine learning (ML) models across diverse data distributions is critically important for reliable applications. Despite recent empirical studies positing a near-perfect linear correlation between in-distribution (ID) and out-of-distribution (OOD) accuracies, we empirically demonstrate that this correlation is more nuanced under subpopulation shifts. Through rigorous experimentation and analysis across a variety of datasets, models, and training epochs, we demonstrate that OOD performance often has a nonlinear correlation with ID performance in subpopulation shifts. Our findings, which contrast previous studies that have posited a linear correlation in model performance during distribution shifts, reveal a "moon shape" correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the minority subpopulation. This non-trivial nonlinear correlation holds across model architectures, hyperparameters, training durations, and the imbalance between subpopulations. Furthermore, we found that the nonlinearity of this "moon shape" is causally influenced by the degree of spurious correlations in the training data. Our controlled experiments show that stronger spurious correlation in the training data creates more nonlinear performance correlation. We provide complementary experimental and theoretical analyses for this phenomenon, and discuss its implications for ML reliability and fairness. Our work highlights the importance of understanding the nonlinear effects of model improvement on performance in different subpopulations, and has the potential to inform the development of more equitable and responsible machine learning models.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)--galaxy interaction has long been constrained by observed scaling relations, that is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date dataset, reveals a causal link between galaxy properties and dynamically-measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Encoding Multi-level Dynamics in Effect Heterogeneity Estimation
Earth Observation (EO) data are increasingly used in policy analysis by enabling granular estimation of treatment effects. However, a challenge in EO-based causal inference lies in balancing the trade-off between capturing fine-grained individual heterogeneity and broader contextual information. This paper introduces Multi-scale Concatenation, a family of composable procedures that transform arbitrary single-scale CATE estimation algorithms into multi-scale algorithms. We benchmark the performance of Multi-scale Concatenation on a CATE estimation pipeline combining Vision Transformer (ViT) models fine-tuned on satellite images to encode images of different scales with Causal Forests to obtain the final CATE estimate. We first perform simulation studies, showing how a multi-scale approach captures multi-level dynamics that single-scale ViT models fail to capture. We then apply the multi-scale method to two randomized controlled trials (RCTs) conducted in Peru and Uganda using Landsat satellite imagery. In the RCT analysis, the Rank Average Treatment Effect Ratio (RATE Ratio) measure is employed to assess performance without ground truth individual treatment effects. Results indicate that Multi-scale Concatenation improves the performance of deep learning models in EO-based CATE estimation without the complexity of designing new multi-scale architectures for a specific use case.
Multi-scale fMRI time series analysis for understanding neurodegeneration in MCI
In this study, we present a technique that spans multi-scale views (global scale -- meaning brain network-level and local scale -- examining each individual ROI that constitutes the network) applied to resting-state fMRI volumes. Deep learning based classification is utilized in understanding neurodegeneration. The novelty of the proposed approach lies in utilizing two extreme scales of analysis. One branch considers the entire network within graph-analysis framework. Concurrently, the second branch scrutinizes each ROI within a network independently, focusing on evolution of dynamics. For each subject, graph-based approach employs partial correlation to profile the subject in a single graph where each ROI is a node, providing insights into differences in levels of participation. In contrast, non-linear analysis employs recurrence plots to profile a subject as a multichannel 2D image, revealing distinctions in underlying dynamics. The proposed approach is employed for classification of a cohort of 50 healthy control (HC) and 50 Mild Cognitive Impairment (MCI), sourced from ADNI dataset. Results point to: (1) reduced activity in ROIs such as PCC in MCI (2) greater activity in occipital in MCI, which is not seen in HC (3) when analysed for dynamics, all ROIs in MCI show greater predictability in time-series.
Further Generalizations of the Jaccard Index
Quantifying the similarity between two mathematical structures or datasets constitutes a particularly interesting and useful operation in several theoretical and applied problems. Aimed at this specific objective, the Jaccard index has been extensively used in the most diverse types of problems, also motivating some respective generalizations. The present work addresses further generalizations of this index, including its modification into a coincidence index capable of accounting also for the level of relative interiority between the two compared entities, as well as respective extensions for sets in continuous vector spaces, the generalization to multiset addition, densities and generic scalar fields, as well as a means to quantify the joint interdependence between two random variables. The also interesting possibility to take into account more than two sets has also been addressed, including the description of an index capable of quantifying the level of chaining between three structures. Several of the described and suggested eneralizations have been illustrated with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of clusters similarity or separation and as a resource for representing and analyzing complex networks.
Explaining Neural Scaling Laws
The population loss of trained deep neural networks often follows precise power-law scaling relations with either the size of the training dataset or the number of parameters in the network. We propose a theory that explains the origins of and connects these scaling laws. We identify variance-limited and resolution-limited scaling behavior for both dataset and model size, for a total of four scaling regimes. The variance-limited scaling follows simply from the existence of a well-behaved infinite data or infinite width limit, while the resolution-limited regime can be explained by positing that models are effectively resolving a smooth data manifold. In the large width limit, this can be equivalently obtained from the spectrum of certain kernels, and we present evidence that large width and large dataset resolution-limited scaling exponents are related by a duality. We exhibit all four scaling regimes in the controlled setting of large random feature and pretrained models and test the predictions empirically on a range of standard architectures and datasets. We also observe several empirical relationships between datasets and scaling exponents under modifications of task and architecture aspect ratio. Our work provides a taxonomy for classifying different scaling regimes, underscores that there can be different mechanisms driving improvements in loss, and lends insight into the microscopic origins of and relationships between scaling exponents.
A Test for Jumps in Metric-Space Conditional Means
Standard methods for detecting discontinuities in conditional means are not applicable to outcomes that are complex, non-Euclidean objects like distributions, networks, or covariance matrices. This article develops a nonparametric test for jumps in conditional means when outcomes lie in a non-Euclidean metric space. Using local Fr\'echet regressionx2014which generalizes standard regression to metric-space valued datax2014the method estimates a mean path on either side of a candidate cutoff, extending existing k-sample tests to a flexible regression setting. Key theoretical contributions include a central limit theorem for the local estimator of the conditional Fr\'echet variance and the asymptotic validity and consistency of the proposed test. Simulations confirm nominal size control and robust power in finite samples. Two applications demonstrate the method's value by revealing effects invisible to scalar-based tests. First, I detect a sharp change in work-from-home compositions at Washington State's income threshold for non-compete enforceability during COVID-19, highlighting remote work's role as a bargaining margin. Second, I find that countries restructure their input-output networks after losing preferential US trade access. These findings underscore that analyzing regression functions within their native metric spaces can reveal structural discontinuities that scalar summaries would miss.
Bootstrap aggregation and confidence measures to improve time series causal discovery
Learning causal graphs from multivariate time series is a ubiquitous challenge in all application domains dealing with time-dependent systems, such as in Earth sciences, biology, or engineering, to name a few. Recent developments for this causal discovery learning task have shown considerable skill, notably the specific time-series adaptations of the popular conditional independence-based learning framework. However, uncertainty estimation is challenging for conditional independence-based methods. Here, we introduce a novel bootstrap approach designed for time series causal discovery that preserves the temporal dependencies and lag structure. It can be combined with a range of time series causal discovery methods and provides a measure of confidence for the links of the time series graphs. Furthermore, next to confidence estimation, an aggregation, also called bagging, of the bootstrapped graphs by majority voting results in bagged causal discovery methods. In this work, we combine this approach with the state-of-the-art conditional-independence-based algorithm PCMCI+. With extensive numerical experiments we empirically demonstrate that, in addition to providing confidence measures for links, Bagged-PCMCI+ improves in precision and recall as compared to its base algorithm PCMCI+, at the cost of higher computational demands. These statistical performance improvements are especially pronounced in the more challenging settings (short time sample size, large number of variables, high autocorrelation). Our bootstrap approach can also be combined with other time series causal discovery algorithms and can be of considerable use in many real-world applications.
Transformation of stimulus correlations by the retina
Redundancies and correlations in the responses of sensory neurons seem to waste neural resources but can carry cues about structured stimuli and may help the brain to correct for response errors. To assess how the retina negotiates this tradeoff, we measured simultaneous responses from populations of ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure. We found that pairwise correlations in the retinal output remained similar across stimuli with widely different spatio-temporal correlations including white noise and natural movies. Meanwhile, purely spatial correlations tended to increase correlations in the retinal response. Responding to more correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the similarity of pairwise correlations across stimuli where receptive field measurements were possible.
Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.
Rethinking Channel Dependence for Multivariate Time Series Forecasting: Learning from Leading Indicators
Recently, channel-independent methods have achieved state-of-the-art performance in multivariate time series (MTS) forecasting. Despite reducing overfitting risks, these methods miss potential opportunities in utilizing channel dependence for accurate predictions. We argue that there exist locally stationary lead-lag relationships between variates, i.e., some lagged variates may follow the leading indicators within a short time period. Exploiting such channel dependence is beneficial since leading indicators offer advance information that can be used to reduce the forecasting difficulty of the lagged variates. In this paper, we propose a new method named LIFT that first efficiently estimates leading indicators and their leading steps at each time step and then judiciously allows the lagged variates to utilize the advance information from leading indicators. LIFT plays as a plugin that can be seamlessly collaborated with arbitrary time series forecasting methods. Extensive experiments on six real-world datasets demonstrate that LIFT improves the state-of-the-art methods by 5.5% in average forecasting performance. Our code is available at https://github.com/SJTU-Quant/LIFT.
Analytical Derivation and Comparison of Alarm Similarity Measures
An industrial process includes many devices, variables, and sub-processes that are physically or electronically interconnected. These interconnections imply some level of correlation between different process variables. Since most of the alarms in a process plant are defined on process variables, alarms are also correlated. However, this can be a nuisance to operators, for one fault might trigger a, sometimes large, number of alarms. So, it is essential to find and correct correlated alarms. In this paper, we study different methods and techniques proposed to measure correlation or similarity between alarms. The similarity indices are first analytically calculated and then studied and compared. The results are also validated using Monte-Carlo simulation.
M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation
There exists recent work in computer vision, named VAR, that proposes a new autoregressive paradigm for image generation. Diverging from the vanilla next-token prediction, VAR structurally reformulates the image generation into a coarse to fine next-scale prediction. In this paper, we show that this scale-wise autoregressive framework can be effectively decoupled into intra-scale modeling, which captures local spatial dependencies within each scale, and inter-scale modeling, which models cross-scale relationships progressively from coarse-to-fine scales. This decoupling structure allows to rebuild VAR in a more computationally efficient manner. Specifically, for intra-scale modeling -- crucial for generating high-fidelity images -- we retain the original bidirectional self-attention design to ensure comprehensive modeling; for inter-scale modeling, which semantically connects different scales but is computationally intensive, we apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead. We term this new framework M-VAR. Extensive experiments demonstrate that our method outperforms existing models in both image quality and generation speed. For example, our 1.5B model, with fewer parameters and faster inference speed, outperforms the largest VAR-d30-2B. Moreover, our largest model M-VAR-d32 impressively registers 1.78 FID on ImageNet 256times256 and outperforms the prior-art autoregressive models LlamaGen/VAR by 0.4/0.19 and popular diffusion models LDM/DiT by 1.82/0.49, respectively. Code is avaiable at https://github.com/OliverRensu/MVAR.
Gated Fusion Enhanced Multi-Scale Hierarchical Graph Convolutional Network for Stock Movement Prediction
Accurately predicting stock market movements remains a formidable challenge due to the inherent volatility and complex interdependencies among stocks. Although multi-scale Graph Neural Networks (GNNs) hold potential for modeling these relationships, they frequently neglect two key points: the subtle intra-attribute patterns within each stock affecting inter-stock correlation, and the biased attention to coarse- and fine-grained features during multi-scale sampling. To overcome these challenges, we introduce MS-HGFN (Multi-Scale Hierarchical Graph Fusion Network). The model features a hierarchical GNN module that forms dynamic graphs by learning patterns from intra-attributes and features from inter-attributes over different time scales, thus comprehensively capturing spatio-temporal dependencies. Additionally, a top-down gating approach facilitates the integration of multi-scale spatio-temporal features, preserving critical coarse- and fine-grained features without too much interference. Experiments utilizing real-world datasets from U.S. and Chinese stock markets demonstrate that MS-HGFN outperforms both traditional and advanced models, yielding up to a 1.4% improvement in prediction accuracy and enhanced stability in return simulations. The code is available at https://anonymous.4open.science/r/MS-HGFN.
Pooling Image Datasets With Multiple Covariate Shift and Imbalance
Small sample sizes are common in many disciplines, which necessitates pooling roughly similar datasets across multiple institutions to study weak but relevant associations between images and disease outcomes. Such data often manifest shift/imbalance in covariates (i.e., secondary non-imaging data). Controlling for such nuisance variables is common within standard statistical analysis, but the ideas do not directly apply to overparameterized models. Consequently, recent work has shown how strategies from invariant representation learning provides a meaningful starting point, but the current repertoire of methods is limited to accounting for shifts/imbalances in just a couple of covariates at a time. In this paper, we show how viewing this problem from the perspective of Category theory provides a simple and effective solution that completely avoids elaborate multi-stage training pipelines that would otherwise be needed. We show the effectiveness of this approach via extensive experiments on real datasets. Further, we discuss how this style of formulation offers a unified perspective on at least 5+ distinct problem settings, from self-supervised learning to matching problems in 3D reconstruction.
On Generalizations of Some Distance Based Classifiers for HDLSS Data
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get masked by scale differences. To rectify this problem, several modifications of these classifiers have been proposed in the literature. However, existing methods are confined to location and scale differences only, and often fail to discriminate among populations differing outside of the first two moments. In this article, we propose some simple transformations of these classifiers resulting into improved performance even when the underlying populations have the same location and scale. We further propose a generalization of these classifiers based on the idea of grouping of variables. The high-dimensional behavior of the proposed classifiers is studied theoretically. Numerical experiments with a variety of simulated examples as well as an extensive analysis of real data sets exhibit advantages of the proposed methods.
CauKer: classification time series foundation models can be pretrained on synthetic data only
Time series foundation models (TSFMs) have recently gained significant attention due to their strong zero-shot capabilities and widespread real-world applications. Such models typically require a computationally costly pretraining on large-scale, carefully curated collections of real-world sequences. To allow for a sample-efficient pretraining of TSFMs, we propose CauKer, a novel algorithm designed to generate diverse, causally coherent synthetic time series with realistic trends, seasonality, and nonlinear interactions. CauKer combines Gaussian Process (GP) kernel composition with Structural Causal Models (SCM) to produce data for sample-efficient pretraining of state-of-the-art classification TSFMs having different architectures and following different pretraining approaches. Additionally, our experiments reveal that CauKer-generated datasets exhibit clear scaling laws for both dataset size (10K to 10M samples) and model capacity (1M to 783M parameters), unlike real-world datasets, which display irregular scaling behavior.
Flat-sky Angular Power Spectra Revisited
We revisit the flat-sky approximation for evaluating the angular power spectra of projected random fields by retaining information about the correlations along the line of sight. With broad, overlapping radial window functions, these line-of-sight correlations are suppressed and are ignored in the Limber approximation. However, retaining the correlations is important for narrow window functions or unequal-time spectra but introduces significant computational difficulties due to the highly oscillatory nature of the integrands involved. We deal with the integral over line-of-sight wave-modes in the flat-sky approximation analytically, using the FFTlog expansion of the 3D power spectrum. This results in an efficient computational method, which is a substantial improvement compared to any full-sky approaches. We apply our results to galaxy clustering (with and without redshift-space distortions), CMB lensing and galaxy lensing observables. For clustering, we find excellent agreement with the full-sky results on large (percent-level agreement) and intermediate or small (subpercent agreement) scales, dramatically out-performing the Limber approximation for both wide and narrow window functions, and in equal- and unequal-time cases. In the case of lensing, we show on the full sky that the angular power spectrum of the convergence can be very well approximated by projecting the 3D Laplacian (rather than the correct angular Laplacian) of the gravitational potential, even on large scales. Combining this approximation with our flat-sky techniques provides an efficient and accurate evaluation of the CMB lensing angular power spectrum on all scales.
Enhancing Neural Training via a Correlated Dynamics Model
As neural networks grow in scale, their training becomes both computationally demanding and rich in dynamics. Amidst the flourishing interest in these training dynamics, we present a novel observation: Parameters during training exhibit intrinsic correlations over time. Capitalizing on this, we introduce Correlation Mode Decomposition (CMD). This algorithm clusters the parameter space into groups, termed modes, that display synchronized behavior across epochs. This enables CMD to efficiently represent the training dynamics of complex networks, like ResNets and Transformers, using only a few modes. Moreover, test set generalization is enhanced. We introduce an efficient CMD variant, designed to run concurrently with training. Our experiments indicate that CMD surpasses the state-of-the-art method for compactly modeled dynamics on image classification. Our modeling can improve training efficiency and lower communication overhead, as shown by our preliminary experiments in the context of federated learning.
ClusterNet: A Perception-Based Clustering Model for Scattered Data
Visualizations for scattered data are used to make users understand certain attributes of their data by solving different tasks, e.g. correlation estimation, outlier detection, cluster separation. In this paper, we focus on the later task, and develop a technique that is aligned to human perception, that can be used to understand how human subjects perceive clusterings in scattered data and possibly optimize for better understanding. Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques, such as for instance k-means or DBSCAN. However, as these algorithms are based on non-perceptual metrics, we can show in our experiments, that their output do not reflect human cluster perception. We propose a learning strategy which directly operates on scattered data. To learn perceptual cluster separation on this data, we crowdsourced a large scale dataset, consisting of 7,320 point-wise cluster affiliations for bivariate data, which has been labeled by 384 human crowd workers. Based on this data, we were able to train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability. In order to train ClusterNet on human annotated data, we use a PointNet++ architecture enabling inference on point clouds directly. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate perceptual agreement of cluster separation for real-world data. We further report the training and evaluation protocol of ClusterNet and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. Finally, we compare our approach against existing state-of-the-art clustering techniques and can show, that ClusterNet is able to generalize to unseen and out of scope data.
Simulated Rotation Measure Sky from Primordial Magnetic Fields
Primordial Magnetic Fields (PMFs) -- magnetic fields originating in the early Universe and permeating the cosmological scales today -- can explain the observed microGauss-level magnetisation of galaxies and their clusters. In light of current and upcoming all-sky radio surveys, PMFs have drawn attention not only as major candidates for explaining the large-scale magnetisation of the Universe, but also as potential probes of early-Universe physics. In this paper, using cosmological simulations coupled with light-cone analysis, we study for the first time the imprints of the PMF structure on the mean rotation measure (RM) originating in the intergalactic medium (IGM), langle RM_{IGM}rangle. We introduce a new method for producing full-sky RM_{IGM} distributions and analyse the autocorrelation of RM_{IGM} on small and large angular scales; we find that PMF structures indeed show distinct signatures. The large-scale uniform model (characterised by an initially unlimited coherence scale) leads to correlations up to 90 degrees, while correlations for small-scale stochastic PMF models drop by factor of 100 at 0.17, 0.13 and 0.11 degrees angular scales, corresponding to 5.24, 4.03 and 3.52 Mpc scales (at z=2 redshift) for magnetic fields with comoving 3.49, 1.81, 1.00 Mpc/h coherence scales, respectively; the correlation amplitude of the PMF model with comoving sim 19 Mpc/h coherence scale drops only by factor of 10 at 1 degree (30.6 Mpc). These results suggests that improvements in the modelling of Galactic RM will be necessary to investigate the signature of large-scale correlated PMFs. A comparison of langle RM_{IGM}rangle redshift dependence obtained from our simulations with that from the LOFAR Two-metre Sky Survey shows agreement with our previous upper limits' estimates on the PMF strength derived from RM-rms analysis.
TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting
Time series forecasting is widely used in extensive applications, such as traffic planning and weather forecasting. However, real-world time series usually present intricate temporal variations, making forecasting extremely challenging. Going beyond the mainstream paradigms of plain decomposition and multiperiodicity analysis, we analyze temporal variations in a novel view of multiscale-mixing, which is based on an intuitive but important observation that time series present distinct patterns in different sampling scales. The microscopic and the macroscopic information are reflected in fine and coarse scales respectively, and thereby complex variations can be inherently disentangled. Based on this observation, we propose TimeMixer as a fully MLP-based architecture with Past-Decomposable-Mixing (PDM) and Future-Multipredictor-Mixing (FMM) blocks to take full advantage of disentangled multiscale series in both past extraction and future prediction phases. Concretely, PDM applies the decomposition to multiscale series and further mixes the decomposed seasonal and trend components in fine-to-coarse and coarse-to-fine directions separately, which successively aggregates the microscopic seasonal and macroscopic trend information. FMM further ensembles multiple predictors to utilize complementary forecasting capabilities in multiscale observations. Consequently, TimeMixer is able to achieve consistent state-of-the-art performances in both long-term and short-term forecasting tasks with favorable run-time efficiency.
Modular versus Hierarchical: A Structural Signature of Topic Popularity in Mathematical Research
Mathematical researchers, especially those in early-career positions, face critical decisions about topic specialization with limited information about the collaborative environments of different research areas. The aim of this paper is to study how the popularity of a research topic is associated with the structure of that topic's collaboration network, as observed by a suite of measures capturing organizational structure at several scales. We apply these measures to 1,938 algorithmically discovered topics across 121,391 papers sourced from arXiv metadata during the period 2020--2025. Our analysis, which controls for the confounding effects of network size, reveals a structural dichotomy--we find that popular topics organize into modular "schools of thought," while niche topics maintain hierarchical core-periphery structures centered around established experts. This divide is not an artifact of scale, but represents a size-independent structural pattern correlated with popularity. We also document a "constraint reversal": after controlling for size, researchers in popular fields face greater structural constraints on collaboration opportunities, contrary to conventional expectations. Our findings suggest that topic selection is an implicit choice between two fundamentally different collaborative environments, each with distinct implications for a researcher's career. To make these structural patterns transparent to the research community, we developed the Math Research Compass (https://mathresearchcompass.com), an interactive platform providing data on topic popularity and collaboration patterns across mathematical topics.
Self-similarity Driven Scale-invariant Learning for Weakly Supervised Person Search
Weakly supervised person search aims to jointly detect and match persons with only bounding box annotations. Existing approaches typically focus on improving the features by exploring relations of persons. However, scale variation problem is a more severe obstacle and under-studied that a person often owns images with different scales (resolutions). On the one hand, small-scale images contain less information of a person, thus affecting the accuracy of the generated pseudo labels. On the other hand, the similarity of cross-scale images is often smaller than that of images with the same scale for a person, which will increase the difficulty of matching. In this paper, we address this problem by proposing a novel one-step framework, named Self-similarity driven Scale-invariant Learning (SSL). Scale invariance can be explored based on the self-similarity prior that it shows the same statistical properties of an image at different scales. To this end, we introduce a Multi-scale Exemplar Branch to guide the network in concentrating on the foreground and learning scale-invariant features by hard exemplars mining. To enhance the discriminative power of the features in an unsupervised manner, we introduce a dynamic multi-label prediction which progressively seeks true labels for training. It is adaptable to different types of unlabeled data and serves as a compensation for clustering based strategy. Experiments on PRW and CUHK-SYSU databases demonstrate the effectiveness of our method.
Assessment of the Reliablity of a Model's Decision by Generalizing Attribution to the Wavelet Domain
Neural networks have shown remarkable performance in computer vision, but their deployment in numerous scientific and technical fields is challenging due to their black-box nature. Scientists and practitioners need to evaluate the reliability of a decision, i.e., to know simultaneously if a model relies on the relevant features and whether these features are robust to image corruptions. Existing attribution methods aim to provide human-understandable explanations by highlighting important regions in the image domain, but fail to fully characterize a decision process's reliability. To bridge this gap, we introduce the Wavelet sCale Attribution Method (WCAM), a generalization of attribution from the pixel domain to the space-scale domain using wavelet transforms. Attribution in the wavelet domain reveals where {\it and} on what scales the model focuses, thus enabling us to assess whether a decision is reliable.
Probing small-scale power spectrum with gravitational-wave diffractive lensing
We develop a novel way to probe subgalactic-scale matter distribution with diffractive lensing on gravitational waves. Five-year observations from Einstein Telescope and DECIGO are expected to probe k= 10^5sim 10^8 ,{rm Mpc}^{-1} down to P(k) = 10^{-16} sim 10^{-14} ,{rm Mpc}^3 level. These results can be interpreted in terms of primordial black holes in the range M_{rm PBH} gtrsim 10^{-3}M_odot down to f_{rm PBH} = 10^{-6} level, or QCD axion minihalos in the range m_a = 10^{-3} sim 10^{-12} ,{rm eV}. A key result of the paper is the approximate relation between the scale k and the gravitational wave frequency f, derived in an ensemble of `multi-lensing' events. This relation enables direct measurement of the power spectrum at specific scales, with sensitivities characterized by model-independent kernels delta P(k). Additionally, we delineate the statistical properties of `multi-lensing' based on the `Fresnel number' N_F. When N_F cal O(1), the statistical significance can be approximately calculated by Variance of lensing effects, which is directly related to the power spectrum among other moments of matter distribution.
Environmental dependence of galaxy properties in the southern GAMA regions
Using data from the Galaxy and Mass Assembly (GAMA) survey, we investigate how galaxy properties correlate with the local environment, focusing on the two southern regions of the survey (G02 and G23) that have not previously been examined in this context. We employ two-point and marked correlation functions to quantify the environmental dependence of galaxy color, stellar mass, luminosity across the u, g, r, J, and K bands, as well as star formation rate (SFR) and specific star formation rate (sSFR). We also assess the impact of redshift incompleteness and cosmic variance on these clustering measurements. Our results show that u-r and g-r colors are most strongly correlated with local overdensity, followed by stellar mass. The sSFR exhibits a clear inverse relationship with density of the environment, consistent with the trend observed for u-band luminosity, which traces young stellar populations. In contrast, galaxies brighter in the g, J, and K bands preferentially inhabit denser regions. By comparing our measurements from the southern regions with those from the equatorial regions of GAMA, we find that cosmic variance does not significantly influence our conclusions. However, redshift incompleteness affects the clustering measurements, as revealed through comparisons of subsets within the G02 region. The measured correlations provide key constraints for models of galaxy assembly across mass and environment, while the environmental trends in color and near-infrared luminosity offer a means to trace stellar mass growth and quenching with redshift.
Causal discovery from conditionally stationary time-series
Causal discovery, i.e., inferring underlying cause-effect relationships from observations of a scene or system, is an inherent mechanism in human cognition, but has been shown to be highly challenging to automate. The majority of approaches in the literature aiming for this task consider constrained scenarios with fully observed variables or data from stationary time-series. In this work we aim for causal discovery in a more general class of scenarios, scenes with non-stationary behavior over time. For our purposes we here regard a scene as a composition objects interacting with each other over time. Non-stationarity is modeled as stationarity conditioned on an underlying variable, a state, which can be of varying dimension, more or less hidden given observations of the scene, and also depend more or less directly on these observations. We propose a probabilistic deep learning approach called State-Dependent Causal Inference (SDCI) for causal discovery in such conditionally stationary time-series data. Results in two different synthetic scenarios show that this method is able to recover the underlying causal dependencies with high accuracy even in cases with hidden states.
Central limit theorems under non-stationarity via relative weak convergence
Statistical inference for non-stationary data is hindered by the failure of classical central limit theorems (CLTs), not least because there is no fixed Gaussian limit to converge to. To resolve this, we introduce relative weak convergence, an extension of weak convergence that compares a statistic or process to a sequence of evolving processes. Relative weak convergence retains the essential consequences of classical weak convergence and coincides with it under stationarity. Crucially, it applies in general non-stationary settings where classical weak convergence fails. We establish concrete relative CLTs for random vectors and empirical processes, along with sequential, weighted, and bootstrap variants, that parallel the state-of-the-art in stationary settings. Our framework and results offer simple, plug-in replacements for classical CLTs whenever stationarity is untenable, as illustrated by applications in nonparametric trend estimation and hypothesis testing.
Spurious Correlations in Machine Learning: A Survey
Machine learning systems are known to be sensitive to spurious correlations between biased features of the inputs (e.g., background, texture, and secondary objects) and the corresponding labels. These features and their correlations with the labels are known as "spurious" because they tend to change with shifts in real-world data distributions, which can negatively impact the model's generalization and robustness. In this survey, we provide a comprehensive review of this issue, along with a taxonomy of current state-of-the-art methods for addressing spurious correlations in machine learning models. Additionally, we summarize existing datasets, benchmarks, and metrics to aid future research. The paper concludes with a discussion of the recent advancements and future research challenges in this field, aiming to provide valuable insights for researchers in the related domains.
TelecomTS: A Multi-Modal Observability Dataset for Time Series and Language Analysis
Modern enterprises generate vast streams of time series metrics when monitoring complex systems, known as observability data. Unlike conventional time series from domains such as weather, observability data are zero-inflated, highly stochastic, and exhibit minimal temporal structure. Despite their importance, observability datasets are underrepresented in public benchmarks due to proprietary restrictions. Existing datasets are often anonymized and normalized, removing scale information and limiting their use for tasks beyond forecasting, such as anomaly detection, root-cause analysis, and multi-modal reasoning. To address this gap, we introduce TelecomTS, a large-scale observability dataset derived from a 5G telecommunications network. TelecomTS features heterogeneous, de-anonymized covariates with explicit scale information and supports a suite of downstream tasks, including anomaly detection, root-cause analysis, and a question-answering benchmark requiring multi-modal reasoning. Benchmarking state-of-the-art time series, language, and reasoning models reveals that existing approaches struggle with the abrupt, noisy, and high-variance dynamics of observability data. Our experiments also underscore the importance of preserving covariates' absolute scale, emphasizing the need for foundation time series models that natively leverage scale information for practical observability applications.
CLAMS: A Cluster Ambiguity Measure for Estimating Perceptual Variability in Visual Clustering
Visual clustering is a common perceptual task in scatterplots that supports diverse analytics tasks (e.g., cluster identification). However, even with the same scatterplot, the ways of perceiving clusters (i.e., conducting visual clustering) can differ due to the differences among individuals and ambiguous cluster boundaries. Although such perceptual variability casts doubt on the reliability of data analysis based on visual clustering, we lack a systematic way to efficiently assess this variability. In this research, we study perceptual variability in conducting visual clustering, which we call Cluster Ambiguity. To this end, we introduce CLAMS, a data-driven visual quality measure for automatically predicting cluster ambiguity in monochrome scatterplots. We first conduct a qualitative study to identify key factors that affect the visual separation of clusters (e.g., proximity or size difference between clusters). Based on study findings, we deploy a regression module that estimates the human-judged separability of two clusters. Then, CLAMS predicts cluster ambiguity by analyzing the aggregated results of all pairwise separability between clusters that are generated by the module. CLAMS outperforms widely-used clustering techniques in predicting ground truth cluster ambiguity. Meanwhile, CLAMS exhibits performance on par with human annotators. We conclude our work by presenting two applications for optimizing and benchmarking data mining techniques using CLAMS. The interactive demo of CLAMS is available at clusterambiguity.dev.
On the Identifiability and Estimation of Causal Location-Scale Noise Models
We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect Y can be written as a function of the cause X and a noise source N independent of X, which may be scaled by a positive function g over the cause, i.e., Y = f(X) + g(X)N. Despite the generality of the model class, we show the causal direction is identifiable up to some pathological cases. To empirically validate these theoretical findings, we propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks. Both model the conditional distribution of Y given X as a Gaussian parameterized by its natural parameters. When the feature maps are correctly specified, we prove that our estimator is jointly concave, and a consistent estimator for the cause-effect identification task. Although the the neural network does not inherit those guarantees, it can fit functions of arbitrary complexity, and reaches state-of-the-art performance across benchmarks.
Measuring and Reducing Gendered Correlations in Pre-trained Models
Pre-trained models have revolutionized natural language understanding. However, researchers have found they can encode artifacts undesired in many applications, such as professions correlating with one gender more than another. We explore such gendered correlations as a case study for how to address unintended correlations in pre-trained models. We define metrics and reveal that it is possible for models with similar accuracy to encode correlations at very different rates. We show how measured correlations can be reduced with general-purpose techniques, and highlight the trade offs different strategies have. With these results, we make recommendations for training robust models: (1) carefully evaluate unintended correlations, (2) be mindful of seemingly innocuous configuration differences, and (3) focus on general mitigations.
MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification
Multivariate Time Series Classification (MTSC) is crucial in extensive practical applications, such as environmental monitoring, medical EEG analysis, and action recognition. Real-world time series datasets typically exhibit complex dynamics. To capture this complexity, RNN-based, CNN-based, Transformer-based, and hybrid models have been proposed. Unfortunately, current deep learning-based methods often neglect the simultaneous construction of local features and global dependencies at different time scales, lacking sufficient feature extraction capabilities to achieve satisfactory classification accuracy. To address these challenges, we propose a novel Multiscale Periodic Time Series Network (MPTSNet), which integrates multiscale local patterns and global correlations to fully exploit the inherent information in time series. Recognizing the multi-periodicity and complex variable correlations in time series, we use the Fourier transform to extract primary periods, enabling us to decompose data into multiscale periodic segments. Leveraging the inherent strengths of CNN and attention mechanism, we introduce the PeriodicBlock, which adaptively captures local patterns and global dependencies while offering enhanced interpretability through attention integration across different periodic scales. The experiments on UEA benchmark datasets demonstrate that the proposed MPTSNet outperforms 21 existing advanced baselines in the MTSC tasks.
Can Model Uncertainty Function as a Proxy for Multiple-Choice Question Item Difficulty?
Estimating the difficulty of multiple-choice questions would be great help for educators who must spend substantial time creating and piloting stimuli for their tests, and for learners who want to practice. Supervised approaches to difficulty estimation have yielded to date mixed results. In this contribution we leverage an aspect of generative large models which might be seen as a weakness when answering questions, namely their uncertainty, and exploit it towards exploring correlations between two different metrics of uncertainty, and the actual student response distribution. While we observe some present but weak correlations, we also discover that the models' behaviour is different in the case of correct vs wrong answers, and that correlations differ substantially according to the different question types which are included in our fine-grained, previously unused dataset of 451 questions from a Biopsychology course. In discussing our findings, we also suggest potential avenues to further leverage model uncertainty as an additional proxy for item difficulty.
Observation of nuclear modification of energy-energy correlators inside jets in heavy ion collisions
Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70 nb^{-1}. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications.
Fast Combinatorial Algorithms for Min Max Correlation Clustering
We introduce fast algorithms for correlation clustering with respect to the Min Max objective that provide constant factor approximations on complete graphs. Our algorithms are the first purely combinatorial approximation algorithms for this problem. We construct a novel semi-metric on the set of vertices, which we call the correlation metric, that indicates to our clustering algorithms whether pairs of nodes should be in the same cluster. The paper demonstrates empirically that, compared to prior work, our algorithms sacrifice little in the objective quality to obtain significantly better run-time. Moreover, our algorithms scale to larger networks that are effectively intractable for known algorithms.
Loss-to-Loss Prediction: Scaling Laws for All Datasets
While scaling laws provide a reliable methodology for predicting train loss across compute scales for a single data distribution, less is known about how these predictions should change as we change the distribution. In this paper, we derive a strategy for predicting one loss from another and apply it to predict across different pre-training datasets and from pre-training data to downstream task data. Our predictions extrapolate well even at 20x the largest FLOP budget used to fit the curves. More precisely, we find that there are simple shifted power law relationships between (1) the train losses of two models trained on two separate datasets when the models are paired by training compute (train-to-train), (2) the train loss and the test loss on any downstream distribution for a single model (train-to-test), and (3) the test losses of two models trained on two separate train datasets (test-to-test). The results hold up for pre-training datasets that differ substantially (some are entirely code and others have no code at all) and across a variety of downstream tasks. Finally, we find that in some settings these shifted power law relationships can yield more accurate predictions than extrapolating single-dataset scaling laws.
Dense Hebbian neural networks: a replica symmetric picture of unsupervised learning
We consider dense, associative neural-networks trained with no supervision and we investigate their computational capabilities analytically, via a statistical-mechanics approach, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as the quality and quantity of the training dataset and the network storage, valid in the limit of large network size and structureless datasets. Moreover, we establish a bridge between macroscopic observables standardly used in statistical mechanics and loss functions typically used in the machine learning. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate neural networks in general.
Causal isotonic calibration for heterogeneous treatment effects
We propose causal isotonic calibration, a novel nonparametric method for calibrating predictors of heterogeneous treatment effects. Furthermore, we introduce cross-calibration, a data-efficient variant of calibration that eliminates the need for hold-out calibration sets. Cross-calibration leverages cross-fitted predictors and generates a single calibrated predictor using all available data. Under weak conditions that do not assume monotonicity, we establish that both causal isotonic calibration and cross-calibration achieve fast doubly-robust calibration rates, as long as either the propensity score or outcome regression is estimated accurately in a suitable sense. The proposed causal isotonic calibrator can be wrapped around any black-box learning algorithm, providing robust and distribution-free calibration guarantees while preserving predictive performance.
Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes
It is commonplace to encounter heterogeneous or nonstationary data, of which the underlying generating process changes across domains or over time. Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper, we develop a framework for causal discovery from such data, called Constraint-based causal Discovery from heterogeneous/NOnstationary Data (CD-NOD), to find causal skeleton and directions and estimate the properties of mechanism changes. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a method to determine causal orientations by making use of independent changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. After learning the causal structure, next, we investigate how to efficiently estimate the "driving force" of the nonstationarity of a causal mechanism. That is, we aim to extract from data a low-dimensional representation of changes. The proposed methods are nonparametric, with no hard restrictions on data distributions and causal mechanisms, and do not rely on window segmentation. Furthermore, we find that data heterogeneity benefits causal structure identification even with particular types of confounders. Finally, we show the connection between heterogeneity/nonstationarity and soft intervention in causal discovery. Experimental results on various synthetic and real-world data sets (task-fMRI and stock market data) are presented to demonstrate the efficacy of the proposed methods.
High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes
Predicting the dependencies between observations from multiple time series is critical for applications such as anomaly detection, financial risk management, causal analysis, or demand forecasting. However, the computational and numerical difficulties of estimating time-varying and high-dimensional covariance matrices often limits existing methods to handling at most a few hundred dimensions or requires making strong assumptions on the dependence between series. We propose to combine an RNN-based time series model with a Gaussian copula process output model with a low-rank covariance structure to reduce the computational complexity and handle non-Gaussian marginal distributions. This permits to drastically reduce the number of parameters and consequently allows the modeling of time-varying correlations of thousands of time series. We show on several real-world datasets that our method provides significant accuracy improvements over state-of-the-art baselines and perform an ablation study analyzing the contributions of the different components of our model.
Learning Invariant Representations with Missing Data
Spurious correlations allow flexible models to predict well during training but poorly on related test distributions. Recent work has shown that models that satisfy particular independencies involving correlation-inducing nuisance variables have guarantees on their test performance. Enforcing such independencies requires nuisances to be observed during training. However, nuisances, such as demographics or image background labels, are often missing. Enforcing independence on just the observed data does not imply independence on the entire population. Here we derive mmd estimators used for invariance objectives under missing nuisances. On simulations and clinical data, optimizing through these estimates achieves test performance similar to using estimators that make use of the full data.
Untangling Gaussian Mixtures
Tangles were originally introduced as a concept to formalize regions of high connectivity in graphs. In recent years, they have also been discovered as a link between structural graph theory and data science: when interpreting similarity in data sets as connectivity between points, finding clusters in the data essentially amounts to finding tangles in the underlying graphs. This paper further explores the potential of tangles in data sets as a means for a formal study of clusters. Real-world data often follow a normal distribution. Accounting for this, we develop a quantitative theory of tangles in data sets drawn from Gaussian mixtures. To this end, we equip the data with a graph structure that models similarity between the points and allows us to apply tangle theory to the data. We provide explicit conditions under which tangles associated with the marginal Gaussian distributions exist asymptotically almost surely. This can be considered as a sufficient formal criterion for the separabability of clusters in the data.
Scaling Laws for Robust Comparison of Open Foundation Language-Vision Models and Datasets
In studies of transferable learning, scaling laws are obtained for various important foundation models to predict their properties and performance at larger scales. We show here how scaling law derivation can also be used for model and dataset comparison, allowing to decide which procedure is to be preferred for pre-training. For the first time, full scaling laws based on dense measurements across a wide span of model and samples seen scales are derived for two important language-vision learning procedures, CLIP and MaMMUT, that use either contrastive only or contrastive and captioning text generative loss. Ensuring sufficient prediction accuracy for held out points, we use derived scaling laws to compare both models, obtaining evidence for MaMMUT's stronger improvement with scale and better sample efficiency than standard CLIP. To strengthen validity of the comparison, we show scaling laws for various downstream tasks, classification, retrieval, and segmentation, and for different open datasets, DataComp, DFN and Re-LAION, observing consistently the same trends. We show that comparison can also be performed when deriving scaling laws with a constant learning rate schedule, reducing compute cost. Accurate derivation of scaling laws provides thus means to perform model and dataset comparison across scale spans, avoiding misleading conclusions based on measurements from single reference scales only, paving the road for systematic comparison and improvement of open foundation models and datasets for their creation. We release all the pre-trained models with their intermediate checkpoints, including openMaMMUT-L/14, which achieves 80.3% zero-shot ImageNet-1k accuracy, trained on 12.8B samples from DataComp-1.4B. Code for reproducing experiments in the paper and raw experiments data can be found at https://github.com/LAION-AI/scaling-laws-for-comparison.
Sensitivity Analysis On Loss Landscape
Gradients can be employed for sensitivity analysis. Here, we leverage the advantages of the Loss Landscape to comprehend which independent variables impact the dependent variable. We seek to grasp the loss landscape by utilizing first, second, and third derivatives through automatic differentiation. we know that Spearman's rank correlation coefficient can detect the monotonic relationship between two variables. However, I have found that second-order gradients, with certain configurations and parameters, provide information that can be visualized similarly to Spearman results, In this approach, we incorporate a loss function with an activation function, resulting in a non-linear pattern. Each exploration of the loss landscape through retraining yields new valuable information. Furthermore, the first and third derivatives are also beneficial, as they indicate the extent to which independent variables influence the dependent variable.
Pay Attention to Evolution: Time Series Forecasting with Deep Graph-Evolution Learning
Time-series forecasting is one of the most active research topics in artificial intelligence. Applications in real-world time series should consider two factors for achieving reliable predictions: modeling dynamic dependencies among multiple variables and adjusting the model's intrinsic hyperparameters. A still open gap in that literature is that statistical and ensemble learning approaches systematically present lower predictive performance than deep learning methods. They generally disregard the data sequence aspect entangled with multivariate data represented in more than one time series. Conversely, this work presents a novel neural network architecture for time-series forecasting that combines the power of graph evolution with deep recurrent learning on distinct data distributions; we named our method Recurrent Graph Evolution Neural Network (ReGENN). The idea is to infer multiple multivariate relationships between co-occurring time-series by assuming that the temporal data depends not only on inner variables and intra-temporal relationships (i.e., observations from itself) but also on outer variables and inter-temporal relationships (i.e., observations from other-selves). An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones, showing sound improvement of up to 64.87% over the competing algorithms. Furthermore, we present an analysis of the intermediate weights arising from ReGENN, showing that by looking at inter and intra-temporal relationships simultaneously, time-series forecasting is majorly improved if paying attention to how multiple multivariate data synchronously evolve.
Causal Inference by String Diagram Surgery
Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.
TTS-VAR: A Test-Time Scaling Framework for Visual Auto-Regressive Generation
Scaling visual generation models is essential for real-world content creation, yet requires substantial training and computational expenses. Alternatively, test-time scaling has garnered growing attention due to resource efficiency and promising performance. In this work, we present TTS-VAR, the first general test-time scaling framework for visual auto-regressive (VAR) models, modeling the generation process as a path searching problem. To dynamically balance computational efficiency with exploration capacity, we first introduce an adaptive descending batch size schedule throughout the causal generation process. Besides, inspired by VAR's hierarchical coarse-to-fine multi-scale generation, our framework integrates two key components: (i) At coarse scales, we observe that generated tokens are hard for evaluation, possibly leading to erroneous acceptance of inferior samples or rejection of superior samples. Noticing that the coarse scales contain sufficient structural information, we propose clustering-based diversity search. It preserves structural variety through semantic feature clustering, enabling later selection on samples with higher potential. (ii) In fine scales, resampling-based potential selection prioritizes promising candidates using potential scores, which are defined as reward functions incorporating multi-scale generation history. Experiments on the powerful VAR model Infinity show a notable 8.7% GenEval score improvement (from 0.69 to 0.75). Key insights reveal that early-stage structural features effectively influence final quality, and resampling efficacy varies across generation scales. Code is available at https://github.com/ali-vilab/TTS-VAR.
Hierarchical Joint Graph Learning and Multivariate Time Series Forecasting
Multivariate time series is prevalent in many scientific and industrial domains. Modeling multivariate signals is challenging due to their long-range temporal dependencies and intricate interactions--both direct and indirect. To confront these complexities, we introduce a method of representing multivariate signals as nodes in a graph with edges indicating interdependency between them. Specifically, we leverage graph neural networks (GNN) and attention mechanisms to efficiently learn the underlying relationships within the time series data. Moreover, we suggest employing hierarchical signal decompositions running over the graphs to capture multiple spatial dependencies. The effectiveness of our proposed model is evaluated across various real-world benchmark datasets designed for long-term forecasting tasks. The results consistently showcase the superiority of our model, achieving an average 23\% reduction in mean squared error (MSE) compared to existing models.
Contributions to Robust and Efficient Methods for Analysis of High Dimensional Data
A ubiquitous feature of data of our era is their extra-large sizes and dimensions. Analyzing such high-dimensional data poses significant challenges, since the feature dimension is often much larger than the sample size. This thesis introduces robust and computationally efficient methods to address several common challenges associated with high-dimensional data. In my first manuscript, I propose a coherent approach to variable screening that accommodates nonlinear associations. I develop a novel variable screening method that transcends traditional linear assumptions by leveraging mutual information, with an intended application in neuroimaging data. This approach allows for accurate identification of important variables by capturing nonlinear as well as linear relationships between the outcome and covariates. Building on this foundation, I develop new optimization methods for sparse estimation using nonconvex penalties in my second manuscript. These methods address notable challenges in current statistical computing practices, facilitating computationally efficient and robust analyses of complex datasets. The proposed method can be applied to a general class of optimization problems. In my third manuscript, I contribute to robust modeling of high-dimensional correlated observations by developing a mixed-effects model based on Tsallis power-law entropy maximization and discussed the theoretical properties of such distribution. This model surpasses the constraints of conventional Gaussian models by accommodating a broader class of distributions with enhanced robustness to outliers. Additionally, I develop a proximal nonlinear conjugate gradient algorithm that accelerates convergence while maintaining numerical stability, along with rigorous statistical properties for the proposed framework.
Effect Heterogeneity with Earth Observation in Randomized Controlled Trials: Exploring the Role of Data, Model, and Evaluation Metric Choice
Many social and environmental phenomena are associated with macroscopic changes in the built environment, captured by satellite imagery on a global scale and with daily temporal resolution. While widely used for prediction, these images and especially image sequences remain underutilized for causal inference, especially in the context of randomized controlled trials (RCTs), where causal identification is established by design. In this paper, we develop and compare a set of general tools for analyzing Conditional Average Treatment Effects (CATEs) from temporal satellite data that can be applied to any RCT where geographical identifiers are available. Through a simulation study, we analyze different modeling strategies for estimating CATE in sequences of satellite images. We find that image sequence representation models with more parameters generally yield a greater ability to detect heterogeneity. To explore the role of model and data choice in practice, we apply the approaches to two influential RCTs -- Banerjee et al. (2015), a poverty study in Cusco, Peru, and Bolsen et al. (2014), a water conservation experiment in Georgia, USA. We benchmark our image sequence models against image-only, tabular-only, and combined image-tabular data sources, summarizing practical implications for investigators in a multivariate analysis. Land cover classifications over satellite images facilitate interpretation of what image features drive heterogeneity. We also show robustness to data and model choice of satellite-based generalization of the RCT results to larger geographical areas outside the original. Overall, this paper shows how satellite sequence data can be incorporated into the analysis of RCTs, and provides evidence about the implications of data, model, and evaluation metric choice for causal analysis.
Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation Learning
Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data for scale-dependent domains, such as remote sensing. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a 2.4 - 5.6% non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a 0.9 mIoU to 1.7 mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression
Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.
Fractal Calibration for long-tailed object detection
Real-world datasets follow an imbalanced distribution, which poses significant challenges in rare-category object detection. Recent studies tackle this problem by developing re-weighting and re-sampling methods, that utilise the class frequencies of the dataset. However, these techniques focus solely on the frequency statistics and ignore the distribution of the classes in image space, missing important information. In contrast to them, we propose FRActal CALibration (FRACAL): a novel post-calibration method for long-tailed object detection. FRACAL devises a logit adjustment method that utilises the fractal dimension to estimate how uniformly classes are distributed in image space. During inference, it uses the fractal dimension to inversely downweight the probabilities of uniformly spaced class predictions achieving balance in two axes: between frequent and rare categories, and between uniformly spaced and sparsely spaced classes. FRACAL is a post-processing method and it does not require any training, also it can be combined with many off-the-shelf models such as one-stage sigmoid detectors and two-stage instance segmentation models. FRACAL boosts the rare class performance by up to 8.6% and surpasses all previous methods on LVIS dataset, while showing good generalisation to other datasets such as COCO, V3Det and OpenImages. We provide the code at https://github.com/kostas1515/FRACAL.
Quantifying Network Similarity using Graph Cumulants
How might one test the hypothesis that networks were sampled from the same distribution? Here, we compare two statistical tests that use subgraph counts to address this question. The first uses the empirical subgraph densities themselves as estimates of those of the underlying distribution. The second test uses a new approach that converts these subgraph densities into estimates of the graph cumulants of the distribution (without any increase in computational complexity). We demonstrate -- via theory, simulation, and application to real data -- the superior statistical power of using graph cumulants. In summary, when analyzing data using subgraph/motif densities, we suggest using the corresponding graph cumulants instead.
Dynamic Scale Inference by Entropy Minimization
Given the variety of the visual world there is not one true scale for recognition: objects may appear at drastically different sizes across the visual field. Rather than enumerate variations across filter channels or pyramid levels, dynamic models locally predict scale and adapt receptive fields accordingly. The degree of variation and diversity of inputs makes this a difficult task. Existing methods either learn a feedforward predictor, which is not itself totally immune to the scale variation it is meant to counter, or select scales by a fixed algorithm, which cannot learn from the given task and data. We extend dynamic scale inference from feedforward prediction to iterative optimization for further adaptivity. We propose a novel entropy minimization objective for inference and optimize over task and structure parameters to tune the model to each input. Optimization during inference improves semantic segmentation accuracy and generalizes better to extreme scale variations that cause feedforward dynamic inference to falter.
A Model Zoo on Phase Transitions in Neural Networks
Using the weights of trained Neural Network (NN) models as data modality has recently gained traction as a research field - dubbed Weight Space Learning (WSL). Multiple recent works propose WSL methods to analyze models, evaluate methods, or synthesize weights. Weight space learning methods require populations of trained models as datasets for development and evaluation. However, existing collections of models - called `model zoos' - are unstructured or follow a rudimentary definition of diversity. In parallel, work rooted in statistical physics has identified phases and phase transitions in NN models. Models are homogeneous within the same phase but qualitatively differ from one phase to another. We combine the idea of `model zoos' with phase information to create a controlled notion of diversity in populations. We introduce 12 large-scale zoos that systematically cover known phases and vary over model architecture, size, and datasets. These datasets cover different modalities, such as computer vision, natural language processing, and scientific ML. For every model, we compute loss landscape metrics and validate full coverage of the phases. With this dataset, we provide the community with a resource with a wide range of potential applications for WSL and beyond. Evidence suggests the loss landscape phase plays a role in applications such as model training, analysis, or sparsification. We demonstrate this in an exploratory study of the downstream methods like transfer learning or model weights averaging.
Predicting Rare Events by Shrinking Towards Proportional Odds
Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.
metabench -- A Sparse Benchmark to Measure General Ability in Large Language Models
Large Language Models (LLMs) vary in their abilities on a range of tasks. Initiatives such as the Open LLM Leaderboard aim to quantify these differences with several large benchmarks (sets of test items to which an LLM can respond either correctly or incorrectly). However, high correlations within and between benchmark scores suggest that (1) there exists a small set of common underlying abilities that these benchmarks measure, and (2) items tap into redundant information and the benchmarks may thus be considerably compressed. We use data from n > 5000 LLMs to identify the most informative items of six benchmarks, ARC, GSM8K, HellaSwag, MMLU, TruthfulQA and WinoGrande (with d=28,632 items in total). From them we distill a sparse benchmark, metabench, that has less than 3% of the original size of all six benchmarks combined. This new sparse benchmark goes beyond point scores by yielding estimators of the underlying benchmark-specific abilities. We show that these estimators (1) can be used to reconstruct each original individual benchmark score with, on average, 1.5% root mean square error (RMSE), (2) reconstruct the original total score with 0.8% RMSE, and (3) have a single underlying common factor whose Spearman correlation with the total score is r = 0.93.
ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets
Several studies have compared the in-distribution (ID) and out-of-distribution (OOD) performance of models in computer vision and NLP. They report a frequent positive correlation and some surprisingly never even observe an inverse correlation indicative of a necessary trade-off. The possibility of inverse patterns is important to determine whether ID performance can serve as a proxy for OOD generalization capabilities. This paper shows with multiple datasets that inverse correlations between ID and OOD performance do happen in real-world data - not only in theoretical worst-case settings. We also explain theoretically how these cases can arise even in a minimal linear setting, and why past studies could miss such cases due to a biased selection of models. Our observations lead to recommendations that contradict those found in much of the current literature. - High OOD performance sometimes requires trading off ID performance. - Focusing on ID performance alone may not lead to optimal OOD performance. It may produce diminishing (eventually negative) returns in OOD performance. - In these cases, studies on OOD generalization that use ID performance for model selection (a common recommended practice) will necessarily miss the best-performing models, making these studies blind to a whole range of phenomena.
Understanding Hallucinations in Diffusion Models through Mode Interpolation
Colloquially speaking, image generation models based upon diffusion processes are frequently said to exhibit "hallucinations," samples that could never occur in the training data. But where do such hallucinations come from? In this paper, we study a particular failure mode in diffusion models, which we term mode interpolation. Specifically, we find that diffusion models smoothly "interpolate" between nearby data modes in the training set, to generate samples that are completely outside the support of the original training distribution; this phenomenon leads diffusion models to generate artifacts that never existed in real data (i.e., hallucinations). We systematically study the reasons for, and the manifestation of this phenomenon. Through experiments on 1D and 2D Gaussians, we show how a discontinuous loss landscape in the diffusion model's decoder leads to a region where any smooth approximation will cause such hallucinations. Through experiments on artificial datasets with various shapes, we show how hallucination leads to the generation of combinations of shapes that never existed. Finally, we show that diffusion models in fact know when they go out of support and hallucinate. This is captured by the high variance in the trajectory of the generated sample towards the final few backward sampling process. Using a simple metric to capture this variance, we can remove over 95% of hallucinations at generation time while retaining 96% of in-support samples. We conclude our exploration by showing the implications of such hallucination (and its removal) on the collapse (and stabilization) of recursive training on synthetic data with experiments on MNIST and 2D Gaussians dataset. We release our code at https://github.com/locuslab/diffusion-model-hallucination.
Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning
Due to the unsupervised nature of anomaly detection, the key to fueling deep models is finding supervisory signals. Different from current reconstruction-guided generative models and transformation-based contrastive models, we devise novel data-driven supervision for tabular data by introducing a characteristic -- scale -- as data labels. By representing varied sub-vectors of data instances, we define scale as the relationship between the dimensionality of original sub-vectors and that of representations. Scales serve as labels attached to transformed representations, thus offering ample labeled data for neural network training. This paper further proposes a scale learning-based anomaly detection method. Supervised by the learning objective of scale distribution alignment, our approach learns the ranking of representations converted from varied subspaces of each data instance. Through this proxy task, our approach models inherent regularities and patterns within data, which well describes data "normality". Abnormal degrees of testing instances are obtained by measuring whether they fit these learned patterns. Extensive experiments show that our approach leads to significant improvement over state-of-the-art generative/contrastive anomaly detection methods.
Chaos as an interpretable benchmark for forecasting and data-driven modelling
The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.
Parallel Learning by Multitasking Neural Networks
A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).
Scaling limit of a long-range random walk in time-correlated random environment
This paper concerns a long-range random walk in random environment in dimension 1+1, where the environmental disorder is independent in space but has long-range correlations in time. We prove that two types of rescaled partition functions converge weakly to the Stratonovich solution and the It\^o-Skorohod solution respectively of a fractional stochastic heat equation with multiplicative Gaussian noise which is white in space and colored in time.
Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors
We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab
Training Language Models on the Knowledge Graph: Insights on Hallucinations and Their Detectability
While many capabilities of language models (LMs) improve with increased training budget, the influence of scale on hallucinations is not yet fully understood. Hallucinations come in many forms, and there is no universally accepted definition. We thus focus on studying only those hallucinations where a correct answer appears verbatim in the training set. To fully control the training data content, we construct a knowledge graph (KG)-based dataset, and use it to train a set of increasingly large LMs. We find that for a fixed dataset, larger and longer-trained LMs hallucinate less. However, hallucinating on leq5% of the training data requires an order of magnitude larger model, and thus an order of magnitude more compute, than Hoffmann et al. (2022) reported was optimal. Given this costliness, we study how hallucination detectors depend on scale. While we see detector size improves performance on fixed LM's outputs, we find an inverse relationship between the scale of the LM and the detectability of its hallucinations.
Learning multi-domain feature relation for visible and Long-wave Infrared image patch matching
Recently, learning-based algorithms have achieved promising performance on cross-spectral image patch matching, which, however, is still far from satisfactory for practical application. On the one hand, a lack of large-scale dataset with diverse scenes haunts its further improvement for learning-based algorithms, whose performances and generalization rely heavily on the dataset size and diversity. On the other hand, more emphasis has been put on feature relation in the spatial domain whereas the scale dependency between features has often been ignored, leading to performance degeneration especially when encountering significant appearance variations for cross-spectral patches. To address these issues, we publish, to be best of our knowledge, the largest visible and Long-wave Infrared (LWIR) image patch matching dataset, termed VL-CMIM, which contains 1300 pairs of strictly aligned visible and LWIR images and over 2 million patch pairs covering diverse scenes such as asteroid, field, country, build, street and water.In addition, a multi-domain feature relation learning network (MD-FRN) is proposed. Input by the features extracted from a four-branch network, both feature relations in spatial and scale domains are learned via a spatial correlation module (SCM) and multi-scale adaptive aggregation module (MSAG), respectively. To further aggregate the multi-domain relations, a deep domain interactive mechanism (DIM) is applied, where the learnt spatial-relation and scale-relation features are exchanged and further input into MSCRM and SCM. This mechanism allows our model to learn interactive cross-domain feature relations, leading to improved robustness to significant appearance changes due to different modality.
The Flaw of Averages: Quantifying Uniformity of Performance on Benchmarks
Benchmarks shape scientific conclusions about model capabilities and steer model development. This creates a feedback loop: stronger benchmarks drive better models, and better models demand more discriminative benchmarks. Ensuring benchmark reliability is therefore essential for trustworthy evaluation and meaningful progress. In this work, we study benchmark reliability from a distributional perspective and introduce benchmark harmony, which measures how uniformly a model's performance is distributed across the subdomains of a benchmark. We posit that high harmony is a desirable benchmark property, indicating that the aggregate metric reflects uniform competence across subdomains. Across 19 multiple-choice benchmarks and five model families, we map each benchmark onto a mean-variance plane of harmony computed across models, where high mean and low variance signal more reliable evaluation. Our analysis shows that less harmonious benchmarks can give misleading results, since overall accuracy may be disproportionately influenced by specific subdomains. For instance, ARC-Easy is overwhelmed by questions on Biological Concepts, overshadowing other critical subdomains such as Geography, Physics, Chemistry, and Environmental Science. By recommending that harmony should be reported alongside accuracy, we reframe evaluation from simple performance averages to a more robust, distributionally reliable measurement of performance.
From HODL to MOON: Understanding Community Evolution, Emotional Dynamics, and Price Interplay in the Cryptocurrency Ecosystem
This paper presents a large-scale analysis of the cryptocurrency community on Reddit, shedding light on the intricate relationship between the evolution of their activity, emotional dynamics, and price movements. We analyze over 130M posts on 122 cryptocurrency-related subreddits using temporal analysis, statistical modeling, and emotion detection. While /r/CryptoCurrency and /r/dogecoin are the most active subreddits, we find an overall surge in cryptocurrency-related activity in 2021, followed by a sharp decline. We also uncover a strong relationship in terms of cross-correlation between online activity and the price of various coins, with the changes in the number of posts mostly leading the price changes. Backtesting analysis shows that a straightforward strategy based on the cross-correlation where one buys/sells a coin if the daily number of posts about it is greater/less than the previous would have led to a 3x return on investment. Finally, we shed light on the emotional dynamics of the cryptocurrency communities, finding that joy becomes a prominent indicator during upward market performance, while a decline in the market manifests an increase in anger.
A Neural Scaling Law from Lottery Ticket Ensembling
Neural scaling laws (NSL) refer to the phenomenon where model performance improves with scale. Sharma & Kaplan analyzed NSL using approximation theory and predict that MSE losses decay as N^{-alpha}, alpha=4/d, where N is the number of model parameters, and d is the intrinsic input dimension. Although their theory works well for some cases (e.g., ReLU networks), we surprisingly find that a simple 1D problem y=x^2 manifests a different scaling law (alpha=1) from their predictions (alpha=4). We opened the neural networks and found that the new scaling law originates from lottery ticket ensembling: a wider network on average has more "lottery tickets", which are ensembled to reduce the variance of outputs. We support the ensembling mechanism by mechanistically interpreting single neural networks, as well as studying them statistically. We attribute the N^{-1} scaling law to the "central limit theorem" of lottery tickets. Finally, we discuss its potential implications for large language models and statistical physics-type theories of learning.
Extending Mixture of Experts Model to Investigate Heterogeneity of Trajectories: When, Where and How to Add Which Covariates
Researchers are usually interested in examining the impact of covariates when separating heterogeneous samples into latent classes that are more homogeneous. The majority of theoretical and empirical studies with such aims have focused on identifying covariates as predictors of class membership in the structural equation modeling framework. In other words, the covariates only indirectly affect the sample heterogeneity. However, the covariates' influence on between-individual differences can also be direct. This article presents a mixture model that investigates covariates to explain within-cluster and between-cluster heterogeneity simultaneously, known as a mixture-of-experts (MoE) model. This study aims to extend the MoE framework to investigate heterogeneity in nonlinear trajectories: to identify latent classes, covariates as predictors to clusters, and covariates that explain within-cluster differences in change patterns over time. Our simulation studies demonstrate that the proposed model generally estimates the parameters unbiasedly, precisely and exhibits appropriate empirical coverage for a nominal 95% confidence interval. This study also proposes implementing structural equation model forests to shrink the covariate space of the proposed mixture model. We illustrate how to select covariates and construct the proposed model with longitudinal mathematics achievement data. Additionally, we demonstrate that the proposed mixture model can be further extended in the structural equation modeling framework by allowing the covariates that have direct effects to be time-varying.
Statistical Indistinguishability of Learning Algorithms
When two different parties use the same learning rule on their own data, how can we test whether the distributions of the two outcomes are similar? In this paper, we study the similarity of outcomes of learning rules through the lens of the Total Variation (TV) distance of distributions. We say that a learning rule is TV indistinguishable if the expected TV distance between the posterior distributions of its outputs, executed on two training data sets drawn independently from the same distribution, is small. We first investigate the learnability of hypothesis classes using TV indistinguishable learners. Our main results are information-theoretic equivalences between TV indistinguishability and existing algorithmic stability notions such as replicability and approximate differential privacy. Then, we provide statistical amplification and boosting algorithms for TV indistinguishable learners.
InterChart: Benchmarking Visual Reasoning Across Decomposed and Distributed Chart Information
We introduce InterChart, a diagnostic benchmark that evaluates how well vision-language models (VLMs) reason across multiple related charts, a task central to real-world applications such as scientific reporting, financial analysis, and public policy dashboards. Unlike prior benchmarks focusing on isolated, visually uniform charts, InterChart challenges models with diverse question types ranging from entity inference and trend correlation to numerical estimation and abstract multi-step reasoning grounded in 2-3 thematically or structurally related charts. We organize the benchmark into three tiers of increasing difficulty: (1) factual reasoning over individual charts, (2) integrative analysis across synthetically aligned chart sets, and (3) semantic inference over visually complex, real-world chart pairs. Our evaluation of state-of-the-art open and closed-source VLMs reveals consistent and steep accuracy declines as chart complexity increases. We find that models perform better when we decompose multi-entity charts into simpler visual units, underscoring their struggles with cross-chart integration. By exposing these systematic limitations, InterChart provides a rigorous framework for advancing multimodal reasoning in complex, multi-visual environments.
Online Platt Scaling with Calibeating
We present an online post-hoc calibration method, called Online Platt Scaling (OPS), which combines the Platt scaling technique with online logistic regression. We demonstrate that OPS smoothly adapts between i.i.d. and non-i.i.d. settings with distribution drift. Further, in scenarios where the best Platt scaling model is itself miscalibrated, we enhance OPS by incorporating a recently developed technique called calibeating to make it more robust. Theoretically, our resulting OPS+calibeating method is guaranteed to be calibrated for adversarial outcome sequences. Empirically, it is effective on a range of synthetic and real-world datasets, with and without distribution drifts, achieving superior performance without hyperparameter tuning. Finally, we extend all OPS ideas to the beta scaling method.
Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs
We study the approximability of an existing framework for clustering edge-colored hypergraphs, which is closely related to chromatic correlation clustering and is motivated by machine learning and data mining applications where the goal is to cluster a set of objects based on multiway interactions of different categories or types. We present improved approximation guarantees based on linear programming, and show they are tight by proving a matching integrality gap. Our results also include new approximation hardness results, a combinatorial 2-approximation whose runtime is linear in the hypergraph size, and several new connections to well-studied objectives such as vertex cover and hypergraph multiway cut.
A Solvable Model of Neural Scaling Laws
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws: specifically, their performance behaves predictably as a power law in either parameters or dataset size until bottlenecked by the other resource. To understand this better, we first identify the necessary properties allowing such scaling laws to arise and then propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology. By solving this model in the dual limit of large training set size and large number of parameters, we gain insight into (i) the statistical structure of datasets and tasks that lead to scaling laws, (ii) the way nonlinear feature maps, such as those provided by neural networks, enable scaling laws when trained on these datasets, (iii) the optimality of the equiparameterization scaling of training sets and parameters, and (iv) whether such scaling laws can break down and how they behave when they do. Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps and then translated into power-law scalings of the test loss and how the finite extent of the data's spectral power law causes the model's performance to plateau.
Sampling random graph homomorphisms and applications to network data analysis
A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph into a large network. We propose two complementary MCMC algorithms for sampling random graph homomorphisms and establish bounds on their mixing times and the concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neighborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also demonstrate the performance of our framework on the tasks of network clustering and subgraph classification on the Facebook100 dataset and on Word Adjacency Networks of a set of classic novels.
DiffPose: SpatioTemporal Diffusion Model for Video-Based Human Pose Estimation
Denoising diffusion probabilistic models that were initially proposed for realistic image generation have recently shown success in various perception tasks (e.g., object detection and image segmentation) and are increasingly gaining attention in computer vision. However, extending such models to multi-frame human pose estimation is non-trivial due to the presence of the additional temporal dimension in videos. More importantly, learning representations that focus on keypoint regions is crucial for accurate localization of human joints. Nevertheless, the adaptation of the diffusion-based methods remains unclear on how to achieve such objective. In this paper, we present DiffPose, a novel diffusion architecture that formulates video-based human pose estimation as a conditional heatmap generation problem. First, to better leverage temporal information, we propose SpatioTemporal Representation Learner which aggregates visual evidences across frames and uses the resulting features in each denoising step as a condition. In addition, we present a mechanism called Lookup-based MultiScale Feature Interaction that determines the correlations between local joints and global contexts across multiple scales. This mechanism generates delicate representations that focus on keypoint regions. Altogether, by extending diffusion models, we show two unique characteristics from DiffPose on pose estimation task: (i) the ability to combine multiple sets of pose estimates to improve prediction accuracy, particularly for challenging joints, and (ii) the ability to adjust the number of iterative steps for feature refinement without retraining the model. DiffPose sets new state-of-the-art results on three benchmarks: PoseTrack2017, PoseTrack2018, and PoseTrack21.
How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods
Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance.
The Geometry of Concepts: Sparse Autoencoder Feature Structure
Sparse autoencoders have recently produced dictionaries of high-dimensional vectors corresponding to the universe of concepts represented by large language models. We find that this concept universe has interesting structure at three levels: 1) The "atomic" small-scale structure contains "crystals" whose faces are parallelograms or trapezoids, generalizing well-known examples such as (man-woman-king-queen). We find that the quality of such parallelograms and associated function vectors improves greatly when projecting out global distractor directions such as word length, which is efficiently done with linear discriminant analysis. 2) The "brain" intermediate-scale structure has significant spatial modularity; for example, math and code features form a "lobe" akin to functional lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also cluster together spatially far more than one would expect if feature geometry were random. 3) The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers. We also quantify how the clustering entropy depends on the layer.
Scaling Properties of Avalanche Activity in the Two-Dimensional Abelian Sandpile Model
We study the scaling properties of avalanche activity in the two-dimensional Abelian sandpile model. Instead of the conventional avalanche size distribution, we analyze the site activity distribution, which measures how often a site participates in avalanches when grains are added across the lattice. Using numerical simulations for system sizes up to \(L = 160\), averaged over \(10^4\) configurations, we determine the probability distribution \(P(A, L)\) of site activities. The results show that \(P(A, L)\) follows a finite-size scaling form \[ P(A, L) \sim L^{-2} F\Big(A{L^2}\Big). \] For small values \(A \ll L^2\) the scaling function behaves as \[ F(u) \sim u^{-1/2}, \quad corresponding to \quad P(A) \sim 1{L}, \] while for large activities \(A \sim O(L^2)\) the distribution decays as \[ F(u) \sim \exp\big(-c_3 u - c_4 u^2\big). \] The crossover between these two regimes occurs at \[ A^* \sim 0.1 \, L^2, \] marking the threshold between typical and highly excitable sites. This characterization of local avalanche activity provides complementary information to the usual avalanche size statistics, highlighting how local regions serve as frequent conduits for critical dynamics. These results may help connect sandpile models to real-world self-organized critical systems where only partial local activity can be observed.
Some Properties of Large Excursions of a Stationary Gaussian Process
The present work investigates two properties of level crossings of a stationary Gaussian process X(t) with autocorrelation function R_X(tau). We show firstly that if R_X(tau) admits finite second and fourth derivatives at the origin, the length of up-excursions above a large negative level -gamma is asymptotically exponential as -gamma to -infty. Secondly, assuming that R_X(tau) admits a finite second derivative at the origin and some defined properties, we derive the mean number of crossings as well as the length of successive excursions above two subsequent large levels. The asymptotic results are shown to be effective even for moderate values of crossing level. An application of the developed results is proposed to derive the probability of successive excursions above adjacent levels during a time window.
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
The ability of Variational Autoencoders to learn disentangled representations has made them appealing for practical applications. However, their mean representations, which are generally used for downstream tasks, have recently been shown to be more correlated than their sampled counterpart, on which disentanglement is usually measured. In this paper, we refine this observation through the lens of selective posterior collapse, which states that only a subset of the learned representations, the active variables, is encoding useful information while the rest (the passive variables) is discarded. We first extend the existing definition to multiple data examples and show that active variables are equally disentangled in mean and sampled representations. Based on this extension and the pre-trained models from disentanglement lib, we then isolate the passive variables and show that they are responsible for the discrepancies between mean and sampled representations. Specifically, passive variables exhibit high correlation scores with other variables in mean representations while being fully uncorrelated in sampled ones. We thus conclude that despite what their higher correlation might suggest, mean representations are still good candidates for downstream tasks applications. However, it may be beneficial to remove their passive variables, especially when used with models sensitive to correlated features.
A structural equation formulation for general quasi-periodic Gaussian processes
This paper introduces a structural equation formulation that gives rise to a new family of quasi-periodic Gaussian processes, useful to process a broad class of natural and physiological signals. The proposed formulation simplifies generation and forecasting, and provides hyperparameter estimates, which we exploit in a convergent and consistent iterative estimation algorithm. A bootstrap approach for standard error estimation and confidence intervals is also provided. We demonstrate the computational and scaling benefits of the proposed approach on a broad class of problems, including water level tidal analysis, CO_{2} emission data, and sunspot numbers data. By leveraging the structural equations, our method reduces the cost of likelihood evaluations and predictions from O(k^2 p^2) to O(p^2), significantly improving scalability.
Do logarithmic proximity measures outperform plain ones in graph clustering?
We consider a number of graph kernels and proximity measures including commute time kernel, regularized Laplacian kernel, heat kernel, exponential diffusion kernel (also called "communicability"), etc., and the corresponding distances as applied to clustering nodes in random graphs and several well-known datasets. The model of generating random graphs involves edge probabilities for the pairs of nodes that belong to the same class or different predefined classes of nodes. It turns out that in most cases, logarithmic measures (i.e., measures resulting after taking logarithm of the proximities) perform better while distinguishing underlying classes than the "plain" measures. A comparison in terms of reject curves of inter-class and intra-class distances confirms this conclusion. A similar conclusion can be made for several well-known datasets. A possible origin of this effect is that most kernels have a multiplicative nature, while the nature of distances used in cluster algorithms is an additive one (cf. the triangle inequality). The logarithmic transformation is a tool to transform the first nature to the second one. Moreover, some distances corresponding to the logarithmic measures possess a meaningful cutpoint additivity property. In our experiments, the leader is usually the logarithmic Communicability measure. However, we indicate some more complicated cases in which other measures, typically, Communicability and plain Walk, can be the winners.
MALTS: Matching After Learning to Stretch
We introduce a flexible framework that produces high-quality almost-exact matches for causal inference. Most prior work in matching uses ad-hoc distance metrics, often leading to poor quality matches, particularly when there are irrelevant covariates. In this work, we learn an interpretable distance metric for matching, which leads to substantially higher quality matches. The learned distance metric stretches the covariate space according to each covariate's contribution to outcome prediction: this stretching means that mismatches on important covariates carry a larger penalty than mismatches on irrelevant covariates. Our ability to learn flexible distance metrics leads to matches that are interpretable and useful for the estimation of conditional average treatment effects.
Performance Modeling of Data Storage Systems using Generative Models
High-precision modeling of systems is one of the main areas of industrial data analysis. Models of systems, their digital twins, are used to predict their behavior under various conditions. We have developed several models of a storage system using machine learning-based generative models. The system consists of several components: hard disk drive (HDD) and solid-state drive (SSD) storage pools with different RAID schemes and cache. Each storage component is represented by a probabilistic model that describes the probability distribution of the component performance in terms of IOPS and latency, depending on their configuration and external data load parameters. The results of the experiments demonstrate the errors of 4-10 % for IOPS and 3-16 % for latency predictions depending on the components and models of the system. The predictions show up to 0.99 Pearson correlation with Little's law, which can be used for unsupervised reliability checks of the models. In addition, we present novel data sets that can be used for benchmarking regression algorithms, conditional generative models, and uncertainty estimation methods in machine learning.
