new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Open-Vocabulary HOI Detection with Interaction-aware Prompt and Concept Calibration

Open Vocabulary Human-Object Interaction (HOI) detection aims to detect interactions between humans and objects while generalizing to novel interaction classes beyond the training set. Current methods often rely on Vision and Language Models (VLMs) but face challenges due to suboptimal image encoders, as image-level pre-training does not align well with the fine-grained region-level interaction detection required for HOI. Additionally, effectively encoding textual descriptions of visual appearances remains difficult, limiting the model's ability to capture detailed HOI relationships. To address these issues, we propose INteraction-aware Prompting with Concept Calibration (INP-CC), an end-to-end open-vocabulary HOI detector that integrates interaction-aware prompts and concept calibration. Specifically, we propose an interaction-aware prompt generator that dynamically generates a compact set of prompts based on the input scene, enabling selective sharing among similar interactions. This approach directs the model's attention to key interaction patterns rather than generic image-level semantics, enhancing HOI detection. Furthermore, we refine HOI concept representations through language model-guided calibration, which helps distinguish diverse HOI concepts by investigating visual similarities across categories. A negative sampling strategy is also employed to improve inter-modal similarity modeling, enabling the model to better differentiate visually similar but semantically distinct actions. Extensive experimental results demonstrate that INP-CC significantly outperforms state-of-the-art models on the SWIG-HOI and HICO-DET datasets. Code is available at https://github.com/ltttpku/INP-CC.

  • 5 authors
·
Aug 5

Re-mine, Learn and Reason: Exploring the Cross-modal Semantic Correlations for Language-guided HOI detection

Human-Object Interaction (HOI) detection is a challenging computer vision task that requires visual models to address the complex interactive relationship between humans and objects and predict HOI triplets. Despite the challenges posed by the numerous interaction combinations, they also offer opportunities for multimodal learning of visual texts. In this paper, we present a systematic and unified framework (RmLR) that enhances HOI detection by incorporating structured text knowledge. Firstly, we qualitatively and quantitatively analyze the loss of interaction information in the two-stage HOI detector and propose a re-mining strategy to generate more comprehensive visual representation.Secondly, we design more fine-grained sentence- and word-level alignment and knowledge transfer strategies to effectively address the many-to-many matching problem between multiple interactions and multiple texts.These strategies alleviate the matching confusion problem that arises when multiple interactions occur simultaneously, thereby improving the effectiveness of the alignment process. Finally, HOI reasoning by visual features augmented with textual knowledge substantially improves the understanding of interactions. Experimental results illustrate the effectiveness of our approach, where state-of-the-art performance is achieved on public benchmarks. We further analyze the effects of different components of our approach to provide insights into its efficacy.

  • 7 authors
·
Jul 25, 2023

Detecting Any Human-Object Interaction Relationship: Universal HOI Detector with Spatial Prompt Learning on Foundation Models

Human-object interaction (HOI) detection aims to comprehend the intricate relationships between humans and objects, predicting <human, action, object> triplets, and serving as the foundation for numerous computer vision tasks. The complexity and diversity of human-object interactions in the real world, however, pose significant challenges for both annotation and recognition, particularly in recognizing interactions within an open world context. This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs). The proposed method is dubbed as \textbf{UniHOI}. We conduct a deep analysis of the three hierarchical features inherent in visual HOI detectors and propose a method for high-level relation extraction aimed at VL foundation models, which we call HO prompt-based learning. Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image. Furthermore, we utilize a LLM (i.e. GPT) for interaction interpretation, generating a richer linguistic understanding for complex HOIs. For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence. Our efficient architecture design and learning methods effectively unleash the potential of the VL foundation models and LLMs, allowing UniHOI to surpass all existing methods with a substantial margin, under both supervised and zero-shot settings. The code and pre-trained weights are available at: https://github.com/Caoyichao/UniHOI.

  • 7 authors
·
Nov 7, 2023

F-HOI: Toward Fine-grained Semantic-Aligned 3D Human-Object Interactions

Existing 3D human object interaction (HOI) datasets and models simply align global descriptions with the long HOI sequence, while lacking a detailed understanding of intermediate states and the transitions between states. In this paper, we argue that fine-grained semantic alignment, which utilizes state-level descriptions, offers a promising paradigm for learning semantically rich HOI representations. To achieve this, we introduce Semantic-HOI, a new dataset comprising over 20K paired HOI states with fine-grained descriptions for each HOI state and the body movements that happen between two consecutive states. Leveraging the proposed dataset, we design three state-level HOI tasks to accomplish fine-grained semantic alignment within the HOI sequence. Additionally, we propose a unified model called F-HOI, designed to leverage multimodal instructions and empower the Multi-modal Large Language Model to efficiently handle diverse HOI tasks. F-HOI offers multiple advantages: (1) It employs a unified task formulation that supports the use of versatile multimodal inputs. (2) It maintains consistency in HOI across 2D, 3D, and linguistic spaces. (3) It utilizes fine-grained textual supervision for direct optimization, avoiding intricate modeling of HOI states. Extensive experiments reveal that F-HOI effectively aligns HOI states with fine-grained semantic descriptions, adeptly tackling understanding, reasoning, generation, and reconstruction tasks.

  • 5 authors
·
Jul 17, 2024 3

CycleHOI: Improving Human-Object Interaction Detection with Cycle Consistency of Detection and Generation

Recognition and generation are two fundamental tasks in computer vision, which are often investigated separately in the exiting literature. However, these two tasks are highly correlated in essence as they both require understanding the underline semantics of visual concepts. In this paper, we propose a new learning framework, coined as CycleHOI, to boost the performance of human-object interaction (HOI) detection by bridging the DETR-based detection pipeline and the pre-trained text-to-image diffusion model. Our key design is to introduce a novel cycle consistency loss for the training of HOI detector, which is able to explicitly leverage the knowledge captured in the powerful diffusion model to guide the HOI detector training. Specifically, we build an extra generation task on top of the decoded instance representations from HOI detector to enforce a detection-generation cycle consistency. Moreover, we perform feature distillation from diffusion model to detector encoder to enhance its representation power. In addition, we further utilize the generation power of diffusion model to augment the training set in both aspects of label correction and sample generation. We perform extensive experiments to verify the effectiveness and generalization power of our CycleHOI with three HOI detection frameworks on two public datasets: HICO-DET and V-COCO. The experimental results demonstrate our CycleHOI can significantly improve the performance of the state-of-the-art HOI detectors.

  • 3 authors
·
Jul 16, 2024

Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection

Zero-shot Human-Object Interaction (HOI) detection has emerged as a frontier topic due to its capability to detect HOIs beyond a predefined set of categories. This task entails not only identifying the interactiveness of human-object pairs and localizing them but also recognizing both seen and unseen interaction categories. In this paper, we introduce a novel framework for zero-shot HOI detection using Conditional Multi-Modal Prompts, namely CMMP. This approach enhances the generalization of large foundation models, such as CLIP, when fine-tuned for HOI detection. Unlike traditional prompt-learning methods, we propose learning decoupled vision and language prompts for interactiveness-aware visual feature extraction and generalizable interaction classification, respectively. Specifically, we integrate prior knowledge of different granularity into conditional vision prompts, including an input-conditioned instance prior and a global spatial pattern prior. The former encourages the image encoder to treat instances belonging to seen or potentially unseen HOI concepts equally while the latter provides representative plausible spatial configuration of the human and object under interaction. Besides, we employ language-aware prompt learning with a consistency constraint to preserve the knowledge of the large foundation model to enable better generalization in the text branch. Extensive experiments demonstrate the efficacy of our detector with conditional multi-modal prompts, outperforming previous state-of-the-art on unseen classes of various zero-shot settings. The code and models are available at https://github.com/ltttpku/CMMP.

  • 4 authors
·
Aug 5, 2024

HOLa: Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation

Zero-shot human-object interaction (HOI) detection remains a challenging task, particularly in generalizing to unseen actions. Existing methods address this challenge by tapping Vision-Language Models (VLMs) to access knowledge beyond the training data. However, they either struggle to distinguish actions involving the same object or demonstrate limited generalization to unseen classes. In this paper, we introduce HOLa (Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation), a novel approach that both enhances generalization to unseen classes and improves action distinction. In training, HOLa decomposes VLM text features for given HOI classes via low-rank factorization, producing class-shared basis features and adaptable weights. These features and weights form a compact HOI representation that preserves shared information across classes, enhancing generalization to unseen classes. Subsequently, we refine action distinction by adapting weights for each HOI class and introducing human-object tokens to enrich visual interaction representations. To further distinguish unseen actions, we guide the weight adaptation with LLM-derived action regularization. Experimental results show that our method sets a new state-of-the-art across zero-shot HOI settings on HICO-DET, achieving an unseen-class mAP of 27.91 in the unseen-verb setting. Our code is available at https://github.com/ChelsieLei/HOLa.

  • 3 authors
·
Jul 21

TOUCH: Text-guided Controllable Generation of Free-Form Hand-Object Interactions

Hand-object interaction (HOI) is fundamental for humans to express intent. Existing HOI generation research is predominantly confined to fixed grasping patterns, where control is tied to physical priors such as force closure or generic intent instructions, even when expressed through elaborate language. Such an overly general conditioning imposes a strong inductive bias for stable grasps, thus failing to capture the diversity of daily HOI. To address these limitations, we introduce Free-Form HOI Generation, which aims to generate controllable, diverse, and physically plausible HOI conditioned on fine-grained intent, extending HOI from grasping to free-form interactions, like pushing, poking, and rotating. To support this task, we construct WildO2, an in-the-wild diverse 3D HOI dataset, which includes diverse HOI derived from internet videos. Specifically, it contains 4.4k unique interactions across 92 intents and 610 object categories, each with detailed semantic annotations. Building on this dataset, we propose TOUCH, a three-stage framework centered on a multi-level diffusion model that facilitates fine-grained semantic control to generate versatile hand poses beyond grasping priors. This process leverages explicit contact modeling for conditioning and is subsequently refined with contact consistency and physical constraints to ensure realism. Comprehensive experiments demonstrate our method's ability to generate controllable, diverse, and physically plausible hand interactions representative of daily activities. The project page is https://guangyid.github.io/hoi123touch{here}.

  • 5 authors
·
Oct 16

What Makes Good Open-Vocabulary Detector: A Disassembling Perspective

Open-vocabulary detection (OVD) is a new object detection paradigm, aiming to localize and recognize unseen objects defined by an unbounded vocabulary. This is challenging since traditional detectors can only learn from pre-defined categories and thus fail to detect and localize objects out of pre-defined vocabulary. To handle the challenge, OVD leverages pre-trained cross-modal VLM, such as CLIP, ALIGN, etc. Previous works mainly focus on the open vocabulary classification part, with less attention on the localization part. We argue that for a good OVD detector, both classification and localization should be parallelly studied for the novel object categories. We show in this work that improving localization as well as cross-modal classification complement each other, and compose a good OVD detector jointly. We analyze three families of OVD methods with different design emphases. We first propose a vanilla method,i.e., cropping a bounding box obtained by a localizer and resizing it into the CLIP. We next introduce another approach, which combines a standard two-stage object detector with CLIP. A two-stage object detector includes a visual backbone, a region proposal network (RPN), and a region of interest (RoI) head. We decouple RPN and ROI head (DRR) and use RoIAlign to extract meaningful features. In this case, it avoids resizing objects. To further accelerate the training time and reduce the model parameters, we couple RPN and ROI head (CRR) as the third approach. We conduct extensive experiments on these three types of approaches in different settings. On the OVD-COCO benchmark, DRR obtains the best performance and achieves 35.8 Novel AP_{50}, an absolute 2.8 gain over the previous state-of-the-art (SOTA). For OVD-LVIS, DRR surpasses the previous SOTA by 1.9 AP_{50} in rare categories. We also provide an object detection dataset called PID and provide a baseline on PID.

  • 5 authors
·
Aug 31, 2023

OV-VG: A Benchmark for Open-Vocabulary Visual Grounding

Open-vocabulary learning has emerged as a cutting-edge research area, particularly in light of the widespread adoption of vision-based foundational models. Its primary objective is to comprehend novel concepts that are not encompassed within a predefined vocabulary. One key facet of this endeavor is Visual Grounding, which entails locating a specific region within an image based on a corresponding language description. While current foundational models excel at various visual language tasks, there's a noticeable absence of models specifically tailored for open-vocabulary visual grounding. This research endeavor introduces novel and challenging OV tasks, namely Open-Vocabulary Visual Grounding and Open-Vocabulary Phrase Localization. The overarching aim is to establish connections between language descriptions and the localization of novel objects. To facilitate this, we have curated a comprehensive annotated benchmark, encompassing 7,272 OV-VG images and 1,000 OV-PL images. In our pursuit of addressing these challenges, we delved into various baseline methodologies rooted in existing open-vocabulary object detection, VG, and phrase localization frameworks. Surprisingly, we discovered that state-of-the-art methods often falter in diverse scenarios. Consequently, we developed a novel framework that integrates two critical components: Text-Image Query Selection and Language-Guided Feature Attention. These modules are designed to bolster the recognition of novel categories and enhance the alignment between visual and linguistic information. Extensive experiments demonstrate the efficacy of our proposed framework, which consistently attains SOTA performance across the OV-VG task. Additionally, ablation studies provide further evidence of the effectiveness of our innovative models. Codes and datasets will be made publicly available at https://github.com/cv516Buaa/OV-VG.

  • 8 authors
·
Oct 22, 2023

ContextHOI: Spatial Context Learning for Human-Object Interaction Detection

Spatial contexts, such as the backgrounds and surroundings, are considered critical in Human-Object Interaction (HOI) recognition, especially when the instance-centric foreground is blurred or occluded. Recent advancements in HOI detectors are usually built upon detection transformer pipelines. While such an object-detection-oriented paradigm shows promise in localizing objects, its exploration of spatial context is often insufficient for accurately recognizing human actions. To enhance the capabilities of object detectors for HOI detection, we present a dual-branch framework named ContextHOI, which efficiently captures both object detection features and spatial contexts. In the context branch, we train the model to extract informative spatial context without requiring additional hand-craft background labels. Furthermore, we introduce context-aware spatial and semantic supervision to the context branch to filter out irrelevant noise and capture informative contexts. ContextHOI achieves state-of-the-art performance on the HICO-DET and v-coco benchmarks. For further validation, we construct a novel benchmark, HICO-ambiguous, which is a subset of HICO-DET that contains images with occluded or impaired instance cues. Extensive experiments across all benchmarks, complemented by visualizations, underscore the enhancements provided by ContextHOI, especially in recognizing interactions involving occluded or blurred instances.

  • 4 authors
·
Dec 12, 2024

InteractDiffusion: Interaction Control in Text-to-Image Diffusion Models

Large-scale text-to-image (T2I) diffusion models have showcased incredible capabilities in generating coherent images based on textual descriptions, enabling vast applications in content generation. While recent advancements have introduced control over factors such as object localization, posture, and image contours, a crucial gap remains in our ability to control the interactions between objects in the generated content. Well-controlling interactions in generated images could yield meaningful applications, such as creating realistic scenes with interacting characters. In this work, we study the problems of conditioning T2I diffusion models with Human-Object Interaction (HOI) information, consisting of a triplet label (person, action, object) and corresponding bounding boxes. We propose a pluggable interaction control model, called InteractDiffusion that extends existing pre-trained T2I diffusion models to enable them being better conditioned on interactions. Specifically, we tokenize the HOI information and learn their relationships via interaction embeddings. A conditioning self-attention layer is trained to map HOI tokens to visual tokens, thereby conditioning the visual tokens better in existing T2I diffusion models. Our model attains the ability to control the interaction and location on existing T2I diffusion models, which outperforms existing baselines by a large margin in HOI detection score, as well as fidelity in FID and KID. Project page: https://jiuntian.github.io/interactdiffusion.

  • 5 authors
·
Dec 10, 2023

OV-DINO: Unified Open-Vocabulary Detection with Language-Aware Selective Fusion

Open-vocabulary detection is a challenging task due to the requirement of detecting objects based on class names, including those not encountered during training. Existing methods have shown strong zero-shot detection capabilities through pre-training on diverse large-scale datasets. However, these approaches still face two primary challenges: (i) how to universally integrate diverse data sources for end-to-end training, and (ii) how to effectively leverage the language-aware capability for region-level cross-modality understanding. To address these challenges, we propose a novel unified open-vocabulary detection method called OV-DINO, which pre-trains on diverse large-scale datasets with language-aware selective fusion in a unified framework. Specifically, we introduce a Unified Data Integration (UniDI) pipeline to enable end-to-end training and eliminate noise from pseudo-label generation by unifying different data sources into detection-centric data. In addition, we propose a Language-Aware Selective Fusion (LASF) module to enable the language-aware ability of the model through a language-aware query selection and fusion process. We evaluate the performance of the proposed OV-DINO on popular open-vocabulary detection benchmark datasets, achieving state-of-the-art results with an AP of 50.6\% on the COCO dataset and 40.0\% on the LVIS dataset in a zero-shot manner, demonstrating its strong generalization ability. Furthermore, the fine-tuned OV-DINO on COCO achieves 58.4\% AP, outperforming many existing methods with the same backbone. The code for OV-DINO will be available at https://github.com/wanghao9610/OV-DINO{https://github.com/wanghao9610/OV-DINO}.

  • 11 authors
·
Jul 10, 2024

Boosting Open-Vocabulary Object Detection by Handling Background Samples

Open-vocabulary object detection is the task of accurately detecting objects from a candidate vocabulary list that includes both base and novel categories. Currently, numerous open-vocabulary detectors have achieved success by leveraging the impressive zero-shot capabilities of CLIP. However, we observe that CLIP models struggle to effectively handle background images (i.e. images without corresponding labels) due to their language-image learning methodology. This limitation results in suboptimal performance for open-vocabulary detectors that rely on CLIP when processing background samples. In this paper, we propose Background Information Representation for open-vocabulary Detector (BIRDet), a novel approach to address the limitations of CLIP in handling background samples. Specifically, we design Background Information Modeling (BIM) to replace the single, fixed background embedding in mainstream open-vocabulary detectors with dynamic scene information, and prompt it into image-related background representations. This method effectively enhances the ability to classify oversized regions as background. Besides, we introduce Partial Object Suppression (POS), an algorithm that utilizes the ratio of overlap area to address the issue of misclassifying partial regions as foreground. Experiments on OV-COCO and OV-LVIS benchmarks demonstrate that our proposed model is capable of achieving performance enhancements across various open-vocabulary detectors.

  • 4 authors
·
Oct 11, 2024

HOIGen-1M: A Large-scale Dataset for Human-Object Interaction Video Generation

Text-to-video (T2V) generation has made tremendous progress in generating complicated scenes based on texts. However, human-object interaction (HOI) often cannot be precisely generated by current T2V models due to the lack of large-scale videos with accurate captions for HOI. To address this issue, we introduce HOIGen-1M, the first largescale dataset for HOI Generation, consisting of over one million high-quality videos collected from diverse sources. In particular, to guarantee the high quality of videos, we first design an efficient framework to automatically curate HOI videos using the powerful multimodal large language models (MLLMs), and then the videos are further cleaned by human annotators. Moreover, to obtain accurate textual captions for HOI videos, we design a novel video description method based on a Mixture-of-Multimodal-Experts (MoME) strategy that not only generates expressive captions but also eliminates the hallucination by individual MLLM. Furthermore, due to the lack of an evaluation framework for generated HOI videos, we propose two new metrics to assess the quality of generated videos in a coarse-to-fine manner. Extensive experiments reveal that current T2V models struggle to generate high-quality HOI videos and confirm that our HOIGen-1M dataset is instrumental for improving HOI video generation. Project webpage is available at https://liuqi-creat.github.io/HOIGen.github.io.

  • 8 authors
·
Mar 31

Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object Interactions

A significant gap remains between today's visual pattern recognition models and human-level visual cognition especially when it comes to few-shot learning and compositional reasoning of novel concepts. We introduce Bongard-HOI, a new visual reasoning benchmark that focuses on compositional learning of human-object interactions (HOIs) from natural images. It is inspired by two desirable characteristics from the classical Bongard problems (BPs): 1) few-shot concept learning, and 2) context-dependent reasoning. We carefully curate the few-shot instances with hard negatives, where positive and negative images only disagree on action labels, making mere recognition of object categories insufficient to complete our benchmarks. We also design multiple test sets to systematically study the generalization of visual learning models, where we vary the overlap of the HOI concepts between the training and test sets of few-shot instances, from partial to no overlaps. Bongard-HOI presents a substantial challenge to today's visual recognition models. The state-of-the-art HOI detection model achieves only 62% accuracy on few-shot binary prediction while even amateur human testers on MTurk have 91% accuracy. With the Bongard-HOI benchmark, we hope to further advance research efforts in visual reasoning, especially in holistic perception-reasoning systems and better representation learning.

  • 7 authors
·
May 27, 2022

A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap

Human-object interactions (HOI) detection aims at capturing human-object pairs in images and corresponding actions. It is an important step toward high-level visual reasoning and scene understanding. However, due to the natural bias from the real world, existing methods mostly struggle with rare human-object pairs and lead to sub-optimal results. Recently, with the development of the generative model, a straightforward approach is to construct a more balanced dataset based on a group of supplementary samples. Unfortunately, there is a significant domain gap between the generated data and the original data, and simply merging the generated images into the original dataset cannot significantly boost the performance. To alleviate the above problem, we present a novel model-agnostic framework called Context-Enhanced Feature Alignment (CEFA) module, which can effectively align the generated data with the original data at the feature level and bridge the domain gap. Specifically, CEFA consists of a feature alignment module and a context enhancement module. On one hand, considering the crucial role of human-object pairs information in HOI tasks, the feature alignment module aligns the human-object pairs by aggregating instance information. On the other hand, to mitigate the issue of losing important context information caused by the traditional discriminator-style alignment method, we employ a context-enhanced image reconstruction module to improve the model's learning ability of contextual cues. Extensive experiments have shown that our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categorieshttps://github.com/LijunZhang01/CEFA.

  • 4 authors
·
Jul 31, 2024

Locate Anything on Earth: Advancing Open-Vocabulary Object Detection for Remote Sensing Community

Object detection, particularly open-vocabulary object detection, plays a crucial role in Earth sciences, such as environmental monitoring, natural disaster assessment, and land-use planning. However, existing open-vocabulary detectors, primarily trained on natural-world images, struggle to generalize to remote sensing images due to a significant data domain gap. Thus, this paper aims to advance the development of open-vocabulary object detection in remote sensing community. To achieve this, we first reformulate the task as Locate Anything on Earth (LAE) with the goal of detecting any novel concepts on Earth. We then developed the LAE-Label Engine which collects, auto-annotates, and unifies up to 10 remote sensing datasets creating the LAE-1M - the first large-scale remote sensing object detection dataset with broad category coverage. Using the LAE-1M, we further propose and train the novel LAE-DINO Model, the first open-vocabulary foundation object detector for the LAE task, featuring Dynamic Vocabulary Construction (DVC) and Visual-Guided Text Prompt Learning (VisGT) modules. DVC dynamically constructs vocabulary for each training batch, while VisGT maps visual features to semantic space, enhancing text features. We comprehensively conduct experiments on established remote sensing benchmark DIOR, DOTAv2.0, as well as our newly introduced 80-class LAE-80C benchmark. Results demonstrate the advantages of the LAE-1M dataset and the effectiveness of the LAE-DINO method.

  • 8 authors
·
Aug 17, 2024 1

Towards Open Vocabulary Learning: A Survey

In the field of visual scene understanding, deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection. However, most approaches operate on the close-set assumption, meaning that the model can only identify pre-defined categories that are present in the training set. Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training. These new approaches seek to locate and recognize categories beyond the annotated label space. The open vocabulary approach is more general, practical, and effective compared to weakly supervised and zero-shot settings. This paper provides a thorough review of open vocabulary learning, summarizing and analyzing recent developments in the field. In particular, we begin by comparing it to related concepts such as zero-shot learning, open-set recognition, and out-of-distribution detection. Then, we review several closely related tasks in the case of segmentation and detection, including long-tail problems, few-shot, and zero-shot settings. For the method survey, we first present the basic knowledge of detection and segmentation in close-set as the preliminary knowledge. Next, we examine various scenarios in which open vocabulary learning is used, identifying common design elements and core ideas. Then, we compare the recent detection and segmentation approaches in commonly used datasets and benchmarks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To our knowledge, this is the first comprehensive literature review of open vocabulary learning. We keep tracing related works at https://github.com/jianzongwu/Awesome-Open-Vocabulary.

  • 12 authors
·
Jun 27, 2023

Detection-Oriented Image-Text Pretraining for Open-Vocabulary Detection

We present a new open-vocabulary detection approach based on detection-oriented image-text pretraining to bridge the gap between image-level pretraining and open-vocabulary object detection. At the pretraining phase, we replace the commonly used classification architecture with the detector architecture, which better serves the region-level recognition needs of detection by enabling the detector heads to learn from noisy image-text pairs. Using only standard contrastive loss and no pseudo-labeling, our approach is a simple yet effective extension of the contrastive learning method to learn emergent object-semantic cues. In addition, we propose a shifted-window learning approach upon window attention to make the backbone representation more robust, translation-invariant, and less biased by the window pattern. On the popular LVIS open-vocabulary detection benchmark, our approach sets a new state of the art of 40.4 mask AP_r using the common ViT-L backbone, significantly outperforming the best existing approach by +6.5 mask AP_r at system level. On the COCO benchmark, we achieve very competitive 40.8 novel AP without pseudo labeling or weak supervision. In addition, we evaluate our approach on the transfer detection setup, where ours outperforms the baseline significantly. Visualization reveals emerging object locality from the pretraining recipes compared to the baseline. Code and models will be publicly released.

  • 3 authors
·
Sep 29, 2023

V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results

Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge

  • 34 authors
·
Jun 17, 2024

OpenIns3D: Snap and Lookup for 3D Open-vocabulary Instance Segmentation

Current 3D open-vocabulary scene understanding methods mostly utilize well-aligned 2D images as the bridge to learn 3D features with language. However, applying these approaches becomes challenging in scenarios where 2D images are absent. In this work, we introduce a completely new pipeline, namely, OpenIns3D, which requires no 2D image inputs, for 3D open-vocabulary scene understanding at the instance level. The OpenIns3D framework employs a "Mask-Snap-Lookup" scheme. The "Mask" module learns class-agnostic mask proposals in 3D point clouds. The "Snap" module generates synthetic scene-level images at multiple scales and leverages 2D vision language models to extract interesting objects. The "Lookup" module searches through the outcomes of "Snap" with the help of Mask2Pixel maps, which contain the precise correspondence between 3D masks and synthetic images, to assign category names to the proposed masks. This 2D input-free, easy-to-train, and flexible approach achieved state-of-the-art results on a wide range of indoor and outdoor datasets with a large margin. Furthermore, OpenIns3D allows for effortless switching of 2D detectors without re-training. When integrated with state-of-the-art 2D open-world models such as ODISE and GroundingDINO, superb results are observed on open-vocabulary instance segmentation. When integrated with LLM-powered 2D models like LISA, it demonstrates a remarkable capacity to process highly complex text queries, including those that require intricate reasoning and world knowledge. Project page: https://zheninghuang.github.io/OpenIns3D/

Pointcept Pointcept
·
Sep 1, 2023

InteractEdit: Zero-Shot Editing of Human-Object Interactions in Images

This paper presents InteractEdit, a novel framework for zero-shot Human-Object Interaction (HOI) editing, addressing the challenging task of transforming an existing interaction in an image into a new, desired interaction while preserving the identities of the subject and object. Unlike simpler image editing scenarios such as attribute manipulation, object replacement or style transfer, HOI editing involves complex spatial, contextual, and relational dependencies inherent in humans-objects interactions. Existing methods often overfit to the source image structure, limiting their ability to adapt to the substantial structural modifications demanded by new interactions. To address this, InteractEdit decomposes each scene into subject, object, and background components, then employs Low-Rank Adaptation (LoRA) and selective fine-tuning to preserve pretrained interaction priors while learning the visual identity of the source image. This regularization strategy effectively balances interaction edits with identity consistency. We further introduce IEBench, the most comprehensive benchmark for HOI editing, which evaluates both interaction editing and identity preservation. Our extensive experiments show that InteractEdit significantly outperforms existing methods, establishing a strong baseline for future HOI editing research and unlocking new possibilities for creative and practical applications. Code will be released upon publication.

  • 8 authors
·
Mar 12

Open-vocabulary vs. Closed-set: Best Practice for Few-shot Object Detection Considering Text Describability

Open-vocabulary object detection (OVD), detecting specific classes of objects using only their linguistic descriptions (e.g., class names) without any image samples, has garnered significant attention. However, in real-world applications, the target class concepts is often hard to describe in text and the only way to specify target objects is to provide their image examples, yet it is often challenging to obtain a good number of samples. Thus, there is a high demand from practitioners for few-shot object detection (FSOD). A natural question arises: Can the benefits of OVD extend to FSOD for object classes that are difficult to describe in text? Compared to traditional methods that learn only predefined classes (referred to in this paper as closed-set object detection, COD), can the extra cost of OVD be justified? To answer these questions, we propose a method to quantify the ``text-describability'' of object detection datasets using the zero-shot image classification accuracy with CLIP. This allows us to categorize various OD datasets with different text-describability and emprically evaluate the FSOD performance of OVD and COD methods within each category. Our findings reveal that: i) there is little difference between OVD and COD for object classes with low text-describability under equal conditions in OD pretraining; and ii) although OVD can learn from more diverse data than OD-specific data, thereby increasing the volume of training data, it can be counterproductive for classes with low-text-describability. These findings provide practitioners with valuable guidance amidst the recent advancements of OVD methods.

  • 3 authors
·
Oct 20, 2024

Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection

Open-vocabulary object detection aims to provide object detectors trained on a fixed set of object categories with the generalizability to detect objects described by arbitrary text queries. Previous methods adopt knowledge distillation to extract knowledge from Pretrained Vision-and-Language Models (PVLMs) and transfer it to detectors. However, due to the non-adaptive proposal cropping and single-level feature mimicking processes, they suffer from information destruction during knowledge extraction and inefficient knowledge transfer. To remedy these limitations, we propose an Object-Aware Distillation Pyramid (OADP) framework, including an Object-Aware Knowledge Extraction (OAKE) module and a Distillation Pyramid (DP) mechanism. When extracting object knowledge from PVLMs, the former adaptively transforms object proposals and adopts object-aware mask attention to obtain precise and complete knowledge of objects. The latter introduces global and block distillation for more comprehensive knowledge transfer to compensate for the missing relation information in object distillation. Extensive experiments show that our method achieves significant improvement compared to current methods. Especially on the MS-COCO dataset, our OADP framework reaches 35.6 mAP^{N}_{50}, surpassing the current state-of-the-art method by 3.3 mAP^{N}_{50}. Code is released at https://github.com/LutingWang/OADP.

  • 8 authors
·
Mar 10, 2023

Described Object Detection: Liberating Object Detection with Flexible Expressions

Detecting objects based on language information is a popular task that includes Open-Vocabulary object Detection (OVD) and Referring Expression Comprehension (REC). In this paper, we advance them to a more practical setting called Described Object Detection (DOD) by expanding category names to flexible language expressions for OVD and overcoming the limitation of REC only grounding the pre-existing object. We establish the research foundation for DOD by constructing a Description Detection Dataset (D^3). This dataset features flexible language expressions, whether short category names or long descriptions, and annotating all described objects on all images without omission. By evaluating previous SOTA methods on D^3, we find some troublemakers that fail current REC, OVD, and bi-functional methods. REC methods struggle with confidence scores, rejecting negative instances, and multi-target scenarios, while OVD methods face constraints with long and complex descriptions. Recent bi-functional methods also do not work well on DOD due to their separated training procedures and inference strategies for REC and OVD tasks. Building upon the aforementioned findings, we propose a baseline that largely improves REC methods by reconstructing the training data and introducing a binary classification sub-task, outperforming existing methods. Data and code are available at https://github.com/shikras/d-cube and related works are tracked in https://github.com/Charles-Xie/awesome-described-object-detection.

  • 6 authors
·
Jul 24, 2023

InteractAnything: Zero-shot Human Object Interaction Synthesis via LLM Feedback and Object Affordance Parsing

Recent advances in 3D human-aware generation have made significant progress. However, existing methods still struggle with generating novel Human Object Interaction (HOI) from text, particularly for open-set objects. We identify three main challenges of this task: precise human-object relation reasoning, affordance parsing for any object, and detailed human interaction pose synthesis aligning description and object geometry. In this work, we propose a novel zero-shot 3D HOI generation framework without training on specific datasets, leveraging the knowledge from large-scale pre-trained models. Specifically, the human-object relations are inferred from large language models (LLMs) to initialize object properties and guide the optimization process. Then we utilize a pre-trained 2D image diffusion model to parse unseen objects and extract contact points, avoiding the limitations imposed by existing 3D asset knowledge. The initial human pose is generated by sampling multiple hypotheses through multi-view SDS based on the input text and object geometry. Finally, we introduce a detailed optimization to generate fine-grained, precise, and natural interaction, enforcing realistic 3D contact between the 3D object and the involved body parts, including hands in grasping. This is achieved by distilling human-level feedback from LLMs to capture detailed human-object relations from the text instruction. Extensive experiments validate the effectiveness of our approach compared to prior works, particularly in terms of the fine-grained nature of interactions and the ability to handle open-set 3D objects.

  • 6 authors
·
May 30

TriDi: Trilateral Diffusion of 3D Humans, Objects, and Interactions

Modeling 3D human-object interaction (HOI) is a problem of great interest for computer vision and a key enabler for virtual and mixed-reality applications. Existing methods work in a one-way direction: some recover plausible human interactions conditioned on a 3D object; others recover the object pose conditioned on a human pose. Instead, we provide the first unified model - TriDi which works in any direction. Concretely, we generate Human, Object, and Interaction modalities simultaneously with a new three-way diffusion process, allowing to model seven distributions with one network. We implement TriDi as a transformer attending to the various modalities' tokens, thereby discovering conditional relations between them. The user can control the interaction either as a text description of HOI or a contact map. We embed these two representations into a shared latent space, combining the practicality of text descriptions with the expressiveness of contact maps. Using a single network, TriDi unifies all the special cases of prior work and extends to new ones, modeling a family of seven distributions. Remarkably, despite using a single model, TriDi generated samples surpass one-way specialized baselines on GRAB and BEHAVE in terms of both qualitative and quantitative metrics, and demonstrating better diversity. We show the applicability of TriDi to scene population, generating objects for human-contact datasets, and generalization to unseen object geometry. The project page is available at: https://virtualhumans.mpi-inf.mpg.de/tridi.

  • 4 authors
·
Dec 9, 2024

OpenGloss: A Synthetic Encyclopedic Dictionary and Semantic Knowledge Graph

We present OpenGloss, a synthetic encyclopedic dictionary and semantic knowledge graph for English that integrates lexicographic definitions, encyclopedic context, etymological histories, and semantic relationships in a unified resource. OpenGloss contains 537K senses across 150K lexemes, on par with WordNet 3.1 and Open English WordNet, while providing more than four times as many sense definitions. These lexemes include 9.1M semantic edges, 1M usage examples, 3M collocations, and 60M words of encyclopedic content. Generated through a multi-agent procedural generation pipeline with schema-validated LLM outputs and automated quality assurance, the entire resource was produced in under one week for under $1,000. This demonstrates that structured generation can create comprehensive lexical resources at cost and time scales impractical for manual curation, enabling rapid iteration as foundation models improve. The resource addresses gaps in pedagogical applications by providing integrated content -- definitions, examples, collocations, encyclopedias, etymology -- that supports both vocabulary learning and natural language processing tasks. As a synthetically generated resource, OpenGloss reflects both the capabilities and limitations of current foundation models. The dataset is publicly available on Hugging Face under CC-BY 4.0, enabling researchers and educators to build upon and adapt this resource.

  • 1 authors
·
Nov 23

How to Evaluate the Generalization of Detection? A Benchmark for Comprehensive Open-Vocabulary Detection

Object detection (OD) in computer vision has made significant progress in recent years, transitioning from closed-set labels to open-vocabulary detection (OVD) based on large-scale vision-language pre-training (VLP). However, current evaluation methods and datasets are limited to testing generalization over object types and referral expressions, which do not provide a systematic, fine-grained, and accurate benchmark of OVD models' abilities. In this paper, we propose a new benchmark named OVDEval, which includes 9 sub-tasks and introduces evaluations on commonsense knowledge, attribute understanding, position understanding, object relation comprehension, and more. The dataset is meticulously created to provide hard negatives that challenge models' true understanding of visual and linguistic input. Additionally, we identify a problem with the popular Average Precision (AP) metric when benchmarking models on these fine-grained label datasets and propose a new metric called Non-Maximum Suppression Average Precision (NMS-AP) to address this issue. Extensive experimental results show that existing top OVD models all fail on the new tasks except for simple object types, demonstrating the value of the proposed dataset in pinpointing the weakness of current OVD models and guiding future research. Furthermore, the proposed NMS-AP metric is verified by experiments to provide a much more truthful evaluation of OVD models, whereas traditional AP metrics yield deceptive results. Data is available at https://github.com/om-ai-lab/OVDEval

  • 8 authors
·
Aug 25, 2023

Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments

In this work, we tackle the limitations of current LiDAR-based 3D object detection systems, which are hindered by a restricted class vocabulary and the high costs associated with annotating new object classes. Our exploration of open-vocabulary (OV) learning in urban environments aims to capture novel instances using pre-trained vision-language models (VLMs) with multi-sensor data. We design and benchmark a set of four potential solutions as baselines, categorizing them into either top-down or bottom-up approaches based on their input data strategies. While effective, these methods exhibit certain limitations, such as missing novel objects in 3D box estimation or applying rigorous priors, leading to biases towards objects near the camera or of rectangular geometries. To overcome these limitations, we introduce a universal Find n' Propagate approach for 3D OV tasks, aimed at maximizing the recall of novel objects and propagating this detection capability to more distant areas thereby progressively capturing more. In particular, we utilize a greedy box seeker to search against 3D novel boxes of varying orientations and depth in each generated frustum and ensure the reliability of newly identified boxes by cross alignment and density ranker. Additionally, the inherent bias towards camera-proximal objects is alleviated by the proposed remote simulator, which randomly diversifies pseudo-labeled novel instances in the self-training process, combined with the fusion of base samples in the memory bank. Extensive experiments demonstrate a 53% improvement in novel recall across diverse OV settings, VLMs, and 3D detectors. Notably, we achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes. The source code is made available at https://github.com/djamahl99/findnpropagate.

  • 4 authors
·
Mar 20, 2024

Diffusion Models for Zero-Shot Open-Vocabulary Segmentation

The variety of objects in the real world is nearly unlimited and is thus impossible to capture using models trained on a fixed set of categories. As a result, in recent years, open-vocabulary methods have attracted the interest of the community. This paper proposes a new method for zero-shot open-vocabulary segmentation. Prior work largely relies on contrastive training using image-text pairs, leveraging grouping mechanisms to learn image features that are both aligned with language and well-localised. This however can introduce ambiguity as the visual appearance of images with similar captions often varies. Instead, we leverage the generative properties of large-scale text-to-image diffusion models to sample a set of support images for a given textual category. This provides a distribution of appearances for a given text circumventing the ambiguity problem. We further propose a mechanism that considers the contextual background of the sampled images to better localise objects and segment the background directly. We show that our method can be used to ground several existing pre-trained self-supervised feature extractors in natural language and provide explainable predictions by mapping back to regions in the support set. Our proposal is training-free, relying on pre-trained components only, yet, shows strong performance on a range of open-vocabulary segmentation benchmarks, obtaining a lead of more than 10% on the Pascal VOC benchmark.

  • 4 authors
·
Jun 15, 2023 1

AnchorCrafter: Animate CyberAnchors Saling Your Products via Human-Object Interacting Video Generation

The automatic generation of anchor-style product promotion videos presents promising opportunities in online commerce, advertising, and consumer engagement. However, this remains a challenging task despite significant advancements in pose-guided human video generation. In addressing this challenge, we identify the integration of human-object interactions (HOI) into pose-guided human video generation as a core issue. To this end, we introduce AnchorCrafter, a novel diffusion-based system designed to generate 2D videos featuring a target human and a customized object, achieving high visual fidelity and controllable interactions. Specifically, we propose two key innovations: the HOI-appearance perception, which enhances object appearance recognition from arbitrary multi-view perspectives and disentangles object and human appearance, and the HOI-motion injection, which enables complex human-object interactions by overcoming challenges in object trajectory conditioning and inter-occlusion management. Additionally, we introduce the HOI-region reweighting loss, a training objective that enhances the learning of object details. Extensive experiments demonstrate that our proposed system outperforms existing methods in preserving object appearance and shape awareness, while simultaneously maintaining consistency in human appearance and motion. Project page: https://cangcz.github.io/Anchor-Crafter/

  • 10 authors
·
Nov 26, 2024 2

CLIM: Contrastive Language-Image Mosaic for Region Representation

Detecting objects accurately from a large or open vocabulary necessitates the vision-language alignment on region representations. However, learning such a region-text alignment by obtaining high-quality box annotations with text labels or descriptions is expensive and infeasible. In contrast, collecting image-text pairs is simpler but lacks precise object location information to associate regions with texts. In this paper, we propose a novel approach called Contrastive Language-Image Mosaic (CLIM), which leverages large-scale image-text pairs effectively for aligning region and text representations. CLIM combines multiple images into a mosaicked image and treats each image as a `pseudo region'. The feature of each pseudo region is extracted and trained to be similar to the corresponding text embedding while dissimilar from others by a contrastive loss, enabling the model to learn the region-text alignment without costly box annotations. As a generally applicable approach, CLIM consistently improves different open-vocabulary object detection methods that use caption supervision. Furthermore, CLIM can effectively enhance the region representation of vision-language models, thus providing stronger backbones for open-vocabulary object detectors. Our experimental results demonstrate that CLIM improves different baseline open-vocabulary object detectors by a large margin on both OV-COCO and OV-LVIS benchmarks. The code is available at https://github.com/wusize/CLIM.

  • 6 authors
·
Dec 18, 2023

What does a platypus look like? Generating customized prompts for zero-shot image classification

Open-vocabulary models are a promising new paradigm for image classification. Unlike traditional classification models, open-vocabulary models classify among any arbitrary set of categories specified with natural language during inference. This natural language, called "prompts", typically consists of a set of hand-written templates (e.g., "a photo of a {}") which are completed with each of the category names. This work introduces a simple method to generate higher accuracy prompts, without relying on any explicit knowledge of the task domain and with far fewer hand-constructed sentences. To achieve this, we combine open-vocabulary models with large language models (LLMs) to create Customized Prompts via Language models (CuPL, pronounced "couple"). In particular, we leverage the knowledge contained in LLMs in order to generate many descriptive sentences that contain important discriminating characteristics of the image categories. This allows the model to place a greater importance on these regions in the image when making predictions. We find that this straightforward and general approach improves accuracy on a range of zero-shot image classification benchmarks, including over one percentage point gain on ImageNet. Finally, this simple baseline requires no additional training and remains completely zero-shot. Code available at https://github.com/sarahpratt/CuPL.

  • 4 authors
·
Sep 7, 2022

Human-Object Interaction with Vision-Language Model Guided Relative Movement Dynamics

Human-Object Interaction (HOI) is vital for advancing simulation, animation, and robotics, enabling the generation of long-term, physically plausible motions in 3D environments. However, existing methods often fall short of achieving physics realism and supporting diverse types of interactions. To address these challenges, this paper introduces a unified Human-Object Interaction framework that provides unified control over interactions with static scenes and dynamic objects using language commands. The interactions between human and object parts can always be described as the continuous stable Relative Movement Dynamics (RMD) between human and object parts. By leveraging the world knowledge and scene perception capabilities of Vision-Language Models (VLMs), we translate language commands into RMD diagrams, which are used to guide goal-conditioned reinforcement learning for sequential interaction with objects. Our framework supports long-horizon interactions among dynamic, articulated, and static objects. To support the training and evaluation of our framework, we present a new dataset named Interplay, which includes multi-round task plans generated by VLMs, covering both static and dynamic HOI tasks. Extensive experiments demonstrate that our proposed framework can effectively handle a wide range of HOI tasks, showcasing its ability to maintain long-term, multi-round transitions. For more details, please refer to our project webpage: https://rmd-hoi.github.io/.

  • 6 authors
·
Mar 24

OpenM3D: Open Vocabulary Multi-view Indoor 3D Object Detection without Human Annotations

Open-vocabulary (OV) 3D object detection is an emerging field, yet its exploration through image-based methods remains limited compared to 3D point cloud-based methods. We introduce OpenM3D, a novel open-vocabulary multi-view indoor 3D object detector trained without human annotations. In particular, OpenM3D is a single-stage detector adapting the 2D-induced voxel features from the ImGeoNet model. To support OV, it is jointly trained with a class-agnostic 3D localization loss requiring high-quality 3D pseudo boxes and a voxel-semantic alignment loss requiring diverse pre-trained CLIP features. We follow the training setting of OV-3DET where posed RGB-D images are given but no human annotations of 3D boxes or classes are available. We propose a 3D Pseudo Box Generation method using a graph embedding technique that combines 2D segments into coherent 3D structures. Our pseudo-boxes achieve higher precision and recall than other methods, including the method proposed in OV-3DET. We further sample diverse CLIP features from 2D segments associated with each coherent 3D structure to align with the corresponding voxel feature. The key to training a highly accurate single-stage detector requires both losses to be learned toward high-quality targets. At inference, OpenM3D, a highly efficient detector, requires only multi-view images for input and demonstrates superior accuracy and speed (0.3 sec. per scene) on ScanNet200 and ARKitScenes indoor benchmarks compared to existing methods. We outperform a strong two-stage method that leverages our class-agnostic detector with a ViT CLIP-based OV classifier and a baseline incorporating multi-view depth estimator on both accuracy and speed.

  • 9 authors
·
Aug 27

InterFusion: Text-Driven Generation of 3D Human-Object Interaction

In this study, we tackle the complex task of generating 3D human-object interactions (HOI) from textual descriptions in a zero-shot text-to-3D manner. We identify and address two key challenges: the unsatisfactory outcomes of direct text-to-3D methods in HOI, largely due to the lack of paired text-interaction data, and the inherent difficulties in simultaneously generating multiple concepts with complex spatial relationships. To effectively address these issues, we present InterFusion, a two-stage framework specifically designed for HOI generation. InterFusion involves human pose estimations derived from text as geometric priors, which simplifies the text-to-3D conversion process and introduces additional constraints for accurate object generation. At the first stage, InterFusion extracts 3D human poses from a synthesized image dataset depicting a wide range of interactions, subsequently mapping these poses to interaction descriptions. The second stage of InterFusion capitalizes on the latest developments in text-to-3D generation, enabling the production of realistic and high-quality 3D HOI scenes. This is achieved through a local-global optimization process, where the generation of human body and object is optimized separately, and jointly refined with a global optimization of the entire scene, ensuring a seamless and contextually coherent integration. Our experimental results affirm that InterFusion significantly outperforms existing state-of-the-art methods in 3D HOI generation.

  • 8 authors
·
Mar 22, 2024

METOR: A Unified Framework for Mutual Enhancement of Objects and Relationships in Open-vocabulary Video Visual Relationship Detection

Open-vocabulary video visual relationship detection aims to detect objects and their relationships in videos without being restricted by predefined object or relationship categories. Existing methods leverage the rich semantic knowledge of pre-trained vision-language models such as CLIP to identify novel categories. They typically adopt a cascaded pipeline to first detect objects and then classify relationships based on the detected objects, which may lead to error propagation and thus suboptimal performance. In this paper, we propose Mutual EnhancemenT of Objects and Relationships (METOR), a query-based unified framework to jointly model and mutually enhance object detection and relationship classification in open-vocabulary scenarios. Under this framework, we first design a CLIP-based contextual refinement encoding module that extracts visual contexts of objects and relationships to refine the encoding of text features and object queries, thus improving the generalization of encoding to novel categories. Then we propose an iterative enhancement module to alternatively enhance the representations of objects and relationships by fully exploiting their interdependence to improve recognition performance. Extensive experiments on two public datasets, VidVRD and VidOR, demonstrate that our framework achieves state-of-the-art performance.

  • 3 authors
·
May 10

ChildPlay-Hand: A Dataset of Hand Manipulations in the Wild

Hand-Object Interaction (HOI) is gaining significant attention, particularly with the creation of numerous egocentric datasets driven by AR/VR applications. However, third-person view HOI has received less attention, especially in terms of datasets. Most third-person view datasets are curated for action recognition tasks and feature pre-segmented clips of high-level daily activities, leaving a gap for in-the-wild datasets. To address this gap, we propose ChildPlay-Hand, a novel dataset that includes person and object bounding boxes, as well as manipulation actions. ChildPlay-Hand is unique in: (1) providing per-hand annotations; (2) featuring videos in uncontrolled settings with natural interactions, involving both adults and children; (3) including gaze labels from the ChildPlay-Gaze dataset for joint modeling of manipulations and gaze. The manipulation actions cover the main stages of an HOI cycle, such as grasping, holding or operating, and different types of releasing. To illustrate the interest of the dataset, we study two tasks: object in hand detection (OiH), i.e. if a person has an object in their hand, and manipulation stages (ManiS), which is more fine-grained and targets the main stages of manipulation. We benchmark various spatio-temporal and segmentation networks, exploring body vs. hand-region information and comparing pose and RGB modalities. Our findings suggest that ChildPlay-Hand is a challenging new benchmark for modeling HOI in the wild.

  • 3 authors
·
Sep 14, 2024

A Simple Framework for Open-Vocabulary Segmentation and Detection

We present OpenSeeD, a simple Open-vocabulary Segmentation and Detection framework that jointly learns from different segmentation and detection datasets. To bridge the gap of vocabulary and annotation granularity, we first introduce a pre-trained text encoder to encode all the visual concepts in two tasks and learn a common semantic space for them. This gives us reasonably good results compared with the counterparts trained on segmentation task only. To further reconcile them, we locate two discrepancies: i) task discrepancy -- segmentation requires extracting masks for both foreground objects and background stuff, while detection merely cares about the former; ii) data discrepancy -- box and mask annotations are with different spatial granularity, and thus not directly interchangeable. To address these issues, we propose a decoupled decoding to reduce the interference between foreground/background and a conditioned mask decoding to assist in generating masks for given boxes. To this end, we develop a simple encoder-decoder model encompassing all three techniques and train it jointly on COCO and Objects365. After pre-training, our model exhibits competitive or stronger zero-shot transferability for both segmentation and detection. Specifically, OpenSeeD beats the state-of-the-art method for open-vocabulary instance and panoptic segmentation across 5 datasets, and outperforms previous work for open-vocabulary detection on LVIS and ODinW under similar settings. When transferred to specific tasks, our model achieves new SoTA for panoptic segmentation on COCO and ADE20K, and instance segmentation on ADE20K and Cityscapes. Finally, we note that OpenSeeD is the first to explore the potential of joint training on segmentation and detection, and hope it can be received as a strong baseline for developing a single model for both tasks in open world.

  • 8 authors
·
Mar 14, 2023

GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training Data Exploration

Noticing the urgent need to provide tools for fast and user-friendly qualitative analysis of large-scale textual corpora of the modern NLP, we propose to turn to the mature and well-tested methods from the domain of Information Retrieval (IR) - a research field with a long history of tackling TB-scale document collections. We discuss how Pyserini - a widely used toolkit for reproducible IR research can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts. We leverage the existing functionalities of both platforms while proposing novel features further facilitating their integration. Our goal is to give NLP researchers tools that will allow them to develop retrieval-based instrumentation for their data analytics needs with ease and agility. We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub at https://github.com/huggingface/gaia. We then demonstrate how the ideas we present can be operationalized to create a powerful tool for qualitative data analysis in NLP. We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections. GAIA serves a dual purpose of illustrating the potential of methodologies we discuss but also as a standalone qualitative analysis tool that can be leveraged by NLP researchers aiming to understand datasets prior to using them in training. GAIA is hosted live on Hugging Face Spaces - https://huggingface.co/spaces/spacerini/gaia.

  • 9 authors
·
Jun 2, 2023

Simple Image-level Classification Improves Open-vocabulary Object Detection

Open-Vocabulary Object Detection (OVOD) aims to detect novel objects beyond a given set of base categories on which the detection model is trained. Recent OVOD methods focus on adapting the image-level pre-trained vision-language models (VLMs), such as CLIP, to a region-level object detection task via, eg., region-level knowledge distillation, regional prompt learning, or region-text pre-training, to expand the detection vocabulary. These methods have demonstrated remarkable performance in recognizing regional visual concepts, but they are weak in exploiting the VLMs' powerful global scene understanding ability learned from the billion-scale image-level text descriptions. This limits their capability in detecting hard objects of small, blurred, or occluded appearance from novel/base categories, whose detection heavily relies on contextual information. To address this, we propose a novel approach, namely Simple Image-level Classification for Context-Aware Detection Scoring (SIC-CADS), to leverage the superior global knowledge yielded from CLIP for complementing the current OVOD models from a global perspective. The core of SIC-CADS is a multi-modal multi-label recognition (MLR) module that learns the object co-occurrence-based contextual information from CLIP to recognize all possible object categories in the scene. These image-level MLR scores can then be utilized to refine the instance-level detection scores of the current OVOD models in detecting those hard objects. This is verified by extensive empirical results on two popular benchmarks, OV-LVIS and OV-COCO, which show that SIC-CADS achieves significant and consistent improvement when combined with different types of OVOD models. Further, SIC-CADS also improves the cross-dataset generalization ability on Objects365 and OpenImages. The code is available at https://github.com/mala-lab/SIC-CADS.

  • 3 authors
·
Dec 16, 2023

Open-Vocabulary Camouflaged Object Segmentation

Recently, the emergence of the large-scale vision-language model (VLM), such as CLIP, has opened the way towards open-world object perception. Many works have explored the utilization of pre-trained VLM for the challenging open-vocabulary dense prediction task that requires perceiving diverse objects with novel classes at inference time. Existing methods construct experiments based on the public datasets of related tasks, which are not tailored for open vocabulary and rarely involve imperceptible objects camouflaged in complex scenes due to data collection bias and annotation costs. To fill in the gaps, we introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS), and construct a large-scale complex scene dataset (OVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes. Further, we build a strong single-stage open-vocabulary camouflaged object segmentation transformer baseline OVCoser attached to the parameter-fixed CLIP with iterative semantic guidance and structure enhancement. By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects. Moreover, this effective framework also surpasses previous state-of-the-arts of open-vocabulary semantic image segmentation by a large margin on our OVCamo dataset. With the proposed dataset and baseline, we hope that this new task with more practical value can further expand the research on open-vocabulary dense prediction tasks. Our code and data can be found in the https://github.com/lartpang/OVCamo{link}.

  • 5 authors
·
Nov 19, 2023

DAViD: Modeling Dynamic Affordance of 3D Objects using Pre-trained Video Diffusion Models

Understanding the ability of humans to use objects is crucial for AI to improve daily life. Existing studies for learning such ability focus on human-object patterns (e.g., contact, spatial relation, orientation) in static situations, and learning Human-Object Interaction (HOI) patterns over time (i.e., movement of human and object) is relatively less explored. In this paper, we introduce a novel type of affordance named Dynamic Affordance. For a given input 3D object mesh, we learn dynamic affordance which models the distribution of both (1) human motion and (2) human-guided object pose during interactions. As a core idea, we present a method to learn the 3D dynamic affordance from synthetically generated 2D videos, leveraging a pre-trained video diffusion model. Specifically, we propose a pipeline that first generates 2D HOI videos from the 3D object and then lifts them into 3D to generate 4D HOI samples. Once we generate diverse 4D HOI samples on various target objects, we train our DAViD, where we present a method based on the Low-Rank Adaptation (LoRA) module for pre-trained human motion diffusion model (MDM) and an object pose diffusion model with human pose guidance. Our motion diffusion model is extended for multi-object interactions, demonstrating the advantage of our pipeline with LoRA for combining the concepts of object usage. Through extensive experiments, we demonstrate our DAViD outperforms the baselines in generating human motion with HOIs.

  • 3 authors
·
Jan 14

ProxyDet: Synthesizing Proxy Novel Classes via Classwise Mixup for Open-Vocabulary Object Detection

Open-vocabulary object detection (OVOD) aims to recognize novel objects whose categories are not included in the training set. In order to classify these unseen classes during training, many OVOD frameworks leverage the zero-shot capability of largely pretrained vision and language models, such as CLIP. To further improve generalization on the unseen novel classes, several approaches proposed to additionally train with pseudo region labeling on the external data sources that contain a substantial number of novel category labels beyond the existing training data. Albeit its simplicity, these pseudo-labeling methods still exhibit limited improvement with regard to the truly unseen novel classes that were not pseudo-labeled. In this paper, we present a novel, yet simple technique that helps generalization on the overall distribution of novel classes. Inspired by our observation that numerous novel classes reside within the convex hull constructed by the base (seen) classes in the CLIP embedding space, we propose to synthesize proxy-novel classes approximating novel classes via linear mixup between a pair of base classes. By training our detector with these synthetic proxy-novel classes, we effectively explore the embedding space of novel classes. The experimental results on various OVOD benchmarks such as LVIS and COCO demonstrate superior performance on novel classes compared to the other state-of-the-art methods. Code is available at https://github.com/clovaai/ProxyDet.

  • 5 authors
·
Dec 12, 2023

GeneOH Diffusion: Towards Generalizable Hand-Object Interaction Denoising via Denoising Diffusion

In this work, we tackle the challenging problem of denoising hand-object interactions (HOI). Given an erroneous interaction sequence, the objective is to refine the incorrect hand trajectory to remove interaction artifacts for a perceptually realistic sequence. This challenge involves intricate interaction noise, including unnatural hand poses and incorrect hand-object relations, alongside the necessity for robust generalization to new interactions and diverse noise patterns. We tackle those challenges through a novel approach, GeneOH Diffusion, incorporating two key designs: an innovative contact-centric HOI representation named GeneOH and a new domain-generalizable denoising scheme. The contact-centric representation GeneOH informatively parameterizes the HOI process, facilitating enhanced generalization across various HOI scenarios. The new denoising scheme consists of a canonical denoising model trained to project noisy data samples from a whitened noise space to a clean data manifold and a "denoising via diffusion" strategy which can handle input trajectories with various noise patterns by first diffusing them to align with the whitened noise space and cleaning via the canonical denoiser. Extensive experiments on four benchmarks with significant domain variations demonstrate the superior effectiveness of our method. GeneOH Diffusion also shows promise for various downstream applications. Project website: https://meowuu7.github.io/GeneOH-Diffusion/.

  • 2 authors
·
Feb 22, 2024 1

OV-PARTS: Towards Open-Vocabulary Part Segmentation

Segmenting and recognizing diverse object parts is a crucial ability in applications spanning various computer vision and robotic tasks. While significant progress has been made in object-level Open-Vocabulary Semantic Segmentation (OVSS), i.e., segmenting objects with arbitrary text, the corresponding part-level research poses additional challenges. Firstly, part segmentation inherently involves intricate boundaries, while limited annotated data compounds the challenge. Secondly, part segmentation introduces an open granularity challenge due to the diverse and often ambiguous definitions of parts in the open world. Furthermore, the large-scale vision and language models, which play a key role in the open vocabulary setting, struggle to recognize parts as effectively as objects. To comprehensively investigate and tackle these challenges, we propose an Open-Vocabulary Part Segmentation (OV-PARTS) benchmark. OV-PARTS includes refined versions of two publicly available datasets: Pascal-Part-116 and ADE20K-Part-234. And it covers three specific tasks: Generalized Zero-Shot Part Segmentation, Cross-Dataset Part Segmentation, and Few-Shot Part Segmentation, providing insights into analogical reasoning, open granularity and few-shot adapting abilities of models. Moreover, we analyze and adapt two prevailing paradigms of existing object-level OVSS methods for OV-PARTS. Extensive experimental analysis is conducted to inspire future research in leveraging foundational models for OV-PARTS. The code and dataset are available at https://github.com/OpenRobotLab/OV_PARTS.

  • 6 authors
·
Oct 8, 2023

Full-Body Articulated Human-Object Interaction

Fine-grained capturing of 3D HOI boosts human activity understanding and facilitates downstream visual tasks, including action recognition, holistic scene reconstruction, and human motion synthesis. Despite its significance, existing works mostly assume that humans interact with rigid objects using only a few body parts, limiting their scope. In this paper, we address the challenging problem of f-AHOI, wherein the whole human bodies interact with articulated objects, whose parts are connected by movable joints. We present CHAIRS, a large-scale motion-captured f-AHOI dataset, consisting of 16.2 hours of versatile interactions between 46 participants and 81 articulated and rigid sittable objects. CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process, as well as realistic and physically plausible full-body interactions. We show the value of CHAIRS with object pose estimation. By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation to tackle the estimation of articulated object poses and shapes during whole-body interactions. Given an image and an estimated human pose, our model first reconstructs the pose and shape of the object, then optimizes the reconstruction according to a learned interaction prior. Under both evaluation settings (e.g., with or without the knowledge of objects' geometries/structures), our model significantly outperforms baselines. We hope CHAIRS will promote the community towards finer-grained interaction understanding. We will make the data/code publicly available.

  • 9 authors
·
Dec 20, 2022

DetCLIPv3: Towards Versatile Generative Open-vocabulary Object Detection

Existing open-vocabulary object detectors typically require a predefined set of categories from users, significantly confining their application scenarios. In this paper, we introduce DetCLIPv3, a high-performing detector that excels not only at both open-vocabulary object detection, but also generating hierarchical labels for detected objects. DetCLIPv3 is characterized by three core designs: 1. Versatile model architecture: we derive a robust open-set detection framework which is further empowered with generation ability via the integration of a caption head. 2. High information density data: we develop an auto-annotation pipeline leveraging visual large language model to refine captions for large-scale image-text pairs, providing rich, multi-granular object labels to enhance the training. 3. Efficient training strategy: we employ a pre-training stage with low-resolution inputs that enables the object captioner to efficiently learn a broad spectrum of visual concepts from extensive image-text paired data. This is followed by a fine-tuning stage that leverages a small number of high-resolution samples to further enhance detection performance. With these effective designs, DetCLIPv3 demonstrates superior open-vocabulary detection performance, \eg, our Swin-T backbone model achieves a notable 47.0 zero-shot fixed AP on the LVIS minival benchmark, outperforming GLIPv2, GroundingDINO, and DetCLIPv2 by 18.0/19.6/6.6 AP, respectively. DetCLIPv3 also achieves a state-of-the-art 19.7 AP in dense captioning task on VG dataset, showcasing its strong generative capability.

  • 8 authors
·
Apr 14, 2024

MarvelOVD: Marrying Object Recognition and Vision-Language Models for Robust Open-Vocabulary Object Detection

Learning from pseudo-labels that generated with VLMs~(Vision Language Models) has been shown as a promising solution to assist open vocabulary detection (OVD) in recent studies. However, due to the domain gap between VLM and vision-detection tasks, pseudo-labels produced by the VLMs are prone to be noisy, while the training design of the detector further amplifies the bias. In this work, we investigate the root cause of VLMs' biased prediction under the OVD context. Our observations lead to a simple yet effective paradigm, coded MarvelOVD, that generates significantly better training targets and optimizes the learning procedure in an online manner by marrying the capability of the detector with the vision-language model. Our key insight is that the detector itself can act as a strong auxiliary guidance to accommodate VLM's inability of understanding both the ``background'' and the context of a proposal within the image. Based on it, we greatly purify the noisy pseudo-labels via Online Mining and propose Adaptive Reweighting to effectively suppress the biased training boxes that are not well aligned with the target object. In addition, we also identify a neglected ``base-novel-conflict'' problem and introduce stratified label assignments to prevent it. Extensive experiments on COCO and LVIS datasets demonstrate that our method outperforms the other state-of-the-arts by significant margins. Codes are available at https://github.com/wkfdb/MarvelOVD

  • 7 authors
·
Jul 31, 2024

BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese

As large language models (LLMs) evolve into tool-using agents, the ability to browse the web in real-time has become a critical yardstick for measuring their reasoning and retrieval competence. Existing benchmarks such as BrowseComp concentrate on English and overlook the linguistic, infrastructural, and censorship-related complexities of other major information ecosystems -- most notably Chinese. To address this gap, we introduce BrowseComp-ZH, a high-difficulty benchmark purpose-built to comprehensively evaluate LLM agents on the Chinese web. BrowseComp-ZH consists of 289 multi-hop questions spanning 11 diverse domains. Each question is reverse-engineered from a short, objective, and easily verifiable answer (e.g., a date, number, or proper noun). A two-stage quality control protocol is applied to strive for high question difficulty and answer uniqueness. We benchmark over 20 state-of-the-art language models and agentic search systems on our proposed BrowseComp-ZH. Despite their strong conversational and retrieval capabilities, most models struggle severely: a large number achieve accuracy rates below 10%, and only a handful exceed 20%. Even the best-performing system, OpenAI's DeepResearch, reaches just 42.9%. These results demonstrate the considerable difficulty of BrowseComp-ZH, where success demands not only effective retrieval strategies, but also sophisticated reasoning and information reconciliation -- capabilities that current models still struggle to master. Our dataset, construction guidelines, and benchmark results have been publicly released at https://github.com/PALIN2018/BrowseComp-ZH.

  • 16 authors
·
Apr 27 2

Comprehensive Analysis of Transparency and Accessibility of ChatGPT, DeepSeek, And other SoTA Large Language Models

Despite increasing discussions on open-source Artificial Intelligence (AI), existing research lacks a discussion on the transparency and accessibility of state-of-the-art (SoTA) Large Language Models (LLMs). The Open Source Initiative (OSI) has recently released its first formal definition of open-source software. This definition, when combined with standard dictionary definitions and the sparse published literature, provide an initial framework to support broader accessibility to AI models such as LLMs, but more work is essential to capture the unique dynamics of openness in AI. In addition, concerns about open-washing, where models claim openness but lack full transparency, has been raised, which limits the reproducibility, bias mitigation, and domain adaptation of these models. In this context, our study critically analyzes SoTA LLMs from the last five years, including ChatGPT, DeepSeek, LLaMA, and others, to assess their adherence to transparency standards and the implications of partial openness. Specifically, we examine transparency and accessibility from two perspectives: open-source vs. open-weight models. Our findings reveal that while some models are labeled as open-source, this does not necessarily mean they are fully open-sourced. Even in the best cases, open-source models often do not report model training data, and code as well as key metrics, such as weight accessibility, and carbon emissions. To the best of our knowledge, this is the first study that systematically examines the transparency and accessibility of over 100 different SoTA LLMs through the dual lens of open-source and open-weight models. The findings open avenues for further research and call for responsible and sustainable AI practices to ensure greater transparency, accountability, and ethical deployment of these models.(DeepSeek transparency, ChatGPT accessibility, open source, DeepSeek open source)

  • 3 authors
·
Feb 21

Weakly Supervised 3D Open-vocabulary Segmentation

Open-vocabulary segmentation of 3D scenes is a fundamental function of human perception and thus a crucial objective in computer vision research. However, this task is heavily impeded by the lack of large-scale and diverse 3D open-vocabulary segmentation datasets for training robust and generalizable models. Distilling knowledge from pre-trained 2D open-vocabulary segmentation models helps but it compromises the open-vocabulary feature as the 2D models are mostly finetuned with close-vocabulary datasets. We tackle the challenges in 3D open-vocabulary segmentation by exploiting pre-trained foundation models CLIP and DINO in a weakly supervised manner. Specifically, given only the open-vocabulary text descriptions of the objects in a scene, we distill the open-vocabulary multimodal knowledge and object reasoning capability of CLIP and DINO into a neural radiance field (NeRF), which effectively lifts 2D features into view-consistent 3D segmentation. A notable aspect of our approach is that it does not require any manual segmentation annotations for either the foundation models or the distillation process. Extensive experiments show that our method even outperforms fully supervised models trained with segmentation annotations in certain scenes, suggesting that 3D open-vocabulary segmentation can be effectively learned from 2D images and text-image pairs. Code is available at https://github.com/Kunhao-Liu/3D-OVS.

  • 9 authors
·
May 23, 2023

OpenSD: Unified Open-Vocabulary Segmentation and Detection

Recently, a few open-vocabulary methods have been proposed by employing a unified architecture to tackle generic segmentation and detection tasks. However, their performance still lags behind the task-specific models due to the conflict between different tasks, and their open-vocabulary capability is limited due to the inadequate use of CLIP. To address these challenges, we present a universal transformer-based framework, abbreviated as OpenSD, which utilizes the same architecture and network parameters to handle open-vocabulary segmentation and detection tasks. First, we introduce a decoder decoupled learning strategy to alleviate the semantic conflict between thing and staff categories so that each individual task can be learned more effectively under the same framework. Second, to better leverage CLIP for end-to-end segmentation and detection, we propose dual classifiers to handle the in-vocabulary domain and out-of-vocabulary domain, respectively. The text encoder is further trained to be region-aware for both thing and stuff categories through decoupled prompt learning, enabling them to filter out duplicated and low-quality predictions, which is important to end-to-end segmentation and detection. Extensive experiments are conducted on multiple datasets under various circumstances. The results demonstrate that OpenSD outperforms state-of-the-art open-vocabulary segmentation and detection methods in both closed- and open-vocabulary settings. Code is available at https://github.com/strongwolf/OpenSD

  • 4 authors
·
Dec 10, 2023

Don't Get Lost in the Trees: Streamlining LLM Reasoning by Overcoming Tree Search Exploration Pitfalls

Recent advancements in tree search algorithms guided by verifiers have significantly enhanced the reasoning capabilities of large language models (LLMs), but at the cost of increased computational resources. In this work, we identify two key challenges contributing to this inefficiency: over-exploration due to redundant states with semantically equivalent content, and under-exploration caused by high variance in verifier scoring leading to frequent trajectory switching. To address these issues, we propose FETCH, an efficient tree search framework, which is a flexible, plug-and-play system compatible with various tree search algorithms. Our framework mitigates over-exploration by merging semantically similar states using agglomerative clustering of text embeddings obtained from a fine-tuned SimCSE model. To tackle under-exploration, we enhance verifiers by incorporating temporal difference learning with adjusted lambda-returns during training to reduce variance, and employing a verifier ensemble to aggregate scores during inference. Experiments on GSM8K, GSM-Plus, and MATH datasets demonstrate that our methods significantly improve reasoning accuracy and computational efficiency across four different tree search algorithms, paving the way for more practical applications of LLM-based reasoning. The code is available at https://github.com/Soistesimmer/Fetch.

  • 9 authors
·
Feb 16

MOCHa: Multi-Objective Reinforcement Mitigating Caption Hallucinations

While recent years have seen rapid progress in image-conditioned text generation, image captioning still suffers from the fundamental issue of hallucinations, the generation of spurious details that cannot be inferred from the given image. Dedicated methods for reducing hallucinations in image captioning largely focus on closed-vocabulary object tokens, ignoring most types of hallucinations that occur in practice. In this work, we propose MOCHa, an approach that harnesses advancements in reinforcement learning (RL) to address the sequence-level nature of hallucinations in an open-world setup. To optimize for caption fidelity to the input image, we leverage ground-truth reference captions as proxies to measure the logical consistency of generated captions. However, optimizing for caption fidelity alone fails to preserve the semantic adequacy of generations; therefore, we propose a multi-objective reward function that jointly targets these qualities, without requiring any strong supervision. We demonstrate that these goals can be simultaneously optimized with our framework, enhancing performance for various captioning models of different scales. Our qualitative and quantitative results demonstrate MOCHa's superior performance across various established metrics. We also demonstrate the benefit of our method in the open-vocabulary setting. To this end, we contribute OpenCHAIR, a new benchmark for quantifying open-vocabulary hallucinations in image captioning models, constructed using generative foundation models. We will release our code, benchmark, and trained models.

  • 5 authors
·
Dec 6, 2023

Towards Open-Ended Visual Recognition with Large Language Model

Localizing and recognizing objects in the open-ended physical world poses a long-standing challenge within the domain of machine perception. Recent methods have endeavored to address the issue by employing a class-agnostic mask (or box) proposal model, complemented by an open-vocabulary classifier (e.g., CLIP) using pre-extracted text embeddings. However, it is worth noting that these open-vocabulary recognition models still exhibit limitations in practical applications. On one hand, they rely on the provision of class names during testing, where the recognition performance heavily depends on this predefined set of semantic classes by users. On the other hand, when training with multiple datasets, human intervention is required to alleviate the label definition conflict between them. In this paper, we introduce the OmniScient Model (OSM), a novel Large Language Model (LLM) based mask classifier, as a straightforward and effective solution to the aforementioned challenges. Specifically, OSM predicts class labels in a generative manner, thus removing the supply of class names during both training and testing. It also enables cross-dataset training without any human interference, exhibiting robust generalization capabilities due to the world knowledge acquired from the LLM. By combining OSM with an off-the-shelf mask proposal model, we present promising results on various benchmarks, and demonstrate its effectiveness in handling novel concepts. Code/model are available at https://github.com/bytedance/OmniScient-Model.

  • 3 authors
·
Nov 14, 2023

Betrayed by Captions: Joint Caption Grounding and Generation for Open Vocabulary Instance Segmentation

In this work, we focus on open vocabulary instance segmentation to expand a segmentation model to classify and segment instance-level novel categories. Previous approaches have relied on massive caption datasets and complex pipelines to establish one-to-one mappings between image regions and words in captions. However, such methods build noisy supervision by matching non-visible words to image regions, such as adjectives and verbs. Meanwhile, context words are also important for inferring the existence of novel objects as they show high inter-correlations with novel categories. To overcome these limitations, we devise a joint Caption Grounding and Generation (CGG) framework, which incorporates a novel grounding loss that only focuses on matching object nouns to improve learning efficiency. We also introduce a caption generation head that enables additional supervision and contextual modeling as a complementation to the grounding loss. Our analysis and results demonstrate that grounding and generation components complement each other, significantly enhancing the segmentation performance for novel classes. Experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS) demonstrate the superiority of the CGG. Specifically, CGG achieves a substantial improvement of 6.8% mAP for novel classes without extra data on the OVIS task and 15% PQ improvements for novel classes on the OSPS benchmark.

  • 7 authors
·
Jan 2, 2023

Salamandra Technical Report

This work introduces Salamandra, a suite of open-source decoder-only large language models available in three different sizes: 2, 7, and 40 billion parameters. The models were trained from scratch on highly multilingual data that comprises text in 35 European languages and code. Our carefully curated corpus is made exclusively from open-access data compiled from a wide variety of sources. Along with the base models, supplementary checkpoints that were fine-tuned on public-domain instruction data are also released for chat applications. Additionally, we also share our preliminary experiments on multimodality, which serve as proof-of-concept to showcase potential applications for the Salamandra family. Our extensive evaluations on multilingual benchmarks reveal that Salamandra has strong capabilities, achieving competitive performance when compared to similarly sized open-source models. We provide comprehensive evaluation results both on standard downstream tasks as well as key aspects related to bias and safety.With this technical report, we intend to promote open science by sharing all the details behind our design choices, data curation strategy and evaluation methodology. In addition to that, we deviate from the usual practice by making our training and evaluation scripts publicly accessible. We release all models under a permissive Apache 2.0 license in order to foster future research and facilitate commercial use, thereby contributing to the open-source ecosystem of large language models.

  • 23 authors
·
Feb 12