Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLanguage Models as Ontology Encoders
OWL (Web Ontology Language) ontologies which are able to formally represent complex knowledge and support semantic reasoning have been widely adopted across various domains such as healthcare and bioinformatics. Recently, ontology embeddings have gained wide attention due to its potential to infer plausible new knowledge and approximate complex reasoning. However, existing methods face notable limitations: geometric model-based embeddings typically overlook valuable textual information, resulting in suboptimal performance, while the approaches that incorporate text, which are often based on language models, fail to preserve the logical structure. In this work, we propose a new ontology embedding method OnT, which tunes a Pretrained Language Model (PLM) via geometric modeling in a hyperbolic space for effectively incorporating textual labels and simultaneously preserving class hierarchies and other logical relationships of Description Logic EL. Extensive experiments on four real-world ontologies show that OnT consistently outperforms the baselines including the state-of-the-art across both tasks of prediction and inference of axioms. OnT also demonstrates strong potential in real-world applications, indicated by its robust transfer learning abilities and effectiveness in real cases of constructing a new ontology from SNOMED CT. Data and code are available at https://github.com/HuiYang1997/OnT.
Ologs: a categorical framework for knowledge representation
In this paper we introduce the olog, or ontology log, a category-theoretic model for knowledge representation (KR). Grounded in formal mathematics, ologs can be rigorously formulated and cross-compared in ways that other KR models (such as semantic networks) cannot. An olog is similar to a relational database schema; in fact an olog can serve as a data repository if desired. Unlike database schemas, which are generally difficult to create or modify, ologs are designed to be user-friendly enough that authoring or reconfiguring an olog is a matter of course rather than a difficult chore. It is hoped that learning to author ologs is much simpler than learning a database definition language, despite their similarity. We describe ologs carefully and illustrate with many examples. As an application we show that any primitive recursive function can be described by an olog. We also show that ologs can be aligned or connected together into a larger network using functors. The various methods of information flow and institutions can then be used to integrate local and global world-views. We finish by providing several different avenues for future research.
KNOW: A Real-World Ontology for Knowledge Capture with Large Language Models
We present KNOW--the Knowledge Navigator Ontology for the World--the first ontology designed to capture everyday knowledge to augment large language models (LLMs) in real-world generative AI use cases such as personal AI assistants. Our domain is human life, both its everyday concerns and its major milestones. We have limited the initial scope of the modeled concepts to only established human universals: spacetime (places, events) plus social (people, groups, organizations). The inclusion criteria for modeled concepts are pragmatic, beginning with universality and utility. We compare and contrast previous work such as Schema.org and Cyc--as well as attempts at a synthesis of knowledge graphs and language models--noting how LLMs already encode internally much of the commonsense tacit knowledge that took decades to capture in the Cyc project. We also make available code-generated software libraries for the 12 most popular programming languages, enabling the direct use of ontology concepts in software engineering. We emphasize simplicity and developer experience in promoting AI interoperability.
Shiva: A Framework for Graph Based Ontology Matching
Since long, corporations are looking for knowledge sources which can provide structured description of data and can focus on meaning and shared understanding. Structures which can facilitate open world assumptions and can be flexible enough to incorporate and recognize more than one name for an entity. A source whose major purpose is to facilitate human communication and interoperability. Clearly, databases fail to provide these features and ontologies have emerged as an alternative choice, but corporations working on same domain tend to make different ontologies. The problem occurs when they want to share their data/knowledge. Thus we need tools to merge ontologies into one. This task is termed as ontology matching. This is an emerging area and still we have to go a long way in having an ideal matcher which can produce good results. In this paper we have shown a framework to matching ontologies using graphs.
DSTI at LLMs4OL 2024 Task A: Intrinsic versus extrinsic knowledge for type classification
We introduce semantic towers, an extrinsic knowledge representation method, and compare it to intrinsic knowledge in large language models for ontology learning. Our experiments show a trade-off between performance and semantic grounding for extrinsic knowledge compared to a fine-tuned model intrinsic knowledge. We report our findings on the Large Language Models for Ontology Learning (LLMs4OL) 2024 challenge.
Shiva++: An Enhanced Graph based Ontology Matcher
With the web getting bigger and assimilating knowledge about different concepts and domains, it is becoming very difficult for simple database driven applications to capture the data for a domain. Thus developers have come out with ontology based systems which can store large amount of information and can apply reasoning and produce timely information. Thus facilitating effective knowledge management. Though this approach has made our lives easier, but at the same time has given rise to another problem. Two different ontologies assimilating same knowledge tend to use different terms for the same concepts. This creates confusion among knowledge engineers and workers, as they do not know which is a better term then the other. Thus we need to merge ontologies working on same domain so that the engineers can develop a better application over it. This paper shows the development of one such matcher which merges the concepts available in two ontologies at two levels; 1) at string level and 2) at semantic level; thus producing better merged ontologies. We have used a graph matching technique which works at the core of the system. We have also evaluated the system and have tested its performance with its predecessor which works only on string matching. Thus current approach produces better results.
Language Model Analysis for Ontology Subsumption Inference
Investigating whether pre-trained language models (LMs) can function as knowledge bases (KBs) has raised wide research interests recently. However, existing works focus on simple, triple-based, relational KBs, but omit more sophisticated, logic-based, conceptualised KBs such as OWL ontologies. To investigate an LM's knowledge of ontologies, we propose OntoLAMA, a set of inference-based probing tasks and datasets from ontology subsumption axioms involving both atomic and complex concepts. We conduct extensive experiments on ontologies of different domains and scales, and our results demonstrate that LMs encode relatively less background knowledge of Subsumption Inference (SI) than traditional Natural Language Inference (NLI) but can improve on SI significantly when a small number of samples are given. We will open-source our code and datasets.
One Ontology to Rule Them All: Corner Case Scenarios for Autonomous Driving
The core obstacle towards a large-scale deployment of autonomous vehicles currently lies in the long tail of rare events. These are extremely challenging since they do not occur often in the utilized training data for deep neural networks. To tackle this problem, we propose the generation of additional synthetic training data, covering a wide variety of corner case scenarios. As ontologies can represent human expert knowledge while enabling computational processing, we use them to describe scenarios. Our proposed master ontology is capable to model scenarios from all common corner case categories found in the literature. From this one master ontology, arbitrary scenario-describing ontologies can be derived. In an automated fashion, these can be converted into the OpenSCENARIO format and subsequently executed in simulation. This way, also challenging test and evaluation scenarios can be generated.
Reoccurring patterns in hierarchical protein materials and music: The power of analogies
Complex hierarchical structures composed of simple nanoscale building blocks form the basis of most biological materials. Here we demonstrate how analogies between seemingly different fields enable the understanding of general principles by which functional properties in hierarchical systems emerge, similar to an analogy learning process. Specifically, natural hierarchical materials like spider silk exhibit properties comparable to classical music in terms of their hierarchical structure and function. As a comparative tool here we apply hierarchical ontology logs (olog) that follow a rigorous mathematical formulation based on category theory to provide an insightful system representation by expressing knowledge in a conceptual map. We explain the process of analogy creation, draw connections at several levels of hierarchy and identify similar patterns that govern the structure of the hierarchical systems silk and music and discuss the impact of the derived analogy for nanotechnology.
Challenges for an Ontology of Artificial Intelligence
Of primary importance in formulating a response to the increasing prevalence and power of artificial intelligence (AI) applications in society are questions of ontology. Questions such as: What "are" these systems? How are they to be regarded? How does an algorithm come to be regarded as an agent? We discuss three factors which hinder discussion and obscure attempts to form a clear ontology of AI: (1) the various and evolving definitions of AI, (2) the tendency for pre-existing technologies to be assimilated and regarded as "normal," and (3) the tendency of human beings to anthropomorphize. This list is not intended as exhaustive, nor is it seen to preclude entirely a clear ontology, however, these challenges are a necessary set of topics for consideration. Each of these factors is seen to present a 'moving target' for discussion, which poses a challenge for both technical specialists and non-practitioners of AI systems development (e.g., philosophers and theologians) to speak meaningfully given that the corpus of AI structures and capabilities evolves at a rapid pace. Finally, we present avenues for moving forward, including opportunities for collaborative synthesis for scholars in philosophy and science.
Leveraging Large Language Models for Generating Research Topic Ontologies: A Multi-Disciplinary Study
Ontologies and taxonomies of research fields are critical for managing and organising scientific knowledge, as they facilitate efficient classification, dissemination and retrieval of information. However, the creation and maintenance of such ontologies are expensive and time-consuming tasks, usually requiring the coordinated effort of multiple domain experts. Consequently, ontologies in this space often exhibit uneven coverage across different disciplines, limited inter-domain connectivity, and infrequent updating cycles. In this study, we investigate the capability of several large language models to identify semantic relationships among research topics within three academic domains: biomedicine, physics, and engineering. The models were evaluated under three distinct conditions: zero-shot prompting, chain-of-thought prompting, and fine-tuning on existing ontologies. Additionally, we assessed the cross-domain transferability of fine-tuned models by measuring their performance when trained in one domain and subsequently applied to a different one. To support this analysis, we introduce PEM-Rel-8K, a novel dataset consisting of over 8,000 relationships extracted from the most widely adopted taxonomies in the three disciplines considered in this study: MeSH, PhySH, and IEEE. Our experiments demonstrate that fine-tuning LLMs on PEM-Rel-8K yields excellent performance across all disciplines.
LLMs4OL: Large Language Models for Ontology Learning
We propose the LLMs4OL approach, which utilizes Large Language Models (LLMs) for Ontology Learning (OL). LLMs have shown significant advancements in natural language processing, demonstrating their ability to capture complex language patterns in different knowledge domains. Our LLMs4OL paradigm investigates the following hypothesis: Can LLMs effectively apply their language pattern capturing capability to OL, which involves automatically extracting and structuring knowledge from natural language text? To test this hypothesis, we conduct a comprehensive evaluation using the zero-shot prompting method. We evaluate nine different LLM model families for three main OL tasks: term typing, taxonomy discovery, and extraction of non-taxonomic relations. Additionally, the evaluations encompass diverse genres of ontological knowledge, including lexicosemantic knowledge in WordNet, geographical knowledge in GeoNames, and medical knowledge in UMLS.
Document Structure aware Relational Graph Convolutional Networks for Ontology Population
Ontologies comprising of concepts, their attributes, and relationships are used in many knowledge based AI systems. While there have been efforts towards populating domain specific ontologies, we examine the role of document structure in learning ontological relationships between concepts in any document corpus. Inspired by ideas from hypernym discovery and explainability, our method performs about 15 points more accurate than a stand-alone R-GCN model for this task.
Reasoning about concepts with LLMs: Inconsistencies abound
The ability to summarize and organize knowledge into abstract concepts is key to learning and reasoning. Many industrial applications rely on the consistent and systematic use of concepts, especially when dealing with decision-critical knowledge. However, we demonstrate that, when methodically questioned, large language models (LLMs) often display and demonstrate significant inconsistencies in their knowledge. Computationally, the basic aspects of the conceptualization of a given domain can be represented as Is-A hierarchies in a knowledge graph (KG) or ontology, together with a few properties or axioms that enable straightforward reasoning. We show that even simple ontologies can be used to reveal conceptual inconsistencies across several LLMs. We also propose strategies that domain experts can use to evaluate and improve the coverage of key domain concepts in LLMs of various sizes. In particular, we have been able to significantly enhance the performance of LLMs of various sizes with openly available weights using simple knowledge-graph (KG) based prompting strategies.
Do Dogs have Whiskers? A New Knowledge Base of hasPart Relations
We present a new knowledge-base of hasPart relationships, extracted from a large corpus of generic statements. Complementary to other resources available, it is the first which is all three of: accurate (90% precision), salient (covers relationships a person may mention), and has high coverage of common terms (approximated as within a 10 year old's vocabulary), as well as having several times more hasPart entries than in the popular ontologies ConceptNet and WordNet. In addition, it contains information about quantifiers, argument modifiers, and links the entities to appropriate concepts in Wikipedia and WordNet. The knowledge base is available at https://allenai.org/data/haspartkb
OG-RAG: Ontology-Grounded Retrieval-Augmented Generation For Large Language Models
This paper presents OG-RAG, an Ontology-Grounded Retrieval Augmented Generation method designed to enhance LLM-generated responses by anchoring retrieval processes in domain-specific ontologies. While LLMs are widely used for tasks like question answering and search, they struggle to adapt to specialized knowledge, such as industrial workflows or knowledge work, without expensive fine-tuning or sub-optimal retrieval methods. Existing retrieval-augmented models, such as RAG, offer improvements but fail to account for structured domain knowledge, leading to suboptimal context generation. Ontologies, which conceptually organize domain knowledge by defining entities and their interrelationships, offer a structured representation to address this gap. OG-RAG constructs a hypergraph representation of domain documents, where each hyperedge encapsulates clusters of factual knowledge grounded using domain-specific ontology. An optimization algorithm then retrieves the minimal set of hyperedges that constructs a precise, conceptually grounded context for the LLM. This method enables efficient retrieval while preserving the complex relationships between entities. OG-RAG applies to domains where fact-based reasoning is essential, particularly in tasks that require workflows or decision-making steps to follow predefined rules and procedures. These include industrial workflows in healthcare, legal, and agricultural sectors, as well as knowledge-driven tasks such as news journalism, investigative research, consulting and more. Our evaluations demonstrate that OG-RAG increases the recall of accurate facts by 55% and improves response correctness by 40% across four different LLMs. Additionally, OG-RAG enables 30% faster attribution of responses to context and boosts fact-based reasoning accuracy by 27% compared to baseline methods.
TONE: A 3-Tiered ONtology for Emotion analysis
Emotions have played an important part in many sectors, including psychology, medicine, mental health, computer science, and so on, and categorizing them has proven extremely useful in separating one emotion from another. Emotions can be classified using the following two methods: (1) The supervised method's efficiency is strongly dependent on the size and domain of the data collected. A categorization established using relevant data from one domain may not work well in another. (2) An unsupervised method that uses either domain expertise or a knowledge base of emotion types already exists. Though this second approach provides a suitable and generic categorization of emotions and is cost-effective, the literature doesn't possess a publicly available knowledge base that can be directly applied to any emotion categorization-related task. This pushes us to create a knowledge base that can be used for emotion classification across domains, and ontology is often used for this purpose. In this study, we provide TONE, an emotion-based ontology that effectively creates an emotional hierarchy based on Dr. Gerrod Parrot's group of emotions. In addition to ontology development, we introduce a semi-automated vocabulary construction process to generate a detailed collection of terms for emotions at each tier of the hierarchy. We also demonstrate automated methods for establishing three sorts of dependencies in order to develop linkages between different emotions. Our human and automatic evaluation results show the ontology's quality. Furthermore, we describe three distinct use cases that demonstrate the applicability of our ontology.
OntoTune: Ontology-Driven Self-training for Aligning Large Language Models
Existing domain-specific Large Language Models (LLMs) are typically developed by fine-tuning general-purposed LLMs with large-scale domain-specific corpora. However, training on large-scale corpora often fails to effectively organize domain knowledge of LLMs, leading to fragmented understanding. Inspired by how humans connect concepts and organize knowledge through mind maps, we aim to emulate this approach by using ontology with hierarchical conceptual knowledge to reorganize LLM's domain knowledge. From this perspective, we propose an ontology-driven self-training framework called OntoTune, which aims to align LLMs with ontology through in-context learning, enabling the generation of responses guided by the ontology. We leverage in-context learning to identify whether the LLM has acquired the specific concept's ontology knowledge, and select the entries not yet mastered by LLM as the training set to further align the LLM with ontology. Compared to existing domain LLMs based on newly collected large-scale domain-specific corpora, our OntoTune, which relies on the existing, long-term developed ontology and LLM itself, significantly reduces data maintenance costs and offers improved generalization ability. We conduct our study in the medical domain to evaluate the effectiveness of OntoTune, utilizing a standardized medical ontology, SNOMED CT as our ontology source. Experimental results demonstrate that OntoTune achieves state-of-the-art performance in both in-ontology task hypernym discovery and out-of-ontology task medical domain QA. Moreover, compared to the latest direct ontology injection method TaxoLLaMA, our OntoTune better preserves original knowledge of LLM. The code and data are available at https://github.com/zjukg/OntoTune.
OntoChat: a Framework for Conversational Ontology Engineering using Language Models
Ontology engineering (OE) in large projects poses a number of challenges arising from the heterogeneous backgrounds of the various stakeholders, domain experts, and their complex interactions with ontology designers. This multi-party interaction often creates systematic ambiguities and biases from the elicitation of ontology requirements, which directly affect the design, evaluation and may jeopardise the target reuse. Meanwhile, current OE methodologies strongly rely on manual activities (e.g., interviews, discussion pages). After collecting evidence on the most crucial OE activities, we introduce OntoChat, a framework for conversational ontology engineering that supports requirement elicitation, analysis, and testing. By interacting with a conversational agent, users can steer the creation of user stories and the extraction of competency questions, while receiving computational support to analyse the overall requirements and test early versions of the resulting ontologies. We evaluate OntoChat by replicating the engineering of the Music Meta Ontology, and collecting preliminary metrics on the effectiveness of each component from users. We release all code at https://github.com/King-s-Knowledge-Graph-Lab/OntoChat.
Automated Formalization via Conceptual Retrieval-Augmented LLMs
Interactive theorem provers (ITPs) require manual formalization, which is labor-intensive and demands expert knowledge. While automated formalization offers a potential solution, it faces two major challenges: model hallucination (e.g., undefined predicates, symbol misuse, and version incompatibility) and the semantic gap caused by ambiguous or missing premises in natural language descriptions. To address these issues, we propose CRAMF, a Concept-driven Retrieval-Augmented Mathematical Formalization framework. CRAMF enhances LLM-based autoformalization by retrieving formal definitions of core mathematical concepts, providing contextual grounding during code generation. However, applying retrieval-augmented generation (RAG) in this setting is non-trivial due to the lack of structured knowledge bases, the polymorphic nature of mathematical concepts, and the high precision required in formal retrieval. We introduce a framework for automatically constructing a concept-definition knowledge base from Mathlib4, the standard mathematical library for the Lean 4 theorem prover, indexing over 26,000 formal definitions and 1,000+ core mathematical concepts. To address conceptual polymorphism, we propose contextual query augmentation with domain- and application-level signals. In addition, we design a dual-channel hybrid retrieval strategy with reranking to ensure accurate and relevant definition retrieval. Experiments on miniF2F, ProofNet, and our newly proposed AdvancedMath benchmark show that CRAMF can be seamlessly integrated into LLM-based autoformalizers, yielding consistent improvements in translation accuracy, achieving up to 62.1% and an average of 29.9% relative improvement.
Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning
Creating knowledge bases and ontologies is a time consuming task that relies on a manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrary complex nested knowledge schemas. Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning (ZSL) and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against GPT-3+ to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for all matched elements. We present examples of use of SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease causation graphs. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction (RE) methods, but has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. SPIRES is available as part of the open source OntoGPT package: https://github.com/ monarch-initiative/ontogpt.
Toward Formal Data Set Verification for Building Effective Machine Learning Models
In order to properly train a machine learning model, data must be properly collected. To guarantee a proper data collection, verifying that the collected data set holds certain properties is a possible solution. For example, guaranteeing that the data set contains samples across the whole input space, or that the data set is balanced w.r.t. different classes. We present a formal approach for verifying a set of arbitrarily stated properties over a data set. The proposed approach relies on the transformation of the data set into a first order logic formula, which can be later verified w.r.t. the different properties also stated in the same logic. A prototype tool, which uses the z3 solver, has been developed; the prototype can take as an input a set of properties stated in a formal language and formally verify a given data set w.r.t. to the given set of properties. Preliminary experimental results show the feasibility and performance of the proposed approach, and furthermore the flexibility for expressing properties of interest.
A Neural Architecture for Person Ontology population
A person ontology comprising concepts, attributes and relationships of people has a number of applications in data protection, didentification, population of knowledge graphs for business intelligence and fraud prevention. While artificial neural networks have led to improvements in Entity Recognition, Entity Classification, and Relation Extraction, creating an ontology largely remains a manual process, because it requires a fixed set of semantic relations between concepts. In this work, we present a system for automatically populating a person ontology graph from unstructured data using neural models for Entity Classification and Relation Extraction. We introduce a new dataset for these tasks and discuss our results.
Prompt-Time Ontology-Driven Symbolic Knowledge Capture with Large Language Models
In applications such as personal assistants, large language models (LLMs) must consider the user's personal information and preferences. However, LLMs lack the inherent ability to learn from user interactions. This paper explores capturing personal information from user prompts using ontology and knowledge-graph approaches. We use a subset of the KNOW ontology, which models personal information, to train the language model on these concepts. We then evaluate the success of knowledge capture using a specially constructed dataset. Our code and datasets are publicly available at https://github.com/HaltiaAI/paper-PTODSKC
Language Models as Inductive Reasoners
Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.
Levels of AGI for Operationalizing Progress on the Path to AGI
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors. This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI. To develop our framework, we analyze existing definitions of AGI, and distill six principles that a useful ontology for AGI should satisfy. With these principles in mind, we propose "Levels of AGI" based on depth (performance) and breadth (generality) of capabilities, and reflect on how current systems fit into this ontology. We discuss the challenging requirements for future benchmarks that quantify the behavior and capabilities of AGI models against these levels. Finally, we discuss how these levels of AGI interact with deployment considerations such as autonomy and risk, and emphasize the importance of carefully selecting Human-AI Interaction paradigms for responsible and safe deployment of highly capable AI systems.
OntoAligner: A Comprehensive Modular and Robust Python Toolkit for Ontology Alignment
Ontology Alignment (OA) is fundamental for achieving semantic interoperability across diverse knowledge systems. We present OntoAligner, a comprehensive, modular, and robust Python toolkit for ontology alignment, designed to address current limitations with existing tools faced by practitioners. Existing tools are limited in scalability, modularity, and ease of integration with recent AI advances. OntoAligner provides a flexible architecture integrating existing lightweight OA techniques such as fuzzy matching but goes beyond by supporting contemporary methods with retrieval-augmented generation and large language models for OA. The framework prioritizes extensibility, enabling researchers to integrate custom alignment algorithms and datasets. This paper details the design principles, architecture, and implementation of the OntoAligner, demonstrating its utility through benchmarks on standard OA tasks. Our evaluation highlights OntoAligner's ability to handle large-scale ontologies efficiently with few lines of code while delivering high alignment quality. By making OntoAligner open-source, we aim to provide a resource that fosters innovation and collaboration within the OA community, empowering researchers and practitioners with a toolkit for reproducible OA research and real-world applications.
Text-to-SQL Task-oriented Dialogue Ontology Construction
Large language models (LLMs) are widely used as general-purpose knowledge sources, but they rely on parametric knowledge, limiting explainability and trustworthiness. In task-oriented dialogue (TOD) systems, this separation is explicit, using an external database structured by an explicit ontology to ensure explainability and controllability. However, building such ontologies requires manual labels or supervised training. We introduce TeQoDO: a Text-to-SQL task-oriented Dialogue Ontology construction method. Here, an LLM autonomously builds a TOD ontology from scratch without supervision using its inherent SQL programming capabilities combined with dialogue theory provided in the prompt. We show that TeQoDO outperforms transfer learning approaches, and its constructed ontology is competitive on a downstream dialogue state tracking task. Ablation studies demonstrate the key role of dialogue theory. TeQoDO also scales to allow construction of much larger ontologies, which we investigate on a Wikipedia and ArXiv dataset. We view this as a step towards broader application of ontologies to increase LLM explainability.
Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation
We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.
YAGO 4.5: A Large and Clean Knowledge Base with a Rich Taxonomy
Knowledge Bases (KBs) find applications in many knowledge-intensive tasks and, most notably, in information retrieval. Wikidata is one of the largest public general-purpose KBs. Yet, its collaborative nature has led to a convoluted schema and taxonomy. The YAGO 4 KB cleaned up the taxonomy by incorporating the ontology of Schema.org, resulting in a cleaner structure amenable to automated reasoning. However, it also cut away large parts of the Wikidata taxonomy, which is essential for information retrieval. In this paper, we extend YAGO 4 with a large part of the Wikidata taxonomy - while respecting logical constraints and the distinction between classes and instances. This yields YAGO 4.5, a new, logically consistent version of YAGO that adds a rich layer of informative classes. An intrinsic and an extrinsic evaluation show the value of the new resource.
Do Large Language Models Excel in Complex Logical Reasoning with Formal Language?
Large Language Models (LLMs) have been shown to achieve breakthrough performance on complex logical reasoning tasks. Nevertheless, most existing research focuses on employing formal language to guide LLMs to derive reliable reasoning paths, while systematic evaluations of these capabilities are still limited. In this paper, we aim to conduct a comprehensive evaluation of LLMs across various logical reasoning problems utilizing formal languages. From the perspective of three dimensions, i.e., spectrum of LLMs, taxonomy of tasks, and format of trajectories, our key findings are: 1) Thinking models significantly outperform Instruct models, especially when formal language is employed; 2) All LLMs exhibit limitations in inductive reasoning capability, irrespective of whether they use a formal language; 3) Data with PoT format achieves the best generalization performance across other languages. Additionally, we also curate the formal-relative training data to further enhance the small language models, and the experimental results indicate that a simple rejected fine-tuning method can better enable LLMs to generalize across formal languages and achieve the best overall performance. Our codes and reports are available at https://github.com/jiangjin1999/FormalEval.
Assisting Mathematical Formalization with A Learning-based Premise Retriever
Premise selection is a crucial yet challenging step in mathematical formalization, especially for users with limited experience. Due to the lack of available formalization projects, existing approaches that leverage language models often suffer from data scarcity. In this work, we introduce an innovative method for training a premise retriever to support the formalization of mathematics. Our approach employs a BERT model to embed proof states and premises into a shared latent space. The retrieval model is trained within a contrastive learning framework and incorporates a domain-specific tokenizer along with a fine-grained similarity computation method. Experimental results show that our model is highly competitive compared to existing baselines, achieving strong performance while requiring fewer computational resources. Performance is further enhanced through the integration of a re-ranking module. To streamline the formalization process, we will release a search engine that enables users to query Mathlib theorems directly using proof states, significantly improving accessibility and efficiency. Codes are available at https://github.com/ruc-ai4math/Premise-Retrieval.
Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph Generation from Text
The recent advances in large language models (LLM) and foundation models with emergent capabilities have been shown to improve the performance of many NLP tasks. LLMs and Knowledge Graphs (KG) can complement each other such that LLMs can be used for KG construction or completion while existing KGs can be used for different tasks such as making LLM outputs explainable or fact-checking in Neuro-Symbolic manner. In this paper, we present Text2KGBench, a benchmark to evaluate the capabilities of language models to generate KGs from natural language text guided by an ontology. Given an input ontology and a set of sentences, the task is to extract facts from the text while complying with the given ontology (concepts, relations, domain/range constraints) and being faithful to the input sentences. We provide two datasets (i) Wikidata-TekGen with 10 ontologies and 13,474 sentences and (ii) DBpedia-WebNLG with 19 ontologies and 4,860 sentences. We define seven evaluation metrics to measure fact extraction performance, ontology conformance, and hallucinations by LLMs. Furthermore, we provide results for two baseline models, Vicuna-13B and Alpaca-LoRA-13B using automatic prompt generation from test cases. The baseline results show that there is room for improvement using both Semantic Web and Natural Language Processing techniques.
The Path to Autonomous Learners
In this paper, we present a new theoretical approach for enabling domain knowledge acquisition by intelligent systems. We introduce a hybrid model that starts with minimal input knowledge in the form of an upper ontology of concepts, stores and reasons over this knowledge through a knowledge graph database and learns new information through a Logic Neural Network. We study the behavior of this architecture when handling new data and show that the final system is capable of enriching its current knowledge as well as extending it to new domains.
From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs
The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO, showing significant progress. However, these studies intertwined multiple skills simultaneously, i.e., problem-solving, reasoning, and writing formal specifications, making it hard to precisely identify the LLMs' strengths and weaknesses in each task. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and decomposes it into six sub-tasks. We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling GPT-4o. They are split into a 14k+ fine-tuning dataset FM-alpaca and a 4k benchmark FM-Bench. We found that LLMs are good at writing proof segments when given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding abilities. We hope our findings inspire further research. Fine-tuned models are released to facilitate subsequent studies
All You Need Is CONSTRUCT
In SPARQL, the query forms SELECT and CONSTRUCT have been the subject of several studies, both theoretical and practical. However, the composition of such queries and their interweaving when forming involved nested queries has not yet received much interest in the literature. We mainly tackle the problem of composing such queries. For this purpose, we introduce a language close to SPARQL where queries can be nested at will, involving either CONSTRUCT or SELECT query forms and provide a formal semantics for it. This semantics is based on a uniform interpretation of queries. This uniformity is due to an extension of the notion of RDF graphs to include isolated items such as variables. As a key feature of this work, we show how classical SELECT queries can be easily encoded as a particular case of CONSTRUCT queries.
Witness Generation for JSON Schema
JSON Schema is an important, evolving standard schema language for families of JSON documents. It is based on a complex combination of structural and Boolean assertions, and features negation and recursion. The static analysis of JSON Schema documents comprises practically relevant problems, including schema satisfiability, inclusion, and equivalence. These three problems can be reduced to witness generation: given a schema, generate an element of the schema, if it exists, and report failure otherwise. Schema satisfiability, inclusion, and equivalence have been shown to be decidable, by reduction to reachability in alternating tree automata. However, no witness generation algorithm has yet been formally described. We contribute a first, direct algorithm for JSON Schema witness generation. We study its effectiveness and efficiency, in experiments over several schema collections, including thousands of real-world schemas. Our focus is on the completeness of the language, where we only exclude the uniqueItems operator, and on the ability of the algorithm to run in a reasonable time on a large set of real-world examples, despite the exponential complexity of the underlying problem.
WebShaper: Agentically Data Synthesizing via Information-Seeking Formalization
The advent of Large Language Model (LLM)-powered agents has revolutionized artificial intelligence by enabling solutions to complex, open-ended tasks through web-based information-seeking (IS) capabilities. The scarcity of high-quality training data has limited the development of IS agents. Existing approaches typically adopt an information-driven paradigm that first collects web data and then generates questions based on the retrieval. However, this may lead to inconsistency between information structure and reasoning structure, question and answer. To mitigate, we propose a formalization-driven IS data synthesis framework WebShaper to construct a dataset. WebShaper systematically formalizes IS tasks through set theory. Central to the formalization is the concept of Knowledge Projections (KP), which enables precise control over reasoning structure by KP operation compositions. During synthesis, we begin by creating seed tasks, then use a multi-step expansion process. At each step, an agentic Expander expands the current formal question more complex with retrieval and validation tools based on our formalization. We train our model on the synthesized dataset. Experiment results demonstrate that WebShaper achieves state-of-the-art performance among open-sourced IS agents on GAIA and WebWalkerQA benchmarks.
A many-sorted epistemic logic for chromatic hypergraphs
We propose a many-sorted modal logic for reasoning about knowledge in multi-agent systems. Our logic introduces a clear distinction between participating agents and the environment. This allows to express local properties of agents and global properties of worlds in a uniform way, as well as to talk about the presence or absence of agents in a world. The logic subsumes the standard epistemic logic and is a conservative extension of it. The semantics is given in chromatic hypergraphs, a generalization of chromatic simplicial complexes, which were recently used to model knowledge in distributed systems. We show that the logic is sound and complete with respect to the intended semantics. We also show a further connection of chromatic hypergraphs with neighborhood frames.
BioLORD: Learning Ontological Representations from Definitions (for Biomedical Concepts and their Textual Descriptions)
This work introduces BioLORD, a new pre-training strategy for producing meaningful representations for clinical sentences and biomedical concepts. State-of-the-art methodologies operate by maximizing the similarity in representation of names referring to the same concept, and preventing collapse through contrastive learning. However, because biomedical names are not always self-explanatory, it sometimes results in non-semantic representations. BioLORD overcomes this issue by grounding its concept representations using definitions, as well as short descriptions derived from a multi-relational knowledge graph consisting of biomedical ontologies. Thanks to this grounding, our model produces more semantic concept representations that match more closely the hierarchical structure of ontologies. BioLORD establishes a new state of the art for text similarity on both clinical sentences (MedSTS) and biomedical concepts (MayoSRS).
OntoChatGPT Information System: Ontology-Driven Structured Prompts for ChatGPT Meta-Learning
This research presents a comprehensive methodology for utilizing an ontology-driven structured prompts system in interplay with ChatGPT, a widely used large language model (LLM). The study develops formal models, both information and functional, and establishes the methodological foundations for integrating ontology-driven prompts with ChatGPT's meta-learning capabilities. The resulting productive triad comprises the methodological foundations, advanced information technology, and the OntoChatGPT system, which collectively enhance the effectiveness and performance of chatbot systems. The implementation of this technology is demonstrated using the Ukrainian language within the domain of rehabilitation. By applying the proposed methodology, the OntoChatGPT system effectively extracts entities from contexts, classifies them, and generates relevant responses. The study highlights the versatility of the methodology, emphasizing its applicability not only to ChatGPT but also to other chatbot systems based on LLMs, such as Google's Bard utilizing the PaLM 2 LLM. The underlying principles of meta-learning, structured prompts, and ontology-driven information retrieval form the core of the proposed methodology, enabling their adaptation and utilization in various LLM-based systems. This versatile approach opens up new possibilities for NLP and dialogue systems, empowering developers to enhance the performance and functionality of chatbot systems across different domains and languages.
Retrieval-Enhanced Machine Learning: Synthesis and Opportunities
In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
FIMO: A Challenge Formal Dataset for Automated Theorem Proving
We present FIMO, an innovative dataset comprising formal mathematical problem statements sourced from the International Mathematical Olympiad (IMO) Shortlisted Problems. Designed to facilitate advanced automated theorem proving at the IMO level, FIMO is currently tailored for the Lean formal language. It comprises 149 formal problem statements, accompanied by both informal problem descriptions and their corresponding LaTeX-based informal proofs. Through initial experiments involving GPT-4, our findings underscore the existing limitations in current methodologies, indicating a substantial journey ahead before achieving satisfactory IMO-level automated theorem proving outcomes.
LLM-based Agentic Reasoning Frameworks: A Survey from Methods to Scenarios
Recent advances in the intrinsic reasoning capabilities of large language models (LLMs) have given rise to LLM-based agent systems that exhibit near-human performance on a variety of automated tasks. However, although these systems share similarities in terms of their use of LLMs, different reasoning frameworks of the agent system steer and organize the reasoning process in different ways. In this survey, we propose a systematic taxonomy that decomposes agentic reasoning frameworks and analyze how these frameworks dominate framework-level reasoning by comparing their applications across different scenarios. Specifically, we propose an unified formal language to further classify agentic reasoning systems into single-agent methods, tool-based methods, and multi-agent methods. After that, we provide a comprehensive review of their key application scenarios in scientific discovery, healthcare, software engineering, social simulation, and economics. We also analyze the characteristic features of each framework and summarize different evaluation strategies. Our survey aims to provide the research community with a panoramic view to facilitate understanding of the strengths, suitable scenarios, and evaluation practices of different agentic reasoning frameworks.
Formal Aspects of Language Modeling
Large language models have become one of the most commonly deployed NLP inventions. In the past half-decade, their integration into core natural language processing tools has dramatically increased the performance of such tools, and they have entered the public discourse surrounding artificial intelligence. Consequently, it is important for both developers and researchers alike to understand the mathematical foundations of large language models, as well as how to implement them. These notes are the accompaniment to the theoretical portion of the ETH Z\"urich course on large language models, covering what constitutes a language model from a formal, theoretical perspective.
Llemma: An Open Language Model For Mathematics
We present Llemma, a large language model for mathematics. We continue pretraining Code Llama on the Proof-Pile-2, a mixture of scientific papers, web data containing mathematics, and mathematical code, yielding Llemma. On the MATH benchmark Llemma outperforms all known open base models, as well as the unreleased Minerva model suite on an equi-parameter basis. Moreover, Llemma is capable of tool use and formal theorem proving without any further finetuning. We openly release all artifacts, including 7 billion and 34 billion parameter models, the Proof-Pile-2, and code to replicate our experiments.
What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models
The scientific literature's exponential growth makes it increasingly challenging to navigate and synthesize knowledge across disciplines. Large language models (LLMs) are powerful tools for understanding scientific text, but they fail to capture detailed relationships across large bodies of work. Unstructured approaches, like retrieval augmented generation, can sift through such corpora to recall relevant facts; however, when millions of facts influence the answer, unstructured approaches become cost prohibitive. Structured representations offer a natural complement -- enabling systematic analysis across the whole corpus. Recent work enhances LLMs with unstructured or semistructured representations of scientific concepts; to complement this, we try extracting structured representations using LLMs. By combining LLMs' semantic understanding with a schema of scientific concepts, we prototype a system that answers precise questions about the literature as a whole. Our schema applies across scientific fields and we extract concepts from it using only 20 manually annotated abstracts. To demonstrate the system, we extract concepts from 30,000 papers on arXiv spanning astrophysics, fluid dynamics, and evolutionary biology. The resulting database highlights emerging trends and, by visualizing the knowledge graph, offers new ways to explore the ever-growing landscape of scientific knowledge. Demo: abby101/surveyor-0 on HF Spaces. Code: https://github.com/chiral-carbon/kg-for-science.
Digital Gene: Learning about the Physical World through Analytic Concepts
Reviewing the progress in artificial intelligence over the past decade, various significant advances (e.g. object detection, image generation, large language models) have enabled AI systems to produce more semantically meaningful outputs and achieve widespread adoption in internet scenarios. Nevertheless, AI systems still struggle when it comes to understanding and interacting with the physical world. This reveals an important issue: relying solely on semantic-level concepts learned from internet data (e.g. texts, images) to understand the physical world is far from sufficient -- machine intelligence currently lacks an effective way to learn about the physical world. This research introduces the idea of analytic concept -- representing the concepts related to the physical world through programs of mathematical procedures, providing machine intelligence a portal to perceive, reason about, and interact with the physical world. Except for detailing the design philosophy and providing guidelines for the application of analytic concepts, this research also introduce about the infrastructure that has been built around analytic concepts. I aim for my research to contribute to addressing these questions: What is a proper abstraction of general concepts in the physical world for machine intelligence? How to systematically integrate structured priors with neural networks to constrain AI systems to comply with physical laws?
Linguistic and Structural Basis of Engineering Design Knowledge
Artefact descriptions are the primary carriers of engineering design knowledge that is both an outcome and a driver of the design process. While an artefact could be described in different connotations, the design process requires a description to embody engineering design knowledge, which is expressed in the text through intricate placement of entities and relationships. As large-language models learn from all kinds of text merely as a sequence of characters/tokens, these are yet to generate text that embodies explicit engineering design facts. Existing ontological design theories are less likely to guide the large-language models whose applications are currently limited to ideation and learning purposes. In this article, we explicate engineering design knowledge as knowledge graphs from a large sample of 33,881 patent documents. We examine the constituents of these knowledge graphs to understand the linguistic and structural basis of engineering design knowledge. In terms of linguistic basis, we observe that entities and relationships could be generalised to 64 and 24 linguistic syntaxes. While relationships mainly capture attributes ('of'), structure ('in', 'with'), purpose ('to', 'for'), hierarchy ('include'), exemplification ('such as'), and behaviour ('to', 'from'), the hierarchical relationships could specifically be identified using 75 unique syntaxes. To understand the structural basis, we draw inspiration from various studies on biological/ecological networks and discover motifs from patent knowledge graphs. We identify four 3-node and four 4-node patterns that could further be converged and simplified into sequence [->...->], aggregation [->...<-], and hierarchy [<-...->]. Expected to guide large-language model based design tools, we propose few regulatory precepts for concretising abstract entities and relationships within subgraphs, while explicating hierarchical structures.
Exploring Large Language Models for Ontology Alignment
This work investigates the applicability of recent generative Large Language Models (LLMs), such as the GPT series and Flan-T5, to ontology alignment for identifying concept equivalence mappings across ontologies. To test the zero-shot performance of Flan-T5-XXL and GPT-3.5-turbo, we leverage challenging subsets from two equivalence matching datasets of the OAEI Bio-ML track, taking into account concept labels and structural contexts. Preliminary findings suggest that LLMs have the potential to outperform existing ontology alignment systems like BERTMap, given careful framework and prompt design.
HyDRA: A Hybrid-Driven Reasoning Architecture for Verifiable Knowledge Graphs
The synergy between symbolic knowledge, often represented by Knowledge Graphs (KGs), and the generative capabilities of neural networks is central to advancing neurosymbolic AI. A primary bottleneck in realizing this potential is the difficulty of automating KG construction, which faces challenges related to output reliability, consistency, and verifiability. These issues can manifest as structural inconsistencies within the generated graphs, such as the formation of disconnected isolated islands of data or the inaccurate conflation of abstract classes with specific instances. To address these challenges, we propose HyDRA, a Hybrid-Driven Reasoning Architecture designed for verifiable KG automation. Given a domain or an initial set of documents, HyDRA first constructs an ontology via a panel of collaborative neurosymbolic agents. These agents collaboratively agree on a set of competency questions (CQs) that define the scope and requirements the ontology must be able to answer. Given these CQs, we build an ontology graph that subsequently guides the automated extraction of triplets for KG generation from arbitrary documents. Inspired by design-by-contracts (DbC) principles, our method leverages verifiable contracts as the primary control mechanism to steer the generative process of Large Language Models (LLMs). To verify the output of our approach, we extend beyond standard benchmarks and propose an evaluation framework that assesses the functional correctness of the resulting KG by leveraging symbolic verifications as described by the neurosymbolic AI framework, SymbolicAI. This work contributes a hybrid-driven architecture for improving the reliability of automated KG construction and the exploration of evaluation methods for measuring the functional integrity of its output. The code is publicly available.
An MLCommons Scientific Benchmarks Ontology
Scientific machine learning research spans diverse domains and data modalities, yet existing benchmark efforts remain siloed and lack standardization. This makes novel and transformative applications of machine learning to critical scientific use-cases more fragmented and less clear in pathways to impact. This paper introduces an ontology for scientific benchmarking developed through a unified, community-driven effort that extends the MLCommons ecosystem to cover physics, chemistry, materials science, biology, climate science, and more. Building on prior initiatives such as XAI-BENCH, FastML Science Benchmarks, PDEBench, and the SciMLBench framework, our effort consolidates a large set of disparate benchmarks and frameworks into a single taxonomy of scientific, application, and system-level benchmarks. New benchmarks can be added through an open submission workflow coordinated by the MLCommons Science Working Group and evaluated against a six-category rating rubric that promotes and identifies high-quality benchmarks, enabling stakeholders to select benchmarks that meet their specific needs. The architecture is extensible, supporting future scientific and AI/ML motifs, and we discuss methods for identifying emerging computing patterns for unique scientific workloads. The MLCommons Science Benchmarks Ontology provides a standardized, scalable foundation for reproducible, cross-domain benchmarking in scientific machine learning. A companion webpage for this work has also been developed as the effort evolves: https://mlcommons-science.github.io/benchmark/
FormalML: A Benchmark for Evaluating Formal Subgoal Completion in Machine Learning Theory
Large language models (LLMs) have recently demonstrated remarkable progress in formal theorem proving. Yet their ability to serve as practical assistants for mathematicians, filling in missing steps within complex proofs, remains underexplored. We identify this challenge as the task of subgoal completion, where an LLM must discharge short but nontrivial proof obligations left unresolved in a human-provided sketch. To study this problem, we introduce FormalML, a Lean 4 benchmark built from foundational theories of machine learning. Using a translation tactic that converts procedural proofs into declarative form, we extract 4937 problems spanning optimization and probability inequalities, with varying levels of difficulty. FormalML is the first subgoal completion benchmark to combine premise retrieval and complex research-level contexts. Evaluation of state-of-the-art provers highlights persistent limitations in accuracy and efficiency, underscoring the need for more capable LLM-based theorem provers for effective subgoal completion,
Probing Structured Semantics Understanding and Generation of Language Models via Question Answering
Recent advancement in the capabilities of large language models (LLMs) has triggered a new surge in LLMs' evaluation. Most recent evaluation works tends to evaluate the comprehensive ability of LLMs over series of tasks. However, the deep structure understanding of natural language is rarely explored. In this work, we examine the ability of LLMs to deal with structured semantics on the tasks of question answering with the help of the human-constructed formal language. Specifically, we implement the inter-conversion of natural and formal language through in-context learning of LLMs to verify their ability to understand and generate the structured logical forms. Extensive experiments with models of different sizes and in different formal languages show that today's state-of-the-art LLMs' understanding of the logical forms can approach human level overall, but there still are plenty of room in generating correct logical forms, which suggest that it is more effective to use LLMs to generate more natural language training data to reinforce a small model than directly answering questions with LLMs. Moreover, our results also indicate that models exhibit considerable sensitivity to different formal languages. In general, the formal language with the lower the formalization level, i.e. the more similar it is to natural language, is more LLMs-friendly.
A Language for Function Signature Representations
Recent work by (Richardson and Kuhn, 2017a,b; Richardson et al., 2018) looks at semantic parser induction and question answering in the domain of source code libraries and APIs. In this brief note, we formalize the representations being learned in these studies and introduce a simple domain specific language and a systematic translation from this language to first-order logic. By recasting the target representations in terms of classical logic, we aim to broaden the applicability of existing code datasets for investigating more complex natural language understanding and reasoning problems in the software domain.
Assessing SPARQL capabilities of Large Language Models
The integration of Large Language Models (LLMs) with Knowledge Graphs (KGs) offers significant synergistic potential for knowledge-driven applications. One possible integration is the interpretation and generation of formal languages, such as those used in the Semantic Web, with SPARQL being a core technology for accessing KGs. In this paper, we focus on measuring out-of-the box capabilities of LLMs to work with SPARQL and more specifically with SPARQL SELECT queries applying a quantitative approach. We implemented various benchmarking tasks in the LLM-KG-Bench framework for automated execution and evaluation with several LLMs. The tasks assess capabilities along the dimensions of syntax, semantic read, semantic create, and the role of knowledge graph prompt inclusion. With this new benchmarking tasks, we evaluated a selection of GPT, Gemini, and Claude models. Our findings indicate that working with SPARQL SELECT queries is still challenging for LLMs and heavily depends on the specific LLM as well as the complexity of the task. While fixing basic syntax errors seems to pose no problems for the best of the current LLMs evaluated, creating semantically correct SPARQL SELECT queries is difficult in several cases.
Hilbert: Recursively Building Formal Proofs with Informal Reasoning
Large Language Models (LLMs) demonstrate impressive mathematical reasoning abilities, but their solutions frequently contain errors that cannot be automatically verified. Formal theorem proving systems such as Lean 4 offer automated verification with complete accuracy, motivating recent efforts to build specialized prover LLMs that generate verifiable proofs in formal languages. However, a significant gap remains: current prover LLMs solve substantially fewer problems than general-purpose LLMs operating in natural language. We introduce Hilbert, an agentic framework that bridges this gap by combining the complementary strengths of informal reasoning and formal verification. Our system orchestrates four components: an informal LLM that excels at mathematical reasoning, a specialized prover LLM optimized for Lean 4 tactics, a formal verifier, and a semantic theorem retriever. Given a problem that the prover is unable to solve, Hilbert employs recursive decomposition to split the problem into subgoals that it solves with the prover or reasoner LLM. It leverages verifier feedback to refine incorrect proofs as necessary. Experimental results demonstrate that Hilbert substantially outperforms existing approaches on key benchmarks, achieving 99.2% on miniF2F, 6.6% points above the best publicly available method. Hilbert achieves the best known result on PutnamBench. It solves 462/660 problems (70.0%), outperforming proprietary approaches like SeedProver (50.4%) and achieving a 422% improvement over the best publicly available baseline. Thus, Hilbert effectively narrows the gap between informal reasoning and formal proof generation.
When Prolog meets generative models: a new approach for managing knowledge and planning in robotic applications
In this paper, we propose a robot oriented knowledge management system based on the use of the Prolog language. Our framework hinges on a special organisation of knowledge base that enables: 1. its efficient population from natural language texts using semi-automated procedures based on Large Language Models, 2. the bumpless generation of temporal parallel plans for multi-robot systems through a sequence of transformations, 3. the automated translation of the plan into an executable formalism (the behaviour trees). The framework is supported by a set of open source tools and is shown on a realistic application.
Leveraging small language models for Text2SPARQL tasks to improve the resilience of AI assistance
In this work we will show that language models with less than one billion parameters can be used to translate natural language to SPARQL queries after fine-tuning. Using three different datasets ranging from academic to real world, we identify prerequisites that the training data must fulfill in order for the training to be successful. The goal is to empower users of semantic web technology to use AI assistance with affordable commodity hardware, making them more resilient against external factors.
SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding by exploring novel domains, identifying complex patterns, and uncovering previously unseen connections in vast scientific data. In this work, we present SciAgents, an approach that leverages three core concepts: (1) the use of large-scale ontological knowledge graphs to organize and interconnect diverse scientific concepts, (2) a suite of large language models (LLMs) and data retrieval tools, and (3) multi-agent systems with in-situ learning capabilities. Applied to biologically inspired materials, SciAgents reveals hidden interdisciplinary relationships that were previously considered unrelated, achieving a scale, precision, and exploratory power that surpasses traditional human-driven research methods. The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties. By integrating these capabilities in a modular fashion, the intelligent system yields material discoveries, critique and improve existing hypotheses, retrieve up-to-date data about existing research, and highlights their strengths and limitations. Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a `swarm of intelligence' similar to biological systems. This provides new avenues for materials discovery and accelerates the development of advanced materials by unlocking Nature's design principles.
Sound and Complete Neuro-symbolic Reasoning with LLM-Grounded Interpretations
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but they exhibit problems with logical consistency in the output they generate. How can we harness LLMs' broad-coverage parametric knowledge in formal reasoning despite their inconsistency? We present a method for directly integrating an LLM into the interpretation function of the formal semantics for a paraconsistent logic. We provide experimental evidence for the feasibility of the method by evaluating the function using datasets created from several short-form factuality benchmarks. Unlike prior work, our method offers a theoretical framework for neuro-symbolic reasoning that leverages an LLM's knowledge while preserving the underlying logic's soundness and completeness properties.
Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis
Failure mode and effects analysis (FMEA) is a critical tool for mitigating potential failures, particular during ramp-up phases of new products. However, its effectiveness is often limited by the missing reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for fine-tuning on custom datasets for reasoning within FMEA contexts. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this idea, we propose to advance the non-parametric data store with a knowledge graph (KG). By enhancing the RAG framework with a KG, our objective is to leverage analytical and semantic question-answering capabilities on FMEA data. This paper contributes by presenting a new ontology for FMEA observations, an algorithm for creating vector embeddings from the FMEA KG, and a KG enhanced RAG framework. Our approach is validated through a human study and we measure the performance of the context retrieval recall and precision.
Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog
Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured knowledge base (KB) while information about aspects such as entrance ticket prices, would always be available in documents. In this paper, we create a modified version of the MutliWOZ-based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.
LEAN-GitHub: Compiling GitHub LEAN repositories for a versatile LEAN prover
Recently, large language models have presented promising results in aiding formal mathematical reasoning. However, their performance is restricted due to the scarcity of formal theorem-proving data, which requires additional effort to be extracted from raw formal language corpora. Meanwhile, a significant amount of human-written formal language corpora remains underutilized. To address this issue, we propose LEAN-GitHub, a dataset consisting of large-scale formal data extracted from almost all Lean 4 repositories on GitHub. After fine-tuning InternLM-math-plus on this dataset, our model achieved accuracies of 48.8% with a single pass and 54.5% with 64 passes on the Lean 4 miniF2F test, surpassing state-of-the-art method at 52%. And it also achieves state-of-the-art on two other Lean 4 benchmarks (ProofNet and Putnam) targeting different fields/levels of math. These results demonstrate that our proposed dataset is beneficial for formal reasoning on a wide range of math topics. We open-source our model at https://GitHub. com/InternLM/InternLM-Math and our data at https://huggingface.co/ datasets/InternLM/Lean-GitHub
FormalGeo: An Extensible Formalized Framework for Olympiad Geometric Problem Solving
This is the first paper in a series of work we have accomplished over the past three years. In this paper, we have constructed a consistent formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. Within this formal framework, we have been able to seamlessly integrate modern AI models with our formal system. AI is now capable of providing deductive reasoning solutions to IMO-level plane geometry problems, just like handling other natural languages, and these proofs are readable, traceable, and verifiable. We propose the geometry formalization theory (GFT) to guide the development of the geometry formal system. Based on the GFT, we have established the FormalGeo, which consists of 88 geometric predicates and 196 theorems. It can represent, validate, and solve IMO-level geometry problems. we also have crafted the FGPS (formal geometry problem solver) in Python. It serves as both an interactive assistant for verifying problem-solving processes and an automated problem solver. We've annotated the formalgeo7k and formalgeo-imo datasets. The former contains 6,981 (expand to 133,818 through data augmentation) geometry problems, while the latter includes 18 (expand to 2,627 and continuously increasing) IMO-level challenging geometry problems. All annotated problems include detailed formal language descriptions and solutions. Implementation of the formal system and experiments validate the correctness and utility of the GFT. The backward depth-first search method only yields a 2.42% problem-solving failure rate, and we can incorporate deep learning techniques to achieve lower one. The source code of FGPS and datasets are available at https://github.com/BitSecret/FGPS.
Thinking Machines: Mathematical Reasoning in the Age of LLMs
Large Language Models (LLMs) have shown remarkable abilities in structured reasoning and symbolic tasks, with coding emerging as a particular area of strength. This success has sparked growing interest in applying LLMs to mathematics, both in informal problem-solving and formal theorem proving. However, progress in formal mathematics has proven to be significantly more difficult, despite surface-level similarities between programming and proof construction. This discrepancy raises important questions about how LLMs ``reason'', how they are supervised, and whether they internally track a notion of computational or deductive state. In this article, we address the state-of-the-art of the discipline, focusing on recent models and benchmarks, and explore three central issues at the intersection of machine learning and mathematical cognition: (i) the trade-offs between formal and informal mathematics as training domains; (ii) the deeper reasons why proof generation remains more brittle than code synthesis; (iii) and the question of whether LLMs represent, or merely mimic, a notion of evolving logical state. Our goal is not to draw hard boundaries, but to identify where the current limits lie, and how they might be extended.
Autoformalization of Game Descriptions using Large Language Models
Game theory is a powerful framework for reasoning about strategic interactions, with applications in domains ranging from day-to-day life to international politics. However, applying formal reasoning tools in such contexts is challenging, as these scenarios are often expressed in natural language. To address this, we introduce a framework for the autoformalization of game-theoretic scenarios, which translates natural language descriptions into formal logic representations suitable for formal solvers. Our approach utilizes one-shot prompting and a solver that provides feedback on syntactic correctness to allow LLMs to refine the code. We evaluate the framework using GPT-4o and a dataset of natural language problem descriptions, achieving 98% syntactic correctness and 88% semantic correctness. These results show the potential of LLMs to bridge the gap between real-life strategic interactions and formal reasoning.
Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements. To facilitate the development of Physical AI, we will make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.
Is Complexity Important for Philosophy of Mind?
Computational complexity has often been ignored in philosophy of mind, in philosophical artificial intelligence studies. The purpose of this paper is threefold. First and foremost, to show the importance of complexity rather than computability in philosophical and AI problems. Second, to rephrase the notion of computability in terms of solvability, i.e. treating computability as non-sufficient for establishing intelligence. The Church-Turing thesis is therefore revisited and rephrased in order to capture the ontological background of spatial and temporal complexity. Third, to emphasize ontological differences between different time complexities, which seem to provide a solid base towards better understanding of artificial intelligence in general.
Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1
KnowledgeHub: An end-to-end Tool for Assisted Scientific Discovery
This paper describes the KnowledgeHub tool, a scientific literature Information Extraction (IE) and Question Answering (QA) pipeline. This is achieved by supporting the ingestion of PDF documents that are converted to text and structured representations. An ontology can then be constructed where a user defines the types of entities and relationships they want to capture. A browser-based annotation tool enables annotating the contents of the PDF documents according to the ontology. Named Entity Recognition (NER) and Relation Classification (RC) models can be trained on the resulting annotations and can be used to annotate the unannotated portion of the documents. A knowledge graph is constructed from these entity and relation triples which can be queried to obtain insights from the data. Furthermore, we integrate a suite of Large Language Models (LLMs) that can be used for QA and summarisation that is grounded in the included documents via a retrieval component. KnowledgeHub is a unique tool that supports annotation, IE and QA, which gives the user full insight into the knowledge discovery pipeline.
A Change Language for Ontologies and Knowledge Graphs
Ontologies and knowledge graphs (KGs) are general-purpose computable representations of some domain, such as human anatomy, and are frequently a crucial part of modern information systems. Most of these structures change over time, incorporating new knowledge or information that was previously missing. Managing these changes is a challenge, both in terms of communicating changes to users, and providing mechanisms to make it easier for multiple stakeholders to contribute. To fill that need, we have created KGCL, the Knowledge Graph Change Language, a standard data model for describing changes to KGs and ontologies at a high level, and an accompanying human-readable controlled natural language. This language serves two purposes: a curator can use it to request desired changes, and it can also be used to describe changes that have already happened, corresponding to the concepts of "apply patch" and "diff" commonly used for managing changes in text documents and computer programs. Another key feature of KGCL is that descriptions are at a high enough level to be useful and understood by a variety of stakeholders--for example, ontology edits can be specified by commands like "add synonym 'arm' to 'forelimb'" or "move 'Parkinson disease' under 'neurodegenerative disease'". We have also built a suite of tools for managing ontology changes. These include an automated agent that integrates with and monitors GitHub ontology repositories and applies any requested changes, and a new component in the BioPortal ontology resource that allows users to make change requests directly from within the BioPortal user interface. Overall, the KGCL data model, its controlled natural language, and associated tooling allow for easier management and processing of changes associated with the development of ontologies and KGs.
Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to make large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to better summarize and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.
FACT: Learning Governing Abstractions Behind Integer Sequences
Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease.
L-Mosaics and Bounded Join-Semilattices in Isabelle/HOL
We present a complete formalization in Isabelle/HOL of the object part of an equivalence between L-mosaics and bounded join-semilattices, employing an AI-assisted methodology that integrates large language models as reasoning assistants throughout the proof development process. The equivalence was originally established by Cangiotti, Linzi, and Talotti in their study of hypercompositional structures related to orthomodular lattices and quantum logic. Our formalization rigorously verifies the main theoretical result and demonstrates the mutual inverse property of the transformations establishing this equivalence. The development showcases both the mathematical depth of multivalued algebraic operations and the potential for AI-enhanced interactive theorem proving in tackling complex formalization projects.
Knowledge Hypergraph Embedding Meets Relational Algebra
Embedding-based methods for reasoning in knowledge hypergraphs learn a representation for each entity and relation. Current methods do not capture the procedural rules underlying the relations in the graph. We propose a simple embedding-based model called ReAlE that performs link prediction in knowledge hypergraphs (generalized knowledge graphs) and can represent high-level abstractions in terms of relational algebra operations. We show theoretically that ReAlE is fully expressive and provide proofs and empirical evidence that it can represent a large subset of the primitive relational algebra operations, namely renaming, projection, set union, selection, and set difference. We also verify experimentally that ReAlE outperforms state-of-the-art models in knowledge hypergraph completion, and in representing each of these primitive relational algebra operations. For the latter experiment, we generate a synthetic knowledge hypergraph, for which we design an algorithm based on the Erdos-R'enyi model for generating random graphs.
A Deductive Verification Infrastructure for Probabilistic Programs
This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style for expressing verification conditions whose validity implies the correctness of a program under investigation. As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times, or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a paradigm shift from the standard Boolean to a real-valued domain is required. Our IVL features quantitative generalizations of standard verification constructs such as assume- and assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous verification techniques from the literature. With our SMT-based implementation, we automatically verify a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification infrastructure for expectation-based reasoning about probabilistic programs.
Learning Semantic Correspondences in Technical Documentation
We consider the problem of translating high-level textual descriptions to formal representations in technical documentation as part of an effort to model the meaning of such documentation. We focus specifically on the problem of learning translational correspondences between text descriptions and grounded representations in the target documentation, such as formal representation of functions or code templates. Our approach exploits the parallel nature of such documentation, or the tight coupling between high-level text and the low-level representations we aim to learn. Data is collected by mining technical documents for such parallel text-representation pairs, which we use to train a simple semantic parsing model. We report new baseline results on sixteen novel datasets, including the standard library documentation for nine popular programming languages across seven natural languages, and a small collection of Unix utility manuals.
Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: https://github.com/JHU-CLSP/science-hierarchography{https://github.com/JHU-CLSP/science-hierarchography}
Stochastic LLMs do not Understand Language: Towards Symbolic, Explainable and Ontologically Based LLMs
In our opinion the exuberance surrounding the relative success of data-driven large language models (LLMs) is slightly misguided and for several reasons (i) LLMs cannot be relied upon for factual information since for LLMs all ingested text (factual or non-factual) was created equal; (ii) due to their subsymbolic na-ture, whatever 'knowledge' these models acquire about language will always be buried in billions of microfeatures (weights), none of which is meaningful on its own; and (iii) LLMs will often fail to make the correct inferences in several linguistic contexts (e.g., nominal compounds, copredication, quantifier scope ambi-guities, intensional contexts. Since we believe the relative success of data-driven large language models (LLMs) is not a reflection on the symbolic vs. subsymbol-ic debate but a reflection on applying the successful strategy of a bottom-up reverse engineering of language at scale, we suggest in this paper applying the effective bottom-up strategy in a symbolic setting resulting in symbolic, explainable, and ontologically grounded language models.
Benchmarking the Abilities of Large Language Models for RDF Knowledge Graph Creation and Comprehension: How Well Do LLMs Speak Turtle?
Large Language Models (LLMs) are advancing at a rapid pace, with significant improvements at natural language processing and coding tasks. Yet, their ability to work with formal languages representing data, specifically within the realm of knowledge graph engineering, remains under-investigated. To evaluate the proficiency of various LLMs, we created a set of five tasks that probe their ability to parse, understand, analyze, and create knowledge graphs serialized in Turtle syntax. These tasks, each embodying distinct degrees of complexity and being able to scale with the size of the problem, have been integrated into our automated evaluation system, the LLM-KG-Bench. The evaluation encompassed four commercially available LLMs - GPT-3.5, GPT-4, Claude 1.3, and Claude 2.0, as well as two freely accessible offline models, GPT4All Vicuna and GPT4All Falcon 13B. This analysis offers an in-depth understanding of the strengths and shortcomings of LLMs in relation to their application within RDF knowledge graph engineering workflows utilizing Turtle representation. While our findings show that the latest commercial models outperform their forerunners in terms of proficiency with the Turtle language, they also reveal an apparent weakness. These models fall short when it comes to adhering strictly to the output formatting constraints, a crucial requirement in this context.
Intensional Inheritance Between Concepts: An Information-Theoretic Interpretation
This paper addresses the problem of formalizing and quantifying the concept of "intensional inheritance" between two concepts. We begin by conceiving the intensional inheritance of W from F as the amount of information the proposition "x is F " provides about the proposition "x is W. To flesh this out, we consider concepts F and W defined by sets of properties left{F_{1}, F_{2}, ldots, F_{n}right} and left{W_{1}, W_{2}, ldots, W_{m}right} with associated degrees left{d_{1}, d_{2}, ldots, d_{n}right} and left{e_{1}, e_{2}, ldots, e_{m}right}, respectively, where the properties may overlap. We then derive formulas for the intensional inheritance using both Shannon information theory and algorithmic information theory, incorporating interaction information among properties. We examine a special case where all properties are mutually exclusive and calculate the intensional inheritance in this case in both frameworks. We also derive expressions for P(W mid F) based on the mutual information formula. Finally we consider the relationship between intensional inheritance and conventional set-theoretic "extensional" inheritance, concluding that in our information-theoretic framework, extensional inheritance emerges as a special case of intensional inheritance.
Categorical semiotics: Foundations for Knowledge Integration
The integration of knowledge extracted from diverse models, whether described by domain experts or generated by machine learning algorithms, has historically been challenged by the absence of a suitable framework for specifying and integrating structures, learning processes, data transformations, and data models or rules. In this work, we extend algebraic specification methods to address these challenges within such a framework. In our work, we tackle the challenging task of developing a comprehensive framework for defining and analyzing deep learning architectures. We believe that previous efforts have fallen short by failing to establish a clear connection between the constraints a model must adhere to and its actual implementation. Our methodology employs graphical structures that resemble Ehresmann's sketches, interpreted within a universe of fuzzy sets. This approach offers a unified theory that elegantly encompasses both deterministic and non-deterministic neural network designs. Furthermore, we highlight how this theory naturally incorporates fundamental concepts from computer science and automata theory. Our extended algebraic specification framework, grounded in graphical structures akin to Ehresmann's sketches, offers a promising solution for integrating knowledge across disparate models and domains. By bridging the gap between domain-specific expertise and machine-generated insights, we pave the way for more comprehensive, collaborative, and effective approaches to knowledge integration and modeling.
Knowledge Engineering using Large Language Models
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.
Specifications: The missing link to making the development of LLM systems an engineering discipline
Despite the significant strides made by generative AI in just a few short years, its future progress is constrained by the challenge of building modular and robust systems. This capability has been a cornerstone of past technological revolutions, which relied on combining components to create increasingly sophisticated and reliable systems. Cars, airplanes, computers, and software consist of components-such as engines, wheels, CPUs, and libraries-that can be assembled, debugged, and replaced. A key tool for building such reliable and modular systems is specification: the precise description of the expected behavior, inputs, and outputs of each component. However, the generality of LLMs and the inherent ambiguity of natural language make defining specifications for LLM-based components (e.g., agents) both a challenging and urgent problem. In this paper, we discuss the progress the field has made so far-through advances like structured outputs, process supervision, and test-time compute-and outline several future directions for research to enable the development of modular and reliable LLM-based systems through improved specifications.
HyKnow: End-to-End Task-Oriented Dialog Modeling with Hybrid Knowledge Management
Task-oriented dialog (TOD) systems typically manage structured knowledge (e.g. ontologies and databases) to guide the goal-oriented conversations. However, they fall short of handling dialog turns grounded on unstructured knowledge (e.g. reviews and documents). In this paper, we formulate a task of modeling TOD grounded on both structured and unstructured knowledge. To address this task, we propose a TOD system with hybrid knowledge management, HyKnow. It extends the belief state to manage both structured and unstructured knowledge, and is the first end-to-end model that jointly optimizes dialog modeling grounded on these two kinds of knowledge. We conduct experiments on the modified version of MultiWOZ 2.1 dataset, where dialogs are grounded on hybrid knowledge. Experimental results show that HyKnow has strong end-to-end performance compared to existing TOD systems. It also outperforms the pipeline knowledge management schemes, with higher unstructured knowledge retrieval accuracy.
Advocate for Complete Benchmarks for Formal Reasoning with Formal/Informal Statements and Formal/Informal Proofs
This position paper provides a critical but constructive discussion of current practices in benchmarking and evaluative practices in the field of formal reasoning and automated theorem proving. We take the position that open code, open data, and benchmarks that are complete and error-free will accelerate progress in this field. We identify practices that create barriers to contributing to this field and suggest ways to remove them. We also discuss some of the practices that might produce misleading evaluative information. We aim to create discussions that bring together people from various groups contributing to automated theorem proving, autoformalization, and informal reasoning.
Functorial String Diagrams for Reverse-Mode Automatic Differentiation
We enhance the calculus of string diagrams for monoidal categories with hierarchical features in order to capture closed monoidal (and cartesian closed) structure. Using this new syntax we formulate an automatic differentiation algorithm for (applied) simply typed lambda calculus in the style of [Pearlmutter and Siskind 2008] and we prove for the first time its soundness. To give an efficient yet principled implementation of the AD algorithm we define a sound and complete representation of hierarchical string diagrams as a class of hierarchical hypergraphs we call hypernets.
MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities
For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization has taken hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned Large Language Model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful to extract structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.
Hyperbolic Large Language Models
Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.
Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs
Formal theorem proving (FTP) has emerged as a critical foundation for evaluating the reasoning capabilities of large language models, enabling automated verification of mathematical proofs at scale. However, progress has been constrained by limited datasets due to the high cost of manual curation and the scarcity of challenging problems with verified formal-informal correspondences. We propose leveraging theoretical computer science (TCS) as a scalable source of rigorous proof problems, where algorithmic definitions enable automated generation of arbitrarily many challenging theorem-proof pairs. We demonstrate this approach on two TCS domains: Busy Beaver problems, which involve proving bounds on Turing machine halting behavior, and Mixed Boolean Arithmetic problems, which combine logical and arithmetic reasoning. Our framework automatically synthesizes problems with parallel formal (Lean4) and informal (Markdown) specifications, creating a scalable pipeline for generating verified proof challenges. Evaluation on frontier models reveals substantial gaps in automated theorem proving: while DeepSeekProver-V2-671B achieves 57.5\% success on Busy Beaver problems, it manages only 12\% on Mixed Boolean Arithmetic problems. These results highlight the difficulty of long-form proof generation even for problems that are computationally easy to verify, demonstrating the value of TCS domains for advancing automated reasoning research.
SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.
Grammars of Formal Uncertainty: When to Trust LLMs in Automated Reasoning Tasks
Large language models (LLMs) show remarkable promise for democratizing automated reasoning by generating formal specifications. However, a fundamental tension exists: LLMs are probabilistic, while formal verification demands deterministic guarantees. This paper addresses this epistemological gap by comprehensively investigating failure modes and uncertainty quantification (UQ) in LLM-generated formal artifacts. Our systematic evaluation of five frontier LLMs reveals Satisfiability Modulo Theories (SMT) based autoformalization's domain-specific impact on accuracy (from +34.8% on logical tasks to -44.5% on factual ones), with known UQ techniques like the entropy of token probabilities failing to identify these errors. We introduce a probabilistic context-free grammar (PCFG) framework to model LLM outputs, yielding a refined uncertainty taxonomy. We find uncertainty signals are task-dependent (e.g., grammar entropy for logic, AUROC>0.93). Finally, a lightweight fusion of these signals enables selective verification, drastically reducing errors (14-100%) with minimal abstention, transforming LLM-driven formalization into a reliable engineering discipline.
Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.
Aristotle: IMO-level Automated Theorem Proving
We introduce Aristotle, an AI system that combines formal verification with informal reasoning, achieving gold-medal-equivalent performance on the 2025 International Mathematical Olympiad problems. Aristotle integrates three main components: a Lean proof search system, an informal reasoning system that generates and formalizes lemmas, and a dedicated geometry solver. Our system demonstrates state-of-the-art performance with favorable scaling properties for automated theorem proving.
Implementing Systemic Thinking for Automatic Schema Matching: An Agent-Based Modeling Approach
Several approaches are proposed to deal with the problem of the Automatic Schema Matching (ASM). The challenges and difficulties caused by the complexity and uncertainty characterizing both the process and the outcome of Schema Matching motivated us to investigate how bio-inspired emerging paradigm can help with understanding, managing, and ultimately overcoming those challenges. In this paper, we explain how we approached Automatic Schema Matching as a systemic and Complex Adaptive System (CAS) and how we modeled it using the approach of Agent-Based Modeling and Simulation (ABMS). This effort gives birth to a tool (prototype) for schema matching called Reflex-SMAS. A set of experiments demonstrates the viability of our approach on two main aspects: (i) effectiveness (increasing the quality of the found matchings) and (ii) efficiency (reducing the effort required for this efficiency). Our approach represents a significant paradigm-shift, in the field of Automatic Schema Matching.
STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases
Answering real-world user queries, such as product search, often requires accurate retrieval of information from semi-structured knowledge bases or databases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, previous works have mostly studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational Knowledge Bases. We design a novel pipeline to synthesize natural and realistic user queries that integrate diverse relational information and complex textual properties, as well as their ground-truth answers. Moreover, we rigorously conduct human evaluation to validate the quality of our benchmark, which covers a variety of practical applications, including product recommendations, academic paper searches, and precision medicine inquiries. Our benchmark serves as a comprehensive testbed for evaluating the performance of retrieval systems, with an emphasis on retrieval approaches driven by large language models (LLMs). Our experiments suggest that the STARK datasets present significant challenges to the current retrieval and LLM systems, indicating the demand for building more capable retrieval systems that can handle both textual and relational aspects.
Lean Finder: Semantic Search for Mathlib That Understands User Intents
We present Lean Finder, a semantic search engine for Lean and mathlib that understands and aligns with the intents of mathematicians. Progress in formal theorem proving is often hindered by the difficulty of locating relevant theorems and the steep learning curve of the Lean 4 language, making advancement slow and labor-intensive. Existing Lean search engines, though helpful, rely primarily on informalizations (natural language translation of the formal statements), while largely overlooking the mismatch with real-world user queries. In contrast, we propose a user-centered semantic search tailored to the needs of mathematicians. Our approach begins by analyzing and clustering the semantics of public Lean discussions, then fine-tuning text embeddings on synthesized queries that emulate user intents. We further align Lean Finder with mathematicians' preferences using diverse feedback signals, encoding it with a rich awareness of their goals from multiple perspectives. Evaluations on real-world queries, informalized statements, and proof states demonstrate that our Lean Finder achieves over 30% relative improvement compared to previous search engines and GPT-4o. In addition, Lean Finder is compatible with LLM-based theorem provers, bridging retrieval with formal reasoning. Lean Finder is available at: https://leanfinder.github.io
The General Theory of General Intelligence: A Pragmatic Patternist Perspective
A multi-decade exploration into the theoretical foundations of artificial and natural general intelligence, which has been expressed in a series of books and papers and used to guide a series of practical and research-prototype software systems, is reviewed at a moderate level of detail. The review covers underlying philosophies (patternist philosophy of mind, foundational phenomenological and logical ontology), formalizations of the concept of intelligence, and a proposed high level architecture for AGI systems partly driven by these formalizations and philosophies. The implementation of specific cognitive processes such as logical reasoning, program learning, clustering and attention allocation in the context and language of this high level architecture is considered, as is the importance of a common (e.g. typed metagraph based) knowledge representation for enabling "cognitive synergy" between the various processes. The specifics of human-like cognitive architecture are presented as manifestations of these general principles, and key aspects of machine consciousness and machine ethics are also treated in this context. Lessons for practical implementation of advanced AGI in frameworks such as OpenCog Hyperon are briefly considered.
MedMentions: A Large Biomedical Corpus Annotated with UMLS Concepts
This paper presents the formal release of MedMentions, a new manually annotated resource for the recognition of biomedical concepts. What distinguishes MedMentions from other annotated biomedical corpora is its size (over 4,000 abstracts and over 350,000 linked mentions), as well as the size of the concept ontology (over 3 million concepts from UMLS 2017) and its broad coverage of biomedical disciplines. In addition to the full corpus, a sub-corpus of MedMentions is also presented, comprising annotations for a subset of UMLS 2017 targeted towards document retrieval. To encourage research in Biomedical Named Entity Recognition and Linking, data splits for training and testing are included in the release, and a baseline model and its metrics for entity linking are also described.
A Survey of Scientific Large Language Models: From Data Foundations to Agent Frontiers
Scientific Large Language Models (Sci-LLMs) are transforming how knowledge is represented, integrated, and applied in scientific research, yet their progress is shaped by the complex nature of scientific data. This survey presents a comprehensive, data-centric synthesis that reframes the development of Sci-LLMs as a co-evolution between models and their underlying data substrate. We formulate a unified taxonomy of scientific data and a hierarchical model of scientific knowledge, emphasizing the multimodal, cross-scale, and domain-specific challenges that differentiate scientific corpora from general natural language processing datasets. We systematically review recent Sci-LLMs, from general-purpose foundations to specialized models across diverse scientific disciplines, alongside an extensive analysis of over 270 pre-/post-training datasets, showing why Sci-LLMs pose distinct demands -- heterogeneous, multi-scale, uncertainty-laden corpora that require representations preserving domain invariance and enabling cross-modal reasoning. On evaluation, we examine over 190 benchmark datasets and trace a shift from static exams toward process- and discovery-oriented assessments with advanced evaluation protocols. These data-centric analyses highlight persistent issues in scientific data development and discuss emerging solutions involving semi-automated annotation pipelines and expert validation. Finally, we outline a paradigm shift toward closed-loop systems where autonomous agents based on Sci-LLMs actively experiment, validate, and contribute to a living, evolving knowledge base. Collectively, this work provides a roadmap for building trustworthy, continually evolving artificial intelligence (AI) systems that function as a true partner in accelerating scientific discovery.
Linking Surface Facts to Large-Scale Knowledge Graphs
Open Information Extraction (OIE) methods extract facts from natural language text in the form of ("subject"; "relation"; "object") triples. These facts are, however, merely surface forms, the ambiguity of which impedes their downstream usage; e.g., the surface phrase "Michael Jordan" may refer to either the former basketball player or the university professor. Knowledge Graphs (KGs), on the other hand, contain facts in a canonical (i.e., unambiguous) form, but their coverage is limited by a static schema (i.e., a fixed set of entities and predicates). To bridge this gap, we need the best of both worlds: (i) high coverage of free-text OIEs, and (ii) semantic precision (i.e., monosemy) of KGs. In order to achieve this goal, we propose a new benchmark with novel evaluation protocols that can, for example, measure fact linking performance on a granular triple slot level, while also measuring if a system has the ability to recognize that a surface form has no match in the existing KG. Our extensive evaluation of several baselines show that detection of out-of-KG entities and predicates is more difficult than accurate linking to existing ones, thus calling for more research efforts on this difficult task. We publicly release all resources (data, benchmark and code) on https://github.com/nec-research/fact-linking.
Query of CC: Unearthing Large Scale Domain-Specific Knowledge from Public Corpora
Large language models have demonstrated remarkable potential in various tasks, however, there remains a significant scarcity of open-source models and data for specific domains. Previous works have primarily focused on manually specifying resources and collecting high-quality data on specific domains, which significantly consume time and effort. To address this limitation, we propose an efficient data collection method~Query of CC based on large language models. This method bootstraps seed information through a large language model and retrieves related data from public corpora. It not only collects knowledge-related data for specific domains but unearths the data with potential reasoning procedures. Through the application of this method, we have curated a high-quality dataset called~Knowledge Pile, encompassing four major domains, including stem and humanities sciences, among others. Experimental results demonstrate that~Knowledge Pile significantly improves the performance of large language models in mathematical and knowledge-related reasoning ability tests. To facilitate academic sharing, we open-source our dataset and code, providing valuable support to the academic community.
OWL: A Large Language Model for IT Operations
With the rapid development of IT operations, it has become increasingly crucial to efficiently manage and analyze large volumes of data for practical applications. The techniques of Natural Language Processing (NLP) have shown remarkable capabilities for various tasks, including named entity recognition, machine translation and dialogue systems. Recently, Large Language Models (LLMs) have achieved significant improvements across various NLP downstream tasks. However, there is a lack of specialized LLMs for IT operations. In this paper, we introduce the OWL, a large language model trained on our collected OWL-Instruct dataset with a wide range of IT-related information, where the mixture-of-adapter strategy is proposed to improve the parameter-efficient tuning across different domains or tasks. Furthermore, we evaluate the performance of our OWL on the OWL-Bench established by us and open IT-related benchmarks. OWL demonstrates superior performance results on IT tasks, which outperforms existing models by significant margins. Moreover, we hope that the findings of our work will provide more insights to revolutionize the techniques of IT operations with specialized LLMs.
BIOS: An Algorithmically Generated Biomedical Knowledge Graph
Biomedical knowledge graphs (BioMedKGs) are essential infrastructures for biomedical and healthcare big data and artificial intelligence (AI), facilitating natural language processing, model development, and data exchange. For decades, these knowledge graphs have been developed via expert curation; however, this method can no longer keep up with today's AI development, and a transition to algorithmically generated BioMedKGs is necessary. In this work, we introduce the Biomedical Informatics Ontology System (BIOS), the first large-scale publicly available BioMedKG generated completely by machine learning algorithms. BIOS currently contains 4.1 million concepts, 7.4 million terms in two languages, and 7.3 million relation triplets. We present the methodology for developing BIOS, including the curation of raw biomedical terms, computational identification of synonymous terms and aggregation of these terms to create concept nodes, semantic type classification of the concepts, relation identification, and biomedical machine translation. We provide statistics on the current BIOS content and perform preliminary assessments of term quality, synonym grouping, and relation extraction. The results suggest that machine learning-based BioMedKG development is a viable alternative to traditional expert curation.
Semantically-informed Hierarchical Event Modeling
Prior work has shown that coupling sequential latent variable models with semantic ontological knowledge can improve the representational capabilities of event modeling approaches. In this work, we present a novel, doubly hierarchical, semi-supervised event modeling framework that provides structural hierarchy while also accounting for ontological hierarchy. Our approach consists of multiple layers of structured latent variables, where each successive layer compresses and abstracts the previous layers. We guide this compression through the injection of structured ontological knowledge that is defined at the type level of events: importantly, our model allows for partial injection of semantic knowledge and it does not depend on observing instances at any particular level of the semantic ontology. Across two different datasets and four different evaluation metrics, we demonstrate that our approach is able to out-perform the previous state-of-the-art approaches by up to 8.5%, demonstrating the benefits of structured and semantic hierarchical knowledge for event modeling.
Seven Failure Points When Engineering a Retrieval Augmented Generation System
Software engineers are increasingly adding semantic search capabilities to applications using a strategy known as Retrieval Augmented Generation (RAG). A RAG system involves finding documents that semantically match a query and then passing the documents to a large language model (LLM) such as ChatGPT to extract the right answer using an LLM. RAG systems aim to: a) reduce the problem of hallucinated responses from LLMs, b) link sources/references to generated responses, and c) remove the need for annotating documents with meta-data. However, RAG systems suffer from limitations inherent to information retrieval systems and from reliance on LLMs. In this paper, we present an experience report on the failure points of RAG systems from three case studies from separate domains: research, education, and biomedical. We share the lessons learned and present 7 failure points to consider when designing a RAG system. The two key takeaways arising from our work are: 1) validation of a RAG system is only feasible during operation, and 2) the robustness of a RAG system evolves rather than designed in at the start. We conclude with a list of potential research directions on RAG systems for the software engineering community.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
Talking to GDELT Through Knowledge Graphs
In this work we study various Retrieval Augmented Regeneration (RAG) approaches to gain an understanding of the strengths and weaknesses of each approach in a question-answering analysis. To gain this understanding we use a case-study subset of the Global Database of Events, Language, and Tone (GDELT) dataset as well as a corpus of raw text scraped from the online news articles. To retrieve information from the text corpus we implement a traditional vector store RAG as well as state-of-the-art large language model (LLM) based approaches for automatically constructing KGs and retrieving the relevant subgraphs. In addition to these corpus approaches, we develop a novel ontology-based framework for constructing knowledge graphs (KGs) from GDELT directly which leverages the underlying schema of GDELT to create structured representations of global events. For retrieving relevant information from the ontology-based KGs we implement both direct graph queries and state-of-the-art graph retrieval approaches. We compare the performance of each method in a question-answering task. We find that while our ontology-based KGs are valuable for question-answering, automated extraction of the relevant subgraphs is challenging. Conversely, LLM-generated KGs, while capturing event summaries, often lack consistency and interpretability. Our findings suggest benefits of a synergistic approach between ontology and LLM-based KG construction, with proposed avenues toward that end.
Full Automation of Goal-driven LLM Dialog Threads with And-Or Recursors and Refiner Oracles
We automate deep step-by step reasoning in an LLM dialog thread by recursively exploring alternatives (OR-nodes) and expanding details (AND-nodes) up to a given depth. Starting from a single succinct task-specific initiator we steer the automated dialog thread to stay focussed on the task by synthesizing a prompt that summarizes the depth-first steps taken so far. Our algorithm is derived from a simple recursive descent implementation of a Horn Clause interpreter, except that we accommodate our logic engine to fit the natural language reasoning patterns LLMs have been trained on. Semantic similarity to ground-truth facts or oracle advice from another LLM instance is used to restrict the search space and validate the traces of justification steps returned as answers. At the end, the unique minimal model of a generated Horn Clause program collects the results of the reasoning process. As applications, we sketch implementations of consequence predictions, causal explanations, recommendation systems and topic-focussed exploration of scientific literature.
Scaling Knowledge Graphs for Automating AI of Digital Twins
Digital Twins are digital representations of systems in the Internet of Things (IoT) that are often based on AI models that are trained on data from those systems. Semantic models are used increasingly to link these datasets from different stages of the IoT systems life-cycle together and to automatically configure the AI modelling pipelines. This combination of semantic models with AI pipelines running on external datasets raises unique challenges particular if rolled out at scale. Within this paper we will discuss the unique requirements of applying semantic graphs to automate Digital Twins in different practical use cases. We will introduce the benchmark dataset DTBM that reflects these characteristics and look into the scaling challenges of different knowledge graph technologies. Based on these insights we will propose a reference architecture that is in-use in multiple products in IBM and derive lessons learned for scaling knowledge graphs for configuring AI models for Digital Twins.
A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications
This survey examines the rapidly evolving field of Deep Research systems -- AI-powered applications that automate complex research workflows through the integration of large language models, advanced information retrieval, and autonomous reasoning capabilities. We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023, including OpenAI/Deep Research, Gemini/Deep Research, Perplexity/Deep Research, and numerous open-source alternatives. Through comprehensive examination, we propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions: foundation models and reasoning engines, tool utilization and environmental interaction, task planning and execution control, and knowledge synthesis and output generation. We explore the architectural patterns, implementation approaches, and domain-specific adaptations that characterize these systems across academic, scientific, business, and educational applications. Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present regarding information accuracy, privacy, intellectual property, and accessibility. The survey concludes by identifying promising research directions in advanced reasoning architectures, multimodal integration, domain specialization, human-AI collaboration, and ecosystem standardization that will likely shape the future evolution of this transformative technology. By providing a comprehensive framework for understanding Deep Research systems, this survey contributes to both the theoretical understanding of AI-augmented knowledge work and the practical development of more capable, responsible, and accessible research technologies. The paper resources can be viewed at https://github.com/scienceaix/deepresearch.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
Dialogue Term Extraction using Transfer Learning and Topological Data Analysis
Goal oriented dialogue systems were originally designed as a natural language interface to a fixed data-set of entities that users might inquire about, further described by domain, slots, and values. As we move towards adaptable dialogue systems where knowledge about domains, slots, and values may change, there is an increasing need to automatically extract these terms from raw dialogues or related non-dialogue data on a large scale. In this paper, we take an important step in this direction by exploring different features that can enable systems to discover realizations of domains, slots, and values in dialogues in a purely data-driven fashion. The features that we examine stem from word embeddings, language modelling features, as well as topological features of the word embedding space. To examine the utility of each feature set, we train a seed model based on the widely used MultiWOZ data-set. Then, we apply this model to a different corpus, the Schema-Guided Dialogue data-set. Our method outperforms the previously proposed approach that relies solely on word embeddings. We also demonstrate that each of the features is responsible for discovering different kinds of content. We believe our results warrant further research towards ontology induction, and continued harnessing of topological data analysis for dialogue and natural language processing research.
Higher-Order DisCoCat (Peirce-Lambek-Montague semantics)
We propose a new definition of higher-order DisCoCat (categorical compositional distributional) models where the meaning of a word is not a diagram, but a diagram-valued higher-order function. Our models can be seen as a variant of Montague semantics based on a lambda calculus where the primitives act on string diagrams rather than logical formulae. As a special case, we show how to translate from the Lambek calculus into Peirce's system beta for first-order logic. This allows us to give a purely diagrammatic treatment of higher-order and non-linear processes in natural language semantics: adverbs, prepositions, negation and quantifiers. The theoretical definition presented in this article comes with a proof-of-concept implementation in DisCoPy, the Python library for string diagrams.
SubgoalXL: Subgoal-based Expert Learning for Theorem Proving
Formal theorem proving, a field at the intersection of mathematics and computer science, has seen renewed interest with advancements in large language models (LLMs). This paper introduces SubgoalXL, a novel approach that synergizes subgoal-based proofs with expert learning to enhance LLMs' capabilities in formal theorem proving within the Isabelle environment. SubgoalXL addresses two critical challenges: the scarcity of specialized mathematics and theorem-proving data, and the need for improved multi-step reasoning abilities in LLMs. By optimizing data efficiency and employing subgoal-level supervision, SubgoalXL extracts richer information from limited human-generated proofs. The framework integrates subgoal-oriented proof strategies with an expert learning system, iteratively refining formal statement, proof, and subgoal generators. Leveraging the Isabelle environment's advantages in subgoal-based proofs, SubgoalXL achieves a new state-of-the-art performance of 56.1\% in Isabelle on the standard miniF2F dataset, marking an absolute improvement of 4.9\%. Notably, SubgoalXL successfully solves 41 AMC12, 9 AIME, and 3 IMO problems from miniF2F. These results underscore the effectiveness of maximizing limited data utility and employing targeted guidance for complex reasoning in formal theorem proving, contributing to the ongoing advancement of AI reasoning capabilities. The implementation is available at https://github.com/zhaoxlpku/SubgoalXL.
A Knowledge Representation Approach to Automated Mathematical Modelling
In this paper, we propose a new mixed-integer linear programming (MILP) model ontology and a novel constraint typology of MILP formulations. MILP is a commonly used mathematical programming technique for modelling and solving real-life scheduling, routing, planning, resource allocation, and timetabling optimization problems providing optimized business solutions for industry sectors such as manufacturing, agriculture, defence, healthcare, medicine, energy, finance, and transportation. Despite the numerous real-life Combinatorial Optimization Problems found and solved and millions yet to be discovered and formulated, the number of types of constraints (the building blocks of a MILP) is relatively small. In the search for a suitable machine-readable knowledge representation structure for MILPs, we propose an optimization modelling tree built based upon an MILP model ontology that can be used as a guide for automated systems to elicit an MILP model from end-users on their combinatorial business optimization problems. Our ultimate aim is to develop a machine-readable knowledge representation for MILP that allows us to map an end-user's natural language description of the business optimization problem to an MILP formal specification as a first step towards automated mathematical modelling.
Can Transformers Reason in Fragments of Natural Language?
State-of-the-art deep-learning-based approaches to Natural Language Processing (NLP) are credited with various capabilities that involve reasoning with natural language texts. In this paper we carry out a large-scale empirical study investigating the detection of formally valid inferences in controlled fragments of natural language for which the satisfiability problem becomes increasingly complex. We find that, while transformer-based language models perform surprisingly well in these scenarios, a deeper analysis re-veals that they appear to overfit to superficial patterns in the data rather than acquiring the logical principles governing the reasoning in these fragments.
