new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Now you see it, Now you don't: Damage Label Agreement in Drone & Satellite Post-Disaster Imagery

This paper audits damage labels derived from coincident satellite and drone aerial imagery for 15,814 buildings across Hurricanes Ian, Michael, and Harvey, finding 29.02% label disagreement and significantly different distributions between the two sources, which presents risks and potential harms during the deployment of machine learning damage assessment systems. Currently, there is no known study of label agreement between drone and satellite imagery for building damage assessment. The only prior work that could be used to infer if such imagery-derived labels agree is limited by differing damage label schemas, misaligned building locations, and low data quantities. This work overcomes these limitations by comparing damage labels using the same damage label schemas and building locations from three hurricanes, with the 15,814 buildings representing 19.05 times more buildings considered than the most relevant prior work. The analysis finds satellite-derived labels significantly under-report damage by at least 20.43% compared to drone-derived labels (p<1.2x10^-117), and satellite- and drone-derived labels represent significantly different distributions (p<5.1x10^-175). This indicates that computer vision and machine learning (CV/ML) models trained on at least one of these distributions will misrepresent actual conditions, as the differing satellite and drone-derived distributions cannot simultaneously represent the distribution of actual conditions in a scene. This potential misrepresentation poses ethical risks and potential societal harm if not managed. To reduce the risk of future societal harms, this paper offers four recommendations to improve reliability and transparency to decisio-makers when deploying CV/ML damage assessment systems in practice

  • 4 authors
·
May 12, 2025

Griffon: Spelling out All Object Locations at Any Granularity with Large Language Models

Replicating the innate human ability to detect all objects based on free-form texts at any granularity remains a formidable challenge for Vision-Language models. Current Large Vision Language Models (LVLMs) are predominantly constrained to grounding a single, pre-existing object, relying solely on data from Referring Expression Comprehension tasks. The limitation leads to a compromise in model design, necessitating the introduction of visual expert models or the integration of customized head structures. Beyond these constraints, our research delves into the untapped potential of LVLMs and uncover their inherent capability for basic object perception, allowing them to accurately identify and locate objects of interest. Building on this insight, we introduce a novel language-prompted localization dataset designed to fully unleash the capabilities of LVLMs in integrating fine-grained object perception with precise location awareness. More importantly, we present Griffon, a purely LVLM-based baseline, which does not require the introduction of any special tokens, expert models, or additional detection modules. It simply maintains a consistent structure with popular LVLMs by unifying data formats across various localization-related scenarios and is trained end-to-end through a well-designed pipeline. Comprehensive experiments demonstrate that Griffon not only achieves state-of-the-art performance on the fine-grained RefCOCO series but also approaches the capabilities of the expert model Faster RCNN on the detection benchmark MSCOCO.

  • 6 authors
·
Nov 24, 2023

Semantic MapNet: Building Allocentric Semantic Maps and Representations from Egocentric Views

We study the task of semantic mapping - specifically, an embodied agent (a robot or an egocentric AI assistant) is given a tour of a new environment and asked to build an allocentric top-down semantic map ("what is where?") from egocentric observations of an RGB-D camera with known pose (via localization sensors). Towards this goal, we present SemanticMapNet (SMNet), which consists of: (1) an Egocentric Visual Encoder that encodes each egocentric RGB-D frame, (2) a Feature Projector that projects egocentric features to appropriate locations on a floor-plan, (3) a Spatial Memory Tensor of size floor-plan length x width x feature-dims that learns to accumulate projected egocentric features, and (4) a Map Decoder that uses the memory tensor to produce semantic top-down maps. SMNet combines the strengths of (known) projective camera geometry and neural representation learning. On the task of semantic mapping in the Matterport3D dataset, SMNet significantly outperforms competitive baselines by 4.01-16.81% (absolute) on mean-IoU and 3.81-19.69% (absolute) on Boundary-F1 metrics. Moreover, we show how to use the neural episodic memories and spatio-semantic allocentric representations build by SMNet for subsequent tasks in the same space - navigating to objects seen during the tour("Find chair") or answering questions about the space ("How many chairs did you see in the house?"). Project page: https://vincentcartillier.github.io/smnet.html.

  • 6 authors
·
Oct 2, 2020

Location-aware Adaptive Normalization: A Deep Learning Approach For Wildfire Danger Forecasting

Climate change is expected to intensify and increase extreme events in the weather cycle. Since this has a significant impact on various sectors of our life, recent works are concerned with identifying and predicting such extreme events from Earth observations. With respect to wildfire danger forecasting, previous deep learning approaches duplicate static variables along the time dimension and neglect the intrinsic differences between static and dynamic variables. Furthermore, most existing multi-branch architectures lose the interconnections between the branches during the feature learning stage. To address these issues, this paper proposes a 2D/3D two-branch convolutional neural network (CNN) with a Location-aware Adaptive Normalization layer (LOAN). Using LOAN as a building block, we can modulate the dynamic features conditional on their geographical locations. Thus, our approach considers feature properties as a unified yet compound 2D/3D model. Besides, we propose using the sinusoidal-based encoding of the day of the year to provide the model with explicit temporal information about the target day within the year. Our experimental results show a better performance of our approach than other baselines on the challenging FireCube dataset. The results show that location-aware adaptive feature normalization is a promising technique to learn the relation between dynamic variables and their geographic locations, which is highly relevant for areas where remote sensing data builds the basis for analysis. The source code is available at https://github.com/HakamShams/LOAN.

UniBonn Univerity of Bonn
·
Dec 15, 2022

Habitat-Matterport 3D Dataset (HM3D): 1000 Large-scale 3D Environments for Embodied AI

We present the Habitat-Matterport 3D (HM3D) dataset. HM3D is a large-scale dataset of 1,000 building-scale 3D reconstructions from a diverse set of real-world locations. Each scene in the dataset consists of a textured 3D mesh reconstruction of interiors such as multi-floor residences, stores, and other private indoor spaces. HM3D surpasses existing datasets available for academic research in terms of physical scale, completeness of the reconstruction, and visual fidelity. HM3D contains 112.5k m^2 of navigable space, which is 1.4 - 3.7x larger than other building-scale datasets such as MP3D and Gibson. When compared to existing photorealistic 3D datasets such as Replica, MP3D, Gibson, and ScanNet, images rendered from HM3D have 20 - 85% higher visual fidelity w.r.t. counterpart images captured with real cameras, and HM3D meshes have 34 - 91% fewer artifacts due to incomplete surface reconstruction. The increased scale, fidelity, and diversity of HM3D directly impacts the performance of embodied AI agents trained using it. In fact, we find that HM3D is `pareto optimal' in the following sense -- agents trained to perform PointGoal navigation on HM3D achieve the highest performance regardless of whether they are evaluated on HM3D, Gibson, or MP3D. No similar claim can be made about training on other datasets. HM3D-trained PointNav agents achieve 100% performance on Gibson-test dataset, suggesting that it might be time to retire that episode dataset.

  • 13 authors
·
Sep 16, 2021 1

OpenFACADES: An Open Framework for Architectural Caption and Attribute Data Enrichment via Street View Imagery

Building properties, such as height, usage, and material composition, play a crucial role in spatial data infrastructures, supporting applications such as energy simulation, risk assessment, and environmental modeling. Despite their importance, comprehensive and high-quality building attribute data remain scarce in many urban areas. Recent advances have enabled the extraction and tagging of objective building attributes using remote sensing and street-level imagery. However, establishing a method and pipeline that integrates diverse open datasets, acquires holistic building imagery at scale, and infers comprehensive building attributes remains a significant challenge. Among the first, this study bridges the gaps by introducing OpenFACADES, an open framework that leverages multimodal crowdsourced data to enrich building profiles with both objective attributes and semantic descriptors through multimodal large language models. Our methodology proceeds in three major steps. First, we integrate street-level image metadata from Mapillary with OpenStreetMap geometries via isovist analysis, effectively identifying images that provide suitable vantage points for observing target buildings. Second, we automate the detection of building facades in panoramic imagery and tailor a reprojection approach to convert objects into holistic perspective views that approximate real-world observation. Third, we introduce an innovative approach that harnesses and systematically investigates the capabilities of open-source large vision-language models (VLMs) for multi-attribute prediction and open-vocabulary captioning in building-level analytics, leveraging a globally sourced dataset of 30,180 labeled images from seven cities. Evaluation shows that fine-tuned VLM excel in multi-attribute inference, outperforming single-attribute computer vision models and zero-shot ChatGPT-4o.

  • 5 authors
·
Apr 1, 2025

GlobalBuildingAtlas: An Open Global and Complete Dataset of Building Polygons, Heights and LoD1 3D Models

We introduce GlobalBuildingAtlas, a publicly available dataset providing global and complete coverage of building polygons, heights and Level of Detail 1 (LoD1) 3D building models. This is the first open dataset to offer high quality, consistent, and complete building data in 2D and 3D form at the individual building level on a global scale. Towards this dataset, we developed machine learning-based pipelines to derive building polygons and heights (called GBA.Height) from global PlanetScope satellite data, respectively. Also a quality-based fusion strategy was employed to generate higher-quality polygons (called GBA.Polygon) based on existing open building polygons, including our own derived one. With more than 2.75 billion buildings worldwide, GBA.Polygon surpasses the most comprehensive database to date by more than 1 billion buildings. GBA.Height offers the most detailed and accurate global 3D building height maps to date, achieving a spatial resolution of 3x3 meters-30 times finer than previous global products (90 m), enabling a high-resolution and reliable analysis of building volumes at both local and global scales. Finally, we generated a global LoD1 building model (called GBA.LoD1) from the resulting GBA.Polygon and GBA.Height. GBA.LoD1 represents the first complete global LoD1 building models, including 2.68 billion building instances with predicted heights, i.e., with a height completeness of more than 97%, achieving RMSEs ranging from 1.5 m to 8.9 m across different continents. With its height accuracy, comprehensive global coverage and rich spatial details, GlobalBuildingAltas offers novel insights on the status quo of global buildings, which unlocks unprecedented geospatial analysis possibilities, as showcased by a better illustration of where people live and a more comprehensive monitoring of the progress on the 11th Sustainable Development Goal of the United Nations.

  • 5 authors
·
Jun 4, 2025