new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

ESB: A Benchmark For Multi-Domain End-to-End Speech Recognition

Speech recognition applications cover a range of different audio and text distributions, with different speaking styles, background noise, transcription punctuation and character casing. However, many speech recognition systems require dataset-specific tuning (audio filtering, punctuation removal and normalisation of casing), therefore assuming a-priori knowledge of both the audio and text distributions. This tuning requirement can lead to systems failing to generalise to other datasets and domains. To promote the development of multi-domain speech systems, we introduce the End-to-end Speech Benchmark (ESB) for evaluating the performance of a single automatic speech recognition (ASR) system across a broad set of speech datasets. Benchmarked systems must use the same data pre- and post-processing algorithm across datasets - assuming the audio and text data distributions are a-priori unknown. We compare a series of state-of-the-art (SoTA) end-to-end (E2E) systems on this benchmark, demonstrating how a single speech system can be applied and evaluated on a wide range of data distributions. We find E2E systems to be effective across datasets: in a fair comparison, E2E systems achieve within 2.6% of SoTA systems tuned to a specific dataset. Our analysis reveals that transcription artefacts, such as punctuation and casing, pose difficulties for ASR systems and should be included in evaluation. We believe E2E benchmarking over a range of datasets promotes the research of multi-domain speech recognition systems. ESB is available at https://huggingface.co/esb.

  • 3 authors
·
Oct 24, 2022 1

Digestion Algorithm in Hierarchical Symbolic Forests: A Fast Text Normalization Algorithm and Semantic Parsing Framework for Specific Scenarios and Lightweight Deployment

Text Normalization and Semantic Parsing have numerous applications in natural language processing, such as natural language programming, paraphrasing, data augmentation, constructing expert systems, text matching, and more. Despite the prominent achievements of deep learning in Large Language Models (LLMs), the interpretability of neural network architectures is still poor, which affects their credibility and hence limits the deployments of risk-sensitive scenarios. In certain scenario-specific domains with scarce data, rapidly obtaining a large number of supervised learning labels is challenging, and the workload of manually labeling data would be enormous. Catastrophic forgetting in neural networks further leads to low data utilization rates. In situations where swift responses are vital, the density of the model makes local deployment difficult and the response time long, which is not conducive to local applications of these fields. Inspired by the multiplication rule, a principle of combinatorial mathematics, and human thinking patterns, a multilayer framework along with its algorithm, the Digestion Algorithm in Hierarchical Symbolic Forests (DAHSF), is proposed to address these above issues, combining text normalization and semantic parsing workflows. The Chinese Scripting Language "Fire Bunny Intelligent Development Platform V2.0" is an important test and application of the technology discussed in this paper. DAHSF can run locally in scenario-specific domains on little datasets, with model size and memory usage optimized by at least two orders of magnitude, thus improving the execution speed, and possessing a promising optimization outlook.

  • 1 authors
·
Dec 18, 2024

CholecTrack20: A Multi-Perspective Tracking Dataset for Surgical Tools

Tool tracking in surgical videos is essential for advancing computer-assisted interventions, such as skill assessment, safety zone estimation, and human-machine collaboration. However, the lack of context-rich datasets limits AI applications in this field. Existing datasets rely on overly generic tracking formalizations that fail to capture surgical-specific dynamics, such as tools moving out of the camera's view or exiting the body. This results in less clinically relevant trajectories and a lack of flexibility for real-world surgical applications. Methods trained on these datasets often struggle with visual challenges such as smoke, reflection, and bleeding, further exposing the limitations of current approaches. We introduce CholecTrack20, a specialized dataset for multi-class, multi-tool tracking in surgical procedures. It redefines tracking formalization with three perspectives: (i) intraoperative, (ii) intracorporeal, and (iii) visibility, enabling adaptable and clinically meaningful tool trajectories. The dataset comprises 20 full-length surgical videos, annotated at 1 fps, yielding over 35K frames and 65K labeled tool instances. Annotations include spatial location, category, identity, operator, phase, and scene visual challenge. Benchmarking state-of-the-art methods on CholecTrack20 reveals significant performance gaps, with current approaches (< 45\% HOTA) failing to meet the accuracy required for clinical translation. These findings motivate the need for advanced and intuitive tracking algorithms and establish CholecTrack20 as a foundation for developing robust AI-driven surgical assistance systems.

  • 6 authors
·
Dec 12, 2023