Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePAPILLON: Privacy Preservation from Internet-based and Local Language Model Ensembles
Users can divulge sensitive information to proprietary LLM providers, raising significant privacy concerns. While open-source models, hosted locally on the user's machine, alleviate some concerns, models that users can host locally are often less capable than proprietary frontier models. Toward preserving user privacy while retaining the best quality, we propose Privacy-Conscious Delegation, a novel task for chaining API-based and local models. We utilize recent public collections of user-LLM interactions to construct a natural benchmark called PUPA, which contains personally identifiable information (PII). To study potential approaches, we devise PAPILLON, a multi-stage LLM pipeline that uses prompt optimization to address a simpler version of our task. Our best pipeline maintains high response quality for 85.5% of user queries while restricting privacy leakage to only 7.5%. We still leave a large margin to the generation quality of proprietary LLMs for future work. Our data and code is available at https://github.com/siyan-sylvia-li/PAPILLON.
FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering
Federated Learning (FL) is a machine learning paradigm that safeguards privacy by retaining client data on edge devices. However, optimizing FL in practice can be challenging due to the diverse and heterogeneous nature of the learning system. Though recent research has focused on improving the optimization of FL when distribution shifts occur among clients, ensuring global performance when multiple types of distribution shifts occur simultaneously among clients -- such as feature distribution shift, label distribution shift, and concept shift -- remain under-explored. In this paper, we identify the learning challenges posed by the simultaneous occurrence of diverse distribution shifts and propose a clustering principle to overcome these challenges. Through our research, we find that existing methods fail to address the clustering principle. Therefore, we propose a novel clustering algorithm framework, dubbed as FedRC, which adheres to our proposed clustering principle by incorporating a bi-level optimization problem and a novel objective function. Extensive experiments demonstrate that FedRC significantly outperforms other SOTA cluster-based FL methods. Our code is available at https://github.com/LINs-lab/FedRC.
Vanishing Variance Problem in Fully Decentralized Neural-Network Systems
Federated learning and gossip learning are emerging methodologies designed to mitigate data privacy concerns by retaining training data on client devices and exclusively sharing locally-trained machine learning (ML) models with others. The primary distinction between the two lies in their approach to model aggregation: federated learning employs a centralized parameter server, whereas gossip learning adopts a fully decentralized mechanism, enabling direct model exchanges among nodes. This decentralized nature often positions gossip learning as less efficient compared to federated learning. Both methodologies involve a critical step: computing a representation of received ML models and integrating this representation into the existing model. Conventionally, this representation is derived by averaging the received models, exemplified by the FedAVG algorithm. Our findings suggest that this averaging approach inherently introduces a potential delay in model convergence. We identify the underlying cause and refer to it as the "vanishing variance" problem, where averaging across uncorrelated ML models undermines the optimal variance established by the Xavier weight initialization. Unlike federated learning where the central server ensures model correlation, and unlike traditional gossip learning which circumvents this problem through model partitioning and sampling, our research introduces a variance-corrected model averaging algorithm. This novel algorithm preserves the optimal variance needed during model averaging, irrespective of network topology or non-IID data distributions. Our extensive simulation results demonstrate that our approach enables gossip learning to achieve convergence efficiency comparable to that of federated learning.
A Parallel Region-Adaptive Differential Privacy Framework for Image Pixelization
The widespread deployment of high-resolution visual sensing systems, coupled with the rise of foundation models, has amplified privacy risks in video-based applications. Differentially private pixelization offers mathematically guaranteed protection for visual data through grid-based noise addition, but challenges remain in preserving task-relevant fidelity, achieving scalability, and enabling efficient real-time deployment. To address this, we propose a novel parallel, region-adaptive pixelization framework that combines the theoretical rigor of differential privacy with practical efficiency. Our method adaptively adjusts grid sizes and noise scales based on regional complexity, leveraging GPU parallelism to achieve significant runtime acceleration compared to the classical baseline. A lightweight storage scheme is introduced by retaining only essential noisy statistics, significantly reducing space overhead. Formal privacy analysis is provided under the Laplace mechanism and parallel composition theorem. Extensive experiments on the PETS, Venice-2, and PPM-100 datasets demonstrate favorable privacy-utility trade-offs and significant runtime/storage reductions. A face re-identification attack experiment on CelebA further confirms the method's effectiveness in preventing identity inference. This validates its suitability for real-time privacy-critical applications such as elderly care, smart home monitoring, driver behavior analysis, and crowd behavior monitoring.
Privacy-Preserving Face Recognition Using Random Frequency Components
The ubiquitous use of face recognition has sparked increasing privacy concerns, as unauthorized access to sensitive face images could compromise the information of individuals. This paper presents an in-depth study of the privacy protection of face images' visual information and against recovery. Drawing on the perceptual disparity between humans and models, we propose to conceal visual information by pruning human-perceivable low-frequency components. For impeding recovery, we first elucidate the seeming paradox between reducing model-exploitable information and retaining high recognition accuracy. Based on recent theoretical insights and our observation on model attention, we propose a solution to the dilemma, by advocating for the training and inference of recognition models on randomly selected frequency components. We distill our findings into a novel privacy-preserving face recognition method, PartialFace. Extensive experiments demonstrate that PartialFace effectively balances privacy protection goals and recognition accuracy. Code is available at: https://github.com/Tencent/TFace.
A Linear Reconstruction Approach for Attribute Inference Attacks against Synthetic Data
Recent advances in synthetic data generation (SDG) have been hailed as a solution to the difficult problem of sharing sensitive data while protecting privacy. SDG aims to learn statistical properties of real data in order to generate "artificial" data that are structurally and statistically similar to sensitive data. However, prior research suggests that inference attacks on synthetic data can undermine privacy, but only for specific outlier records. In this work, we introduce a new attribute inference attack against synthetic data. The attack is based on linear reconstruction methods for aggregate statistics, which target all records in the dataset, not only outliers. We evaluate our attack on state-of-the-art SDG algorithms, including Probabilistic Graphical Models, Generative Adversarial Networks, and recent differentially private SDG mechanisms. By defining a formal privacy game, we show that our attack can be highly accurate even on arbitrary records, and that this is the result of individual information leakage (as opposed to population-level inference). We then systematically evaluate the tradeoff between protecting privacy and preserving statistical utility. Our findings suggest that current SDG methods cannot consistently provide sufficient privacy protection against inference attacks while retaining reasonable utility. The best method evaluated, a differentially private SDG mechanism, can provide both protection against inference attacks and reasonable utility, but only in very specific settings. Lastly, we show that releasing a larger number of synthetic records can improve utility but at the cost of making attacks far more effective.
Controlling What You Share: Assessing Language Model Adherence to Privacy Preferences
Large language models (LLMs) are primarily accessed via commercial APIs, but this often requires users to expose their data to service providers. In this paper, we explore how users can stay in control of their data by using privacy profiles: simple natural language instructions that say what should and should not be revealed. We build a framework where a local model uses these instructions to rewrite queries, only hiding details deemed sensitive by the user, before sending them to an external model, thus balancing privacy with performance. To support this research, we introduce PEEP, a multilingual dataset of real user queries annotated to mark private content and paired with synthetic privacy profiles. Our experiments with lightweight LLMs show they can follow these instructions to some extent, but also face consistent challenges, highlighting the need for models that better understand and comply with user-defined privacy preferences.
Privacy-Preserving Prompt Tuning for Large Language Model Services
Prompt tuning provides an efficient way for users to customize Large Language Models (LLMs) with their private data in the emerging LLM service scenario. However, the sensitive nature of private data brings the need for privacy preservation in LLM service customization. Based on prompt tuning, we propose Privacy-Preserving Prompt Tuning (RAPT), a framework that provides privacy guarantees for LLM services. rapt adopts a local privacy setting, allowing users to privatize their data locally with local differential privacy. As prompt tuning performs poorly when directly trained on privatized data, we introduce a novel privatized token reconstruction task that is trained jointly with the downstream task, allowing LLMs to learn better task-dependent representations. Despite the simplicity of our framework, experiments show that RAPT achieves competitive performance across tasks while providing privacy guarantees against adversaries.
Production of Categorical Data Verifying Differential Privacy: Conception and Applications to Machine Learning
Private and public organizations regularly collect and analyze digitalized data about their associates, volunteers, clients, etc. However, because most personal data are sensitive, there is a key challenge in designing privacy-preserving systems. To tackle privacy concerns, research communities have proposed different methods to preserve privacy, with Differential privacy (DP) standing out as a formal definition that allows quantifying the privacy-utility trade-off. Besides, with the local DP (LDP) model, users can sanitize their data locally before transmitting it to the server. The objective of this thesis is thus two-fold: O_1) To improve the utility and privacy in multiple frequency estimates under LDP guarantees, which is fundamental to statistical learning. And O_2) To assess the privacy-utility trade-off of machine learning (ML) models trained over differentially private data. For O_1, we first tackled the problem from two "multiple" perspectives, i.e., multiple attributes and multiple collections throughout time, while focusing on utility. Secondly, we focused our attention on the multiple attributes aspect only, in which we proposed a solution focusing on privacy while preserving utility. In both cases, we demonstrate through analytical and experimental validations the advantages of our proposed solutions over state-of-the-art LDP protocols. For O_2, we empirically evaluated ML-based solutions designed to solve real-world problems while ensuring DP guarantees. Indeed, we mainly used the input data perturbation setting from the privacy-preserving ML literature. This is the situation in which the whole dataset is sanitized independently and, thus, we implemented LDP algorithms from the perspective of the centralized data owner. In all cases, we concluded that differentially private ML models achieve nearly the same utility metrics as non-private ones.
Rethinking Privacy in Machine Learning Pipelines from an Information Flow Control Perspective
Modern machine learning systems use models trained on ever-growing corpora. Typically, metadata such as ownership, access control, or licensing information is ignored during training. Instead, to mitigate privacy risks, we rely on generic techniques such as dataset sanitization and differentially private model training, with inherent privacy/utility trade-offs that hurt model performance. Moreover, these techniques have limitations in scenarios where sensitive information is shared across multiple participants and fine-grained access control is required. By ignoring metadata, we therefore miss an opportunity to better address security, privacy, and confidentiality challenges. In this paper, we take an information flow control perspective to describe machine learning systems, which allows us to leverage metadata such as access control policies and define clear-cut privacy and confidentiality guarantees with interpretable information flows. Under this perspective, we contrast two different approaches to achieve user-level non-interference: 1) fine-tuning per-user models, and 2) retrieval augmented models that access user-specific datasets at inference time. We compare these two approaches to a trivially non-interfering zero-shot baseline using a public model and to a baseline that fine-tunes this model on the whole corpus. We evaluate trained models on two datasets of scientific articles and demonstrate that retrieval augmented architectures deliver the best utility, scalability, and flexibility while satisfying strict non-interference guarantees.
ILASR: Privacy-Preserving Incremental Learning for Automatic Speech Recognition at Production Scale
Incremental learning is one paradigm to enable model building and updating at scale with streaming data. For end-to-end automatic speech recognition (ASR) tasks, the absence of human annotated labels along with the need for privacy preserving policies for model building makes it a daunting challenge. Motivated by these challenges, in this paper we use a cloud based framework for production systems to demonstrate insights from privacy preserving incremental learning for automatic speech recognition (ILASR). By privacy preserving, we mean, usage of ephemeral data which are not human annotated. This system is a step forward for production levelASR models for incremental/continual learning that offers near real-time test-bed for experimentation in the cloud for end-to-end ASR, while adhering to privacy-preserving policies. We show that the proposed system can improve the production models significantly(3%) over a new time period of six months even in the absence of human annotated labels with varying levels of weak supervision and large batch sizes in incremental learning. This improvement is 20% over test sets with new words and phrases in the new time period. We demonstrate the effectiveness of model building in a privacy-preserving incremental fashion for ASR while further exploring the utility of having an effective teacher model and use of large batch sizes.
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Because learning sometimes involves sensitive data, machine learning algorithms have been extended to offer privacy for training data. In practice, this has been mostly an afterthought, with privacy-preserving models obtained by re-running training with a different optimizer, but using the model architectures that already performed well in a non-privacy-preserving setting. This approach leads to less than ideal privacy/utility tradeoffs, as we show here. Instead, we propose that model architectures are chosen ab initio explicitly for privacy-preserving training. To provide guarantees under the gold standard of differential privacy, one must bound as strictly as possible how individual training points can possibly affect model updates. In this paper, we are the first to observe that the choice of activation function is central to bounding the sensitivity of privacy-preserving deep learning. We demonstrate analytically and experimentally how a general family of bounded activation functions, the tempered sigmoids, consistently outperform unbounded activation functions like ReLU. Using this paradigm, we achieve new state-of-the-art accuracy on MNIST, FashionMNIST, and CIFAR10 without any modification of the learning procedure fundamentals or differential privacy analysis.
Thinking Outside of the Differential Privacy Box: A Case Study in Text Privatization with Language Model Prompting
The field of privacy-preserving Natural Language Processing has risen in popularity, particularly at a time when concerns about privacy grow with the proliferation of Large Language Models. One solution consistently appearing in recent literature has been the integration of Differential Privacy (DP) into NLP techniques. In this paper, we take these approaches into critical view, discussing the restrictions that DP integration imposes, as well as bring to light the challenges that such restrictions entail. To accomplish this, we focus on DP-Prompt, a recent method for text privatization leveraging language models to rewrite texts. In particular, we explore this rewriting task in multiple scenarios, both with DP and without DP. To drive the discussion on the merits of DP in NLP, we conduct empirical utility and privacy experiments. Our results demonstrate the need for more discussion on the usability of DP in NLP and its benefits over non-DP approaches.
Learning-Augmented Private Algorithms for Multiple Quantile Release
When applying differential privacy to sensitive data, we can often improve performance using external information such as other sensitive data, public data, or human priors. We propose to use the learning-augmented algorithms (or algorithms with predictions) framework -- previously applied largely to improve time complexity or competitive ratios -- as a powerful way of designing and analyzing privacy-preserving methods that can take advantage of such external information to improve utility. This idea is instantiated on the important task of multiple quantile release, for which we derive error guarantees that scale with a natural measure of prediction quality while (almost) recovering state-of-the-art prediction-independent guarantees. Our analysis enjoys several advantages, including minimal assumptions about the data, a natural way of adding robustness, and the provision of useful surrogate losses for two novel ``meta" algorithms that learn predictions from other (potentially sensitive) data. We conclude with experiments on challenging tasks demonstrating that learning predictions across one or more instances can lead to large error reductions while preserving privacy.
Assessing and Mitigating Data Memorization Risks in Fine-Tuned Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse natural language processing tasks, but their tendency to memorize training data poses significant privacy risks, particularly during fine-tuning processes. This paper presents a comprehensive empirical analysis of data memorization in fine-tuned LLMs and introduces a novel multi-layered privacy protection framework. Through controlled experiments on modern LLM architectures including GPT-2, Phi-3, and Gemma-2, we demonstrate that fine-tuning with repeated sensitive data increases privacy leakage rates from baseline levels of 0-5% to 60-75%, representing a 64.2% average increase across tested models. We propose and rigorously evaluate four complementary privacy protection methods: semantic data deduplication, differential privacy during generation, entropy-based filtering, and pattern-based content filtering. Our experimental results show that these techniques can reduce data leakage to 0% while maintaining 94.7% of original model utility.
Life of PII -- A PII Obfuscation Transformer
Protecting sensitive information is crucial in today's world of Large Language Models (LLMs) and data-driven services. One common method used to preserve privacy is by using data perturbation techniques to reduce overreaching utility of (sensitive) Personal Identifiable Information (PII) data while maintaining its statistical and semantic properties. Data perturbation methods often result in significant information loss, making them impractical for use. In this paper, we propose 'Life of PII', a novel Obfuscation Transformer framework for transforming PII into faux-PII while preserving the original information, intent, and context as much as possible. Our approach includes an API to interface with the given document, a configuration-based obfuscator, and a model based on the Transformer architecture, which has shown high context preservation and performance in natural language processing tasks and LLMs. Our Transformer-based approach learns mapping between the original PII and its transformed faux-PII representation, which we call "obfuscated" data. Our experiments demonstrate that our method, called Life of PII, outperforms traditional data perturbation techniques in terms of both utility preservation and privacy protection. We show that our approach can effectively reduce utility loss while preserving the original information, offering greater flexibility in the trade-off between privacy protection and data utility. Our work provides a solution for protecting PII in various real-world applications.
PANORAMA: A synthetic PII-laced dataset for studying sensitive data memorization in LLMs
The memorization of sensitive and personally identifiable information (PII) by large language models (LLMs) poses growing privacy risks as models scale and are increasingly deployed in real-world applications. Existing efforts to study sensitive and PII data memorization and develop mitigation strategies are hampered by the absence of comprehensive, realistic, and ethically sourced datasets reflecting the diversity of sensitive information found on the web. We introduce PANORAMA - Profile-based Assemblage for Naturalistic Online Representation and Attribute Memorization Analysis, a large-scale synthetic corpus of 384,789 samples derived from 9,674 synthetic profiles designed to closely emulate the distribution, variety, and context of PII and sensitive data as it naturally occurs in online environments. Our data generation pipeline begins with the construction of internally consistent, multi-attribute human profiles using constrained selection to reflect real-world demographics such as education, health attributes, financial status, etc. Using a combination of zero-shot prompting and OpenAI o3-mini, we generate diverse content types - including wiki-style articles, social media posts, forum discussions, online reviews, comments, and marketplace listings - each embedding realistic, contextually appropriate PII and other sensitive information. We validate the utility of PANORAMA by fine-tuning the Mistral-7B model on 1x, 5x, 10x, and 25x data replication rates with a subset of data and measure PII memorization rates - revealing not only consistent increases with repetition but also variation across content types, highlighting PANORAMA's ability to model how memorization risks differ by context. Our dataset and code are publicly available, providing a much-needed resource for privacy risk assessment, model auditing, and the development of privacy-preserving LLMs.
How Private are Language Models in Abstractive Summarization?
Language models (LMs) have shown outstanding performance in text summarization including sensitive domains such as medicine and law. In these settings, it is important that personally identifying information (PII) included in the source document should not leak in the summary. Prior efforts have mostly focused on studying how LMs may inadvertently elicit PII from training data. However, to what extent LMs can provide privacy-preserving summaries given a non-private source document remains under-explored. In this paper, we perform a comprehensive study across two closed- and three open-weight LMs of different sizes and families. We experiment with prompting and fine-tuning strategies for privacy-preservation across a range of summarization datasets across three domains. Our extensive quantitative and qualitative analysis including human evaluation shows that LMs often cannot prevent PII leakage on their summaries and that current widely-used metrics cannot capture context dependent privacy risks.
Question Answering for Privacy Policies: Combining Computational and Legal Perspectives
Privacy policies are long and complex documents that are difficult for users to read and understand, and yet, they have legal effects on how user data is collected, managed and used. Ideally, we would like to empower users to inform themselves about issues that matter to them, and enable them to selectively explore those issues. We present PrivacyQA, a corpus consisting of 1750 questions about the privacy policies of mobile applications, and over 3500 expert annotations of relevant answers. We observe that a strong neural baseline underperforms human performance by almost 0.3 F1 on PrivacyQA, suggesting considerable room for improvement for future systems. Further, we use this dataset to shed light on challenges to question answerability, with domain-general implications for any question answering system. The PrivacyQA corpus offers a challenging corpus for question answering, with genuine real-world utility.
Hide and Seek (HaS): A Lightweight Framework for Prompt Privacy Protection
Numerous companies have started offering services based on large language models (LLM), such as ChatGPT, which inevitably raises privacy concerns as users' prompts are exposed to the model provider. Previous research on secure reasoning using multi-party computation (MPC) has proven to be impractical for LLM applications due to its time-consuming and communication-intensive nature. While lightweight anonymization techniques can protect private information in prompts through substitution or masking, they fail to recover sensitive data replaced in the LLM-generated results. In this paper, we expand the application scenarios of anonymization techniques by training a small local model to de-anonymize the LLM's returned results with minimal computational overhead. We introduce the HaS framework, where "H(ide)" and "S(eek)" represent its two core processes: hiding private entities for anonymization and seeking private entities for de-anonymization, respectively. To quantitatively assess HaS's privacy protection performance, we propose both black-box and white-box adversarial models. Furthermore, we conduct experiments to evaluate HaS's usability in translation and classification tasks. The experimental findings demonstrate that the HaS framework achieves an optimal balance between privacy protection and utility.
Ingest-And-Ground: Dispelling Hallucinations from Continually-Pretrained LLMs with RAG
This paper presents new methods that have the potential to improve privacy process efficiency with LLM and RAG. To reduce hallucination, we continually pre-train the base LLM model with a privacy-specific knowledge base and then augment it with a semantic RAG layer. Our evaluations demonstrate that this approach enhances the model performance (as much as doubled metrics compared to out-of-box LLM) in handling privacy-related queries, by grounding responses with factual information which reduces inaccuracies.
Privately Fine-Tuning Large Language Models with Differential Privacy
Pre-trained Large Language Models (LLMs) are an integral part of modern AI that have led to breakthrough performances in complex AI tasks. Major AI companies with expensive infrastructures are able to develop and train these large models with billions and millions of parameters from scratch. Third parties, researchers, and practitioners are increasingly adopting these pre-trained models and fine-tuning them on their private data to accomplish their downstream AI tasks. However, it has been shown that an adversary can extract/reconstruct the exact training samples from these LLMs, which can lead to revealing personally identifiable information. The issue has raised deep concerns about the privacy of LLMs. Differential privacy (DP) provides a rigorous framework that allows adding noise in the process of training or fine-tuning LLMs such that extracting the training data becomes infeasible (i.e., with a cryptographically small success probability). While the theoretical privacy guarantees offered in most extant studies assume learning models from scratch through many training iterations in an asymptotic setting, this assumption does not hold in fine-tuning scenarios in which the number of training iterations is significantly smaller. To address the gap, we present \ewtune, a DP framework for fine-tuning LLMs based on Edgeworth accountant with finite-sample privacy guarantees. Our results across four well-established natural language understanding (NLU) tasks show that while \ewtune~adds privacy guarantees to LLM fine-tuning process, it directly contributes to decreasing the induced noise to up to 5.6\% and improves the state-of-the-art LLMs performance by up to 1.1\% across all NLU tasks. We have open-sourced our implementations for wide adoption and public testing purposes.
Reducing Privacy Risks in Online Self-Disclosures with Language Models
Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through identification and abstraction. We develop a taxonomy of 19 self-disclosure categories, and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for identification, achieving over 75% in Token F_1. We further conduct a HCI user study, with 82\% of participants viewing the model positively, highlighting its real world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction. We experiment with both one-span abstraction and three-span abstraction settings, and explore multiple fine-tuning strategies. Our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation.
Privacy in Large Language Models: Attacks, Defenses and Future Directions
The advancement of large language models (LLMs) has significantly enhanced the ability to effectively tackle various downstream NLP tasks and unify these tasks into generative pipelines. On the one hand, powerful language models, trained on massive textual data, have brought unparalleled accessibility and usability for both models and users. On the other hand, unrestricted access to these models can also introduce potential malicious and unintentional privacy risks. Despite ongoing efforts to address the safety and privacy concerns associated with LLMs, the problem remains unresolved. In this paper, we provide a comprehensive analysis of the current privacy attacks targeting LLMs and categorize them according to the adversary's assumed capabilities to shed light on the potential vulnerabilities present in LLMs. Then, we present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks. Beyond existing works, we identify upcoming privacy concerns as LLMs evolve. Lastly, we point out several potential avenues for future exploration.
(Local) Differential Privacy has NO Disparate Impact on Fairness
In recent years, Local Differential Privacy (LDP), a robust privacy-preserving methodology, has gained widespread adoption in real-world applications. With LDP, users can perturb their data on their devices before sending it out for analysis. However, as the collection of multiple sensitive information becomes more prevalent across various industries, collecting a single sensitive attribute under LDP may not be sufficient. Correlated attributes in the data may still lead to inferences about the sensitive attribute. This paper empirically studies the impact of collecting multiple sensitive attributes under LDP on fairness. We propose a novel privacy budget allocation scheme that considers the varying domain size of sensitive attributes. This generally led to a better privacy-utility-fairness trade-off in our experiments than the state-of-art solution. Our results show that LDP leads to slightly improved fairness in learning problems without significantly affecting the performance of the models. We conduct extensive experiments evaluating three benchmark datasets using several group fairness metrics and seven state-of-the-art LDP protocols. Overall, this study challenges the common belief that differential privacy necessarily leads to worsened fairness in machine learning.
Privacy-Preserving Recommender Systems with Synthetic Query Generation using Differentially Private Large Language Models
We propose a novel approach for developing privacy-preserving large-scale recommender systems using differentially private (DP) large language models (LLMs) which overcomes certain challenges and limitations in DP training these complex systems. Our method is particularly well suited for the emerging area of LLM-based recommender systems, but can be readily employed for any recommender systems that process representations of natural language inputs. Our approach involves using DP training methods to fine-tune a publicly pre-trained LLM on a query generation task. The resulting model can generate private synthetic queries representative of the original queries which can be freely shared for any downstream non-private recommendation training procedures without incurring any additional privacy cost. We evaluate our method on its ability to securely train effective deep retrieval models, and we observe significant improvements in their retrieval quality without compromising query-level privacy guarantees compared to methods where the retrieval models are directly DP trained.
Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions
Large Language Models (LLMs) represent a significant advancement in artificial intelligence, finding applications across various domains. However, their reliance on massive internet-sourced datasets for training brings notable privacy issues, which are exacerbated in critical domains (e.g., healthcare). Moreover, certain application-specific scenarios may require fine-tuning these models on private data. This survey critically examines the privacy threats associated with LLMs, emphasizing the potential for these models to memorize and inadvertently reveal sensitive information. We explore current threats by reviewing privacy attacks on LLMs and propose comprehensive solutions for integrating privacy mechanisms throughout the entire learning pipeline. These solutions range from anonymizing training datasets to implementing differential privacy during training or inference and machine unlearning after training. Our comprehensive review of existing literature highlights ongoing challenges, available tools, and future directions for preserving privacy in LLMs. This work aims to guide the development of more secure and trustworthy AI systems by providing a thorough understanding of privacy preservation methods and their effectiveness in mitigating risks.
Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography
We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.
From Principle to Practice: Vertical Data Minimization for Machine Learning
Aiming to train and deploy predictive models, organizations collect large amounts of detailed client data, risking the exposure of private information in the event of a breach. To mitigate this, policymakers increasingly demand compliance with the data minimization (DM) principle, restricting data collection to only that data which is relevant and necessary for the task. Despite regulatory pressure, the problem of deploying machine learning models that obey DM has so far received little attention. In this work, we address this challenge in a comprehensive manner. We propose a novel vertical DM (vDM) workflow based on data generalization, which by design ensures that no full-resolution client data is collected during training and deployment of models, benefiting client privacy by reducing the attack surface in case of a breach. We formalize and study the corresponding problem of finding generalizations that both maximize data utility and minimize empirical privacy risk, which we quantify by introducing a diverse set of policy-aligned adversarial scenarios. Finally, we propose a range of baseline vDM algorithms, as well as Privacy-aware Tree (PAT), an especially effective vDM algorithm that outperforms all baselines across several settings. We plan to release our code as a publicly available library, helping advance the standardization of DM for machine learning. Overall, we believe our work can help lay the foundation for further exploration and adoption of DM principles in real-world applications.
On the Impact of Multi-dimensional Local Differential Privacy on Fairness
Automated decision systems are increasingly used to make consequential decisions in people's lives. Due to the sensitivity of the manipulated data as well as the resulting decisions, several ethical concerns need to be addressed for the appropriate use of such technologies, in particular, fairness and privacy. Unlike previous work, which focused on centralized differential privacy (DP) or local DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of LDP in the presence of several sensitive attributes (i.e., multi-dimensional data) on fairness. Detailed empirical analysis on synthetic and benchmark datasets revealed very relevant observations. In particular, (1) multi-dimensional LDP is an efficient approach to reduce disparity, (2) the multi-dimensional approach of LDP (independent vs. combined) matters only at low privacy guarantees, and (3) the outcome Y distribution has an important effect on which group is more sensitive to the obfuscation. Last, we summarize our findings in the form of recommendations to guide practitioners in adopting effective privacy-preserving practices while maintaining fairness and utility in ML applications.
Decision Making with Differential Privacy under a Fairness Lens
Agencies, such as the U.S. Census Bureau, release data sets and statistics about groups of individuals that are used as input to a number of critical decision processes. To conform to privacy and confidentiality requirements, these agencies are often required to release privacy-preserving versions of the data. This paper studies the release of differentially private data sets and analyzes their impact on some critical resource allocation tasks under a fairness perspective. {The paper shows that, when the decisions take as input differentially private data}, the noise added to achieve privacy disproportionately impacts some groups over others. The paper analyzes the reasons for these disproportionate impacts and proposes guidelines to mitigate these effects. The proposed approaches are evaluated on critical decision problems that use differentially private census data.
DualTAP: A Dual-Task Adversarial Protector for Mobile MLLM Agents
The reliance of mobile GUI agents on Multimodal Large Language Models (MLLMs) introduces a severe privacy vulnerability: screenshots containing Personally Identifiable Information (PII) are often sent to untrusted, third-party routers. These routers can exploit their own MLLMs to mine this data, violating user privacy. Existing privacy perturbations fail the critical dual challenge of this scenario: protecting PII from the router's MLLM while simultaneously preserving task utility for the agent's MLLM. To address this gap, we propose the Dual-Task Adversarial Protector (DualTAP), a novel framework that, for the first time, explicitly decouples these conflicting objectives. DualTAP trains a lightweight generator using two key innovations: (i) a contrastive attention module that precisely identifies and targets only the PII-sensitive regions, and (ii) a dual-task adversarial objective that simultaneously minimizes a task-preservation loss (to maintain agent utility) and a privacy-interference loss (to suppress PII leakage). To facilitate this study, we introduce PrivScreen, a new dataset of annotated mobile screenshots designed specifically for this dual-task evaluation. Comprehensive experiments on six diverse MLLMs (e.g., GPT-5) demonstrate DualTAP's state-of-the-art protection. It reduces the average privacy leakage rate by 31.6 percentage points (a 3.0x relative improvement) while, critically, maintaining an 80.8% task success rate - a negligible drop from the 83.6% unprotected baseline. DualTAP presents the first viable solution to the privacy-utility trade-off in mobile MLLM agents.
Minimizing Information Leakage under Padding Constraints
An attacker can gain information of a user by analyzing its network traffic. The size of transferred data leaks information about the file being transferred or the service being used, and this is particularly revealing when the attacker has background knowledge about the files or services available for transfer. To prevent this, servers may pad their files using a padding scheme, changing the file sizes and preventing anyone from guessing their identity uniquely. This work focuses on finding optimal padding schemes that keep a balance between privacy and the costs of bandwidth increase. We consider R\'enyi-min leakage as our main measure for privacy, since it is directly related with the success of a simple attacker, and compare our algorithms with an existing solution that minimizes Shannon leakage. We provide improvements to our algorithms in order to optimize average total padding and Shannon leakage while minimizing R\'enyi-min leakage. Moreover, our algorithms are designed to handle a more general and important scenario in which multiple servers wish to compute padding schemes in a way that protects the servers' identity in addition to the identity of the files.
One-shot Empirical Privacy Estimation for Federated Learning
Privacy estimation techniques for differentially private (DP) algorithms are useful for comparing against analytical bounds, or to empirically measure privacy loss in settings where known analytical bounds are not tight. However, existing privacy auditing techniques usually make strong assumptions on the adversary (e.g., knowledge of intermediate model iterates or the training data distribution), are tailored to specific tasks, model architectures, or DP algorithm, and/or require retraining the model many times (typically on the order of thousands). These shortcomings make deploying such techniques at scale difficult in practice, especially in federated settings where model training can take days or weeks. In this work, we present a novel ``one-shot'' approach that can systematically address these challenges, allowing efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters, and without requiring any a priori knowledge about the model architecture, task, or DP training algorithm. We show that our method provides provably correct estimates for the privacy loss under the Gaussian mechanism, and we demonstrate its performance on well-established FL benchmark datasets under several adversarial threat models.
Beyond Memorization: Violating Privacy Via Inference with Large Language Models
Current privacy research on large language models (LLMs) primarily focuses on the issue of extracting memorized training data. At the same time, models' inference capabilities have increased drastically. This raises the key question of whether current LLMs could violate individuals' privacy by inferring personal attributes from text given at inference time. In this work, we present the first comprehensive study on the capabilities of pretrained LLMs to infer personal attributes from text. We construct a dataset consisting of real Reddit profiles, and show that current LLMs can infer a wide range of personal attributes (e.g., location, income, sex), achieving up to 85% top-1 and 95.8% top-3 accuracy at a fraction of the cost (100times) and time (240times) required by humans. As people increasingly interact with LLM-powered chatbots across all aspects of life, we also explore the emerging threat of privacy-invasive chatbots trying to extract personal information through seemingly benign questions. Finally, we show that common mitigations, i.e., text anonymization and model alignment, are currently ineffective at protecting user privacy against LLM inference. Our findings highlight that current LLMs can infer personal data at a previously unattainable scale. In the absence of working defenses, we advocate for a broader discussion around LLM privacy implications beyond memorization, striving for a wider privacy protection.
Improving the utility of locally differentially private protocols for longitudinal and multidimensional frequency estimates
This paper investigates the problem of collecting multidimensional data throughout time (i.e., longitudinal studies) for the fundamental task of frequency estimation under Local Differential Privacy (LDP) guarantees. Contrary to frequency estimation of a single attribute, the multidimensional aspect demands particular attention to the privacy budget. Besides, when collecting user statistics longitudinally, privacy progressively degrades. Indeed, the "multiple" settings in combination (i.e., many attributes and several collections throughout time) impose several challenges, for which this paper proposes the first solution for frequency estimates under LDP. To tackle these issues, we extend the analysis of three state-of-the-art LDP protocols (Generalized Randomized Response -- GRR, Optimized Unary Encoding -- OUE, and Symmetric Unary Encoding -- SUE) for both longitudinal and multidimensional data collections. While the known literature uses OUE and SUE for two rounds of sanitization (a.k.a. memoization), i.e., L-OUE and L-SUE, respectively, we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility (i.e., L-OSUE). Also, for attributes with small domain sizes, we propose Longitudinal GRR (L-GRR), which provides higher utility than the other protocols based on unary encoding. Last, we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates (ALLOMFREE), which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol, i.e., either L-GRR or L-OSUE. As shown in the results, ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.
Hyperparameter Tuning with Renyi Differential Privacy
For many differentially private algorithms, such as the prominent noisy stochastic gradient descent (DP-SGD), the analysis needed to bound the privacy leakage of a single training run is well understood. However, few studies have reasoned about the privacy leakage resulting from the multiple training runs needed to fine tune the value of the training algorithm's hyperparameters. In this work, we first illustrate how simply setting hyperparameters based on non-private training runs can leak private information. Motivated by this observation, we then provide privacy guarantees for hyperparameter search procedures within the framework of Renyi Differential Privacy. Our results improve and extend the work of Liu and Talwar (STOC 2019). Our analysis supports our previous observation that tuning hyperparameters does indeed leak private information, but we prove that, under certain assumptions, this leakage is modest, as long as each candidate training run needed to select hyperparameters is itself differentially private.
Learning to Refuse: Towards Mitigating Privacy Risks in LLMs
Large language models (LLMs) exhibit remarkable capabilities in understanding and generating natural language. However, these models can inadvertently memorize private information, posing significant privacy risks. This study addresses the challenge of enabling LLMs to protect specific individuals' private data without the need for complete retraining. We propose \return, a Real-world pErsonal daTa UnleaRNing dataset, comprising 2,492 individuals from Wikipedia with associated QA pairs, to evaluate machine unlearning (MU) methods for protecting personal data in a realistic scenario. Additionally, we introduce the Name-Aware Unlearning Framework (NAUF) for Privacy Protection, which enables the model to learn which individuals' information should be protected without affecting its ability to answer questions related to other unrelated individuals. Our extensive experiments demonstrate that NAUF achieves a state-of-the-art average unlearning score, surpassing the best baseline method by 5.65 points, effectively protecting target individuals' personal data while maintaining the model's general capabilities.
Defending Against Authorship Identification Attacks
Authorship identification has proven unsettlingly effective in inferring the identity of the author of an unsigned document, even when sensitive personal information has been carefully omitted. In the digital era, individuals leave a lasting digital footprint through their written content, whether it is posted on social media, stored on their employer's computers, or located elsewhere. When individuals need to communicate publicly yet wish to remain anonymous, there is little available to protect them from unwanted authorship identification. This unprecedented threat to privacy is evident in scenarios such as whistle-blowing. Proposed defenses against authorship identification attacks primarily aim to obfuscate one's writing style, thereby making it unlinkable to their pre-existing writing, while concurrently preserving the original meaning and grammatical integrity. The presented work offers a comprehensive review of the advancements in this research area spanning over the past two decades and beyond. It emphasizes the methodological frameworks of modification and generation-based strategies devised to evade authorship identification attacks, highlighting joint efforts from the differential privacy community. Limitations of current research are discussed, with a spotlight on open challenges and potential research avenues.
Operationalizing Contextual Integrity in Privacy-Conscious Assistants
Advanced AI assistants combine frontier LLMs and tool access to autonomously perform complex tasks on behalf of users. While the helpfulness of such assistants can increase dramatically with access to user information including emails and documents, this raises privacy concerns about assistants sharing inappropriate information with third parties without user supervision. To steer information-sharing assistants to behave in accordance with privacy expectations, we propose to operationalize contextual integrity (CI), a framework that equates privacy with the appropriate flow of information in a given context. In particular, we design and evaluate a number of strategies to steer assistants' information-sharing actions to be CI compliant. Our evaluation is based on a novel form filling benchmark composed of synthetic data and human annotations, and it reveals that prompting frontier LLMs to perform CI-based reasoning yields strong results.
Privately Aligning Language Models with Reinforcement Learning
Positioned between pre-training and user deployment, aligning large language models (LLMs) through reinforcement learning (RL) has emerged as a prevailing strategy for training instruction following-models such as ChatGPT. In this work, we initiate the study of privacy-preserving alignment of LLMs through Differential Privacy (DP) in conjunction with RL. Following the influential work of Ziegler et al. (2020), we study two dominant paradigms: (i) alignment via RL without human in the loop (e.g., positive review generation) and (ii) alignment via RL from human feedback (RLHF) (e.g., summarization in a human-preferred way). We give a new DP framework to achieve alignment via RL, and prove its correctness. Our experimental results validate the effectiveness of our approach, offering competitive utility while ensuring strong privacy protections.
Continual Learning and Private Unlearning
As intelligent agents become autonomous over longer periods of time, they may eventually become lifelong counterparts to specific people. If so, it may be common for a user to want the agent to master a task temporarily but later on to forget the task due to privacy concerns. However enabling an agent to forget privately what the user specified without degrading the rest of the learned knowledge is a challenging problem. With the aim of addressing this challenge, this paper formalizes this continual learning and private unlearning (CLPU) problem. The paper further introduces a straightforward but exactly private solution, CLPU-DER++, as the first step towards solving the CLPU problem, along with a set of carefully designed benchmark problems to evaluate the effectiveness of the proposed solution. The code is available at https://github.com/Cranial-XIX/Continual-Learning-Private-Unlearning.
DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer
Large Language Models (LLMs) have emerged as dominant tools for various tasks, particularly when tailored for a specific target by prompt tuning. Nevertheless, concerns surrounding data privacy present obstacles due to the tuned prompts' dependency on sensitive private information. A practical solution is to host a local LLM and optimize a soft prompt privately using data. Yet, hosting a local model becomes problematic when model ownership is protected. Alternative methods, like sending data to the model's provider for training, intensify these privacy issues facing an untrusted provider. In this paper, we present a novel solution called Differentially-Private Offsite Prompt Tuning (DP-OPT) to address this challenge. Our approach involves tuning a discrete prompt on the client side and then applying it to the desired cloud models. We demonstrate that prompts suggested by LLMs themselves can be transferred without compromising performance significantly. To ensure that the prompts do not leak private information, we introduce the first private prompt generation mechanism, by a differentially-private (DP) ensemble of in-context learning with private demonstrations. With DP-OPT, generating privacy-preserving prompts by Vicuna-7b can yield competitive performance compared to non-private in-context learning on GPT3.5 or local private prompt tuning. Codes are available at https://github.com/VITA-Group/DP-OPT .
Position: Privacy Is Not Just Memorization!
The discourse on privacy risks in Large Language Models (LLMs) has disproportionately focused on verbatim memorization of training data, while a constellation of more immediate and scalable privacy threats remain underexplored. This position paper argues that the privacy landscape of LLM systems extends far beyond training data extraction, encompassing risks from data collection practices, inference-time context leakage, autonomous agent capabilities, and the democratization of surveillance through deep inference attacks. We present a comprehensive taxonomy of privacy risks across the LLM lifecycle -- from data collection through deployment -- and demonstrate through case studies how current privacy frameworks fail to address these multifaceted threats. Through a longitudinal analysis of 1,322 AI/ML privacy papers published at leading conferences over the past decade (2016--2025), we reveal that while memorization receives outsized attention in technical research, the most pressing privacy harms lie elsewhere, where current technical approaches offer little traction and viable paths forward remain unclear. We call for a fundamental shift in how the research community approaches LLM privacy, moving beyond the narrow focus of current technical solutions and embracing interdisciplinary approaches that address the sociotechnical nature of these emerging threats.
PolicyGPT: Automated Analysis of Privacy Policies with Large Language Models
Privacy policies serve as the primary conduit through which online service providers inform users about their data collection and usage procedures. However, in a bid to be comprehensive and mitigate legal risks, these policy documents are often quite verbose. In practical use, users tend to click the Agree button directly rather than reading them carefully. This practice exposes users to risks of privacy leakage and legal issues. Recently, the advent of Large Language Models (LLM) such as ChatGPT and GPT-4 has opened new possibilities for text analysis, especially for lengthy documents like privacy policies. In this study, we investigate a privacy policy text analysis framework PolicyGPT based on the LLM. This framework was tested using two datasets. The first dataset comprises of privacy policies from 115 websites, which were meticulously annotated by legal experts, categorizing each segment into one of 10 classes. The second dataset consists of privacy policies from 304 popular mobile applications, with each sentence manually annotated and classified into one of another 10 categories. Under zero-shot learning conditions, PolicyGPT demonstrated robust performance. For the first dataset, it achieved an accuracy rate of 97%, while for the second dataset, it attained an 87% accuracy rate, surpassing that of the baseline machine learning and neural network models.
When Explainability Meets Privacy: An Investigation at the Intersection of Post-hoc Explainability and Differential Privacy in the Context of Natural Language Processing
In the study of trustworthy Natural Language Processing (NLP), a number of important research fields have emerged, including that of explainability and privacy. While research interest in both explainable and privacy-preserving NLP has increased considerably in recent years, there remains a lack of investigation at the intersection of the two. This leaves a considerable gap in understanding of whether achieving both explainability and privacy is possible, or whether the two are at odds with each other. In this work, we conduct an empirical investigation into the privacy-explainability trade-off in the context of NLP, guided by the popular overarching methods of Differential Privacy (DP) and Post-hoc Explainability. Our findings include a view into the intricate relationship between privacy and explainability, which is formed by a number of factors, including the nature of the downstream task and choice of the text privatization and explainability method. In this, we highlight the potential for privacy and explainability to co-exist, and we summarize our findings in a collection of practical recommendations for future work at this important intersection.
Customized Retrieval-Augmented Generation with LLM for Debiasing Recommendation Unlearning
Modern recommender systems face a critical challenge in complying with privacy regulations like the 'right to be forgotten': removing a user's data without disrupting recommendations for others. Traditional unlearning methods address this by partial model updates, but introduce propagation bias--where unlearning one user's data distorts recommendations for behaviorally similar users, degrading system accuracy. While retraining eliminates bias, it is computationally prohibitive for large-scale systems. To address this challenge, we propose CRAGRU, a novel framework leveraging Retrieval-Augmented Generation (RAG) for efficient, user-specific unlearning that mitigates bias while preserving recommendation quality. CRAGRU decouples unlearning into distinct retrieval and generation stages. In retrieval, we employ three tailored strategies designed to precisely isolate the target user's data influence, minimizing collateral impact on unrelated users and enhancing unlearning efficiency. Subsequently, the generation stage utilizes an LLM, augmented with user profiles integrated into prompts, to reconstruct accurate and personalized recommendations without needing to retrain the entire base model. Experiments on three public datasets demonstrate that CRAGRU effectively unlearns targeted user data, significantly mitigating unlearning bias by preventing adverse impacts on non-target users, while maintaining recommendation performance comparable to fully trained original models. Our work highlights the promise of RAG-based architectures for building robust and privacy-preserving recommender systems. The source code is available at: https://github.com/zhanghaichao520/LLM_rec_unlearning.
Frequency Estimation of Evolving Data Under Local Differential Privacy
Collecting and analyzing evolving longitudinal data has become a common practice. One possible approach to protect the users' privacy in this context is to use local differential privacy (LDP) protocols, which ensure the privacy protection of all users even in the case of a breach or data misuse. Existing LDP data collection protocols such as Google's RAPPOR and Microsoft's dBitFlipPM can have longitudinal privacy linear to the domain size k, which is excessive for large domains, such as Internet domains. To solve this issue, in this paper we introduce a new LDP data collection protocol for longitudinal frequency monitoring named LOngitudinal LOcal HAshing (LOLOHA) with formal privacy guarantees. In addition, the privacy-utility trade-off of our protocol is only linear with respect to a reduced domain size 2leq g ll k. LOLOHA combines a domain reduction approach via local hashing with double randomization to minimize the privacy leakage incurred by data updates. As demonstrated by our theoretical analysis as well as our experimental evaluation, LOLOHA achieves a utility competitive to current state-of-the-art protocols, while substantially minimizing the longitudinal privacy budget consumption by up to k/g orders of magnitude.
Differential Privacy in Privacy-Preserving Big Data and Learning: Challenge and Opportunity
Differential privacy (DP) has become the de facto standard of privacy preservation due to its strong protection and sound mathematical foundation, which is widely adopted in different applications such as big data analysis, graph data process, machine learning, deep learning, and federated learning. Although DP has become an active and influential area, it is not the best remedy for all privacy problems in different scenarios. Moreover, there are also some misunderstanding, misuse, and great challenges of DP in specific applications. In this paper, we point out a series of limits and open challenges of corresponding research areas. Besides, we offer potentially new insights and avenues on combining differential privacy with other effective dimension reduction techniques and secure multiparty computing to clearly define various privacy models.
Deep Learning with Differential Privacy
Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.
Data Minimization at Inference Time
In domains with high stakes such as law, recruitment, and healthcare, learning models frequently rely on sensitive user data for inference, necessitating the complete set of features. This not only poses significant privacy risks for individuals but also demands substantial human effort from organizations to verify information accuracy. This paper asks whether it is necessary to use all input features for accurate predictions at inference time. The paper demonstrates that, in a personalized setting, individuals may only need to disclose a small subset of their features without compromising decision-making accuracy. The paper also provides an efficient sequential algorithm to determine the appropriate attributes for each individual to provide. Evaluations across various learning tasks show that individuals can potentially report as little as 10\% of their information while maintaining the same accuracy level as a model that employs the full set of user information.
MAGPIE: A dataset for Multi-AGent contextual PrIvacy Evaluation
The proliferation of LLM-based agents has led to increasing deployment of inter-agent collaboration for tasks like scheduling, negotiation, resource allocation etc. In such systems, privacy is critical, as agents often access proprietary tools and domain-specific databases requiring strict confidentiality. This paper examines whether LLM-based agents demonstrate an understanding of contextual privacy. And, if instructed, do these systems preserve inference time user privacy in non-adversarial multi-turn conversation. Existing benchmarks to evaluate contextual privacy in LLM-agents primarily assess single-turn, low-complexity tasks where private information can be easily excluded. We first present a benchmark - MAGPIE comprising 158 real-life high-stakes scenarios across 15 domains. These scenarios are designed such that complete exclusion of private data impedes task completion yet unrestricted information sharing could lead to substantial losses. We then evaluate the current state-of-the-art LLMs on (a) their understanding of contextually private data and (b) their ability to collaborate without violating user privacy. Empirical experiments demonstrate that current models, including GPT-4o and Claude-2.7-Sonnet, lack robust understanding of contextual privacy, misclassifying private data as shareable 25.2\% and 43.6\% of the time. In multi-turn conversations, these models disclose private information in 59.9\% and 50.5\% of cases even under explicit privacy instructions. Furthermore, multi-agent systems fail to complete tasks in 71\% of scenarios. These results underscore that current models are not aligned towards both contextual privacy preservation and collaborative task-solving.
Systematic Assessment of Tabular Data Synthesis Algorithms
Data synthesis has been advocated as an important approach for utilizing data while protecting data privacy. A large number of tabular data synthesis algorithms (which we call synthesizers) have been proposed. Some synthesizers satisfy Differential Privacy, while others aim to provide privacy in a heuristic fashion. A comprehensive understanding of the strengths and weaknesses of these synthesizers remains elusive due to drawbacks in evaluation metrics and missing head-to-head comparisons of newly developed synthesizers that take advantage of diffusion models and large language models with state-of-the-art marginal-based synthesizers. In this paper, we present a systematic evaluation framework for assessing tabular data synthesis algorithms. Specifically, we examine and critique existing evaluation metrics, and introduce a set of new metrics in terms of fidelity, privacy, and utility to address their limitations. Based on the proposed metrics, we also devise a unified objective for tuning, which can consistently improve the quality of synthetic data for all methods. We conducted extensive evaluations of 8 different types of synthesizers on 12 real-world datasets and identified some interesting findings, which offer new directions for privacy-preserving data synthesis.
Multi-Task Differential Privacy Under Distribution Skew
We study the problem of multi-task learning under user-level differential privacy, in which n users contribute data to m tasks, each involving a subset of users. One important aspect of the problem, that can significantly impact quality, is the distribution skew among tasks. Certain tasks may have much fewer data samples than others, making them more susceptible to the noise added for privacy. It is natural to ask whether algorithms can adapt to this skew to improve the overall utility. We give a systematic analysis of the problem, by studying how to optimally allocate a user's privacy budget among tasks. We propose a generic algorithm, based on an adaptive reweighting of the empirical loss, and show that when there is task distribution skew, this gives a quantifiable improvement of excess empirical risk. Experimental studies on recommendation problems that exhibit a long tail of small tasks, demonstrate that our methods significantly improve utility, achieving the state of the art on two standard benchmarks.
SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy
Machine learning (ML) models frequently rely on training data that may include sensitive or personal information, raising substantial privacy concerns. Legislative frameworks such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) have necessitated the development of strategies that preserve privacy while maintaining the utility of data. In this paper, we investigate the capability of Large Language Models (LLMs) to generate synthetic datasets integrated with Differential Privacy (DP) mechanisms, thereby enabling data-driven research and model training without direct exposure of sensitive information. Our approach incorporates DP-based noise injection methods, including Laplace and Gaussian distributions, into the data generation process. We then evaluate the utility of these DP-enhanced synthetic datasets by comparing the performance of ML models trained on them against models trained on the original data. To substantiate privacy guarantees, we assess the resilience of the generated synthetic data to membership inference attacks and related threats. The experimental results demonstrate that integrating DP within LLM-driven synthetic data generation offers a viable balance between privacy protection and data utility. This study provides a foundational methodology and insight into the privacy-preserving capabilities of LLMs, paving the way for compliant and effective ML research and applications.
Privacy-preserving Pedestrian Tracking using Distributed 3D LiDARs
The growing demand for intelligent environments unleashes an extraordinary cycle of privacy-aware applications that makes individuals' life more comfortable and safe. Examples of these applications include pedestrian tracking systems in large areas. Although the ubiquity of camera-based systems, they are not a preferable solution due to the vulnerability of leaking the privacy of pedestrians. In this paper, we introduce a novel privacy-preserving system for pedestrian tracking in smart environments using multiple distributed LiDARs of non-overlapping views. The system is designed to leverage LiDAR devices to track pedestrians in partially covered areas due to practical constraints, e.g., occlusion or cost. Therefore, the system uses the point cloud captured by different LiDARs to extract discriminative features that are used to train a metric learning model for pedestrian matching purposes. To boost the system's robustness, we leverage a probabilistic approach to model and adapt the dynamic mobility patterns of individuals and thus connect their sub-trajectories. We deployed the system in a large-scale testbed with 70 colorless LiDARs and conducted three different experiments. The evaluation result at the entrance hall confirms the system's ability to accurately track the pedestrians with a 0.98 F-measure even with zero-covered areas. This result highlights the promise of the proposed system as the next generation of privacy-preserving tracking means in smart environments.
Learning from End User Data with Shuffled Differential Privacy over Kernel Densities
We study a setting of collecting and learning from private data distributed across end users. In the shuffled model of differential privacy, the end users partially protect their data locally before sharing it, and their data is also anonymized during its collection to enhance privacy. This model has recently become a prominent alternative to central DP, which requires full trust in a central data curator, and local DP, where fully local data protection takes a steep toll on downstream accuracy. Our main technical result is a shuffled DP protocol for privately estimating the kernel density function of a distributed dataset, with accuracy essentially matching central DP. We use it to privately learn a classifier from the end user data, by learning a private density function per class. Moreover, we show that the density function itself can recover the semantic content of its class, despite having been learned in the absence of any unprotected data. Our experiments show the favorable downstream performance of our approach, and highlight key downstream considerations and trade-offs in a practical ML deployment of shuffled DP.
User-Entity Differential Privacy in Learning Natural Language Models
In this paper, we introduce a novel concept of user-entity differential privacy (UeDP) to provide formal privacy protection simultaneously to both sensitive entities in textual data and data owners in learning natural language models (NLMs). To preserve UeDP, we developed a novel algorithm, called UeDP-Alg, optimizing the trade-off between privacy loss and model utility with a tight sensitivity bound derived from seamlessly combining user and sensitive entity sampling processes. An extensive theoretical analysis and evaluation show that our UeDP-Alg outperforms baseline approaches in model utility under the same privacy budget consumption on several NLM tasks, using benchmark datasets.
Privacy-Preserving Deep Learning Using Deformable Operators for Secure Task Learning
In the era of cloud computing and data-driven applications, it is crucial to protect sensitive information to maintain data privacy, ensuring truly reliable systems. As a result, preserving privacy in deep learning systems has become a critical concern. Existing methods for privacy preservation rely on image encryption or perceptual transformation approaches. However, they often suffer from reduced task performance and high computational costs. To address these challenges, we propose a novel Privacy-Preserving framework that uses a set of deformable operators for secure task learning. Our method involves shuffling pixels during the analog-to-digital conversion process to generate visually protected data. Those are then fed into a well-known network enhanced with deformable operators. Using our approach, users can achieve equivalent performance to original images without additional training using a secret key. Moreover, our method enables access control against unauthorized users. Experimental results demonstrate the efficacy of our approach, showcasing its potential in cloud-based scenarios and privacy-sensitive applications.
TAN Without a Burn: Scaling Laws of DP-SGD
Differentially Private methods for training Deep Neural Networks (DNNs) have progressed recently, in particular with the use of massive batches and aggregated data augmentations for a large number of training steps. These techniques require much more computing resources than their non-private counterparts, shifting the traditional privacy-accuracy trade-off to a privacy-accuracy-compute trade-off and making hyper-parameter search virtually impossible for realistic scenarios. In this work, we decouple privacy analysis and experimental behavior of noisy training to explore the trade-off with minimal computational requirements. We first use the tools of R\'enyi Differential Privacy (RDP) to highlight that the privacy budget, when not overcharged, only depends on the total amount of noise (TAN) injected throughout training. We then derive scaling laws for training models with DP-SGD to optimize hyper-parameters with more than a 100times reduction in computational budget. We apply the proposed method on CIFAR-10 and ImageNet and, in particular, strongly improve the state-of-the-art on ImageNet with a +9 points gain in top-1 accuracy for a privacy budget epsilon=8.
Compliance Checking with NLI: Privacy Policies vs. Regulations
A privacy policy is a document that states how a company intends to handle and manage their customers' personal data. One of the problems that arises with these privacy policies is that their content might violate data privacy regulations. Because of the enormous number of privacy policies that exist, the only realistic way to check for legal inconsistencies in all of them is through an automated method. In this work, we use Natural Language Inference (NLI) techniques to compare privacy regulations against sections of privacy policies from a selection of large companies. Our NLI model uses pre-trained embeddings, along with BiLSTM in its attention mechanism. We tried two versions of our model: one that was trained on the Stanford Natural Language Inference (SNLI) and the second on the Multi-Genre Natural Language Inference (MNLI) dataset. We found that our test accuracy was higher on our model trained on the SNLI, but when actually doing NLI tasks on real world privacy policies, the model trained on MNLI generalized and performed much better.
Chasing Your Long Tails: Differentially Private Prediction in Health Care Settings
Machine learning models in health care are often deployed in settings where it is important to protect patient privacy. In such settings, methods for differentially private (DP) learning provide a general-purpose approach to learn models with privacy guarantees. Modern methods for DP learning ensure privacy through mechanisms that censor information judged as too unique. The resulting privacy-preserving models, therefore, neglect information from the tails of a data distribution, resulting in a loss of accuracy that can disproportionately affect small groups. In this paper, we study the effects of DP learning in health care. We use state-of-the-art methods for DP learning to train privacy-preserving models in clinical prediction tasks, including x-ray classification of images and mortality prediction in time series data. We use these models to perform a comprehensive empirical investigation of the tradeoffs between privacy, utility, robustness to dataset shift, and fairness. Our results highlight lesser-known limitations of methods for DP learning in health care, models that exhibit steep tradeoffs between privacy and utility, and models whose predictions are disproportionately influenced by large demographic groups in the training data. We discuss the costs and benefits of differentially private learning in health care.
Subject Membership Inference Attacks in Federated Learning
Privacy attacks on Machine Learning (ML) models often focus on inferring the existence of particular data points in the training data. However, what the adversary really wants to know is if a particular individual's (subject's) data was included during training. In such scenarios, the adversary is more likely to have access to the distribution of a particular subject than actual records. Furthermore, in settings like cross-silo Federated Learning (FL), a subject's data can be embodied by multiple data records that are spread across multiple organizations. Nearly all of the existing private FL literature is dedicated to studying privacy at two granularities -- item-level (individual data records), and user-level (participating user in the federation), neither of which apply to data subjects in cross-silo FL. This insight motivates us to shift our attention from the privacy of data records to the privacy of data subjects, also known as subject-level privacy. We propose two novel black-box attacks for subject membership inference, of which one assumes access to a model after each training round. Using these attacks, we estimate subject membership inference risk on real-world data for single-party models as well as FL scenarios. We find our attacks to be extremely potent, even without access to exact training records, and using the knowledge of membership for a handful of subjects. To better understand the various factors that may influence subject privacy risk in cross-silo FL settings, we systematically generate several hundred synthetic federation configurations, varying properties of the data, model design and training, and the federation itself. Finally, we investigate the effectiveness of Differential Privacy in mitigating this threat.
PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action
As language models (LMs) are widely utilized in personalized communication scenarios (e.g., sending emails, writing social media posts) and endowed with a certain level of agency, ensuring they act in accordance with the contextual privacy norms becomes increasingly critical. However, quantifying the privacy norm awareness of LMs and the emerging privacy risk in LM-mediated communication is challenging due to (1) the contextual and long-tailed nature of privacy-sensitive cases, and (2) the lack of evaluation approaches that capture realistic application scenarios. To address these challenges, we propose PrivacyLens, a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories, enabling multi-level evaluation of privacy leakage in LM agents' actions. We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds. Using this dataset, we reveal a discrepancy between LM performance in answering probing questions and their actual behavior when executing user instructions in an agent setup. State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions. We also demonstrate the dynamic nature of PrivacyLens by extending each seed into multiple trajectories to red-team LM privacy leakage risk. Dataset and code are available at https://github.com/SALT-NLP/PrivacyLens.
AI-in-the-Loop: Privacy Preserving Real-Time Scam Detection and Conversational Scambaiting by Leveraging LLMs and Federated Learning
Scams exploiting real-time social engineering -- such as phishing, impersonation, and phone fraud -- remain a persistent and evolving threat across digital platforms. Existing defenses are largely reactive, offering limited protection during active interactions. We propose a privacy-preserving, AI-in-the-loop framework that proactively detects and disrupts scam conversations in real time. The system combines instruction-tuned artificial intelligence with a safety-aware utility function that balances engagement with harm minimization, and employs federated learning to enable continual model updates without raw data sharing. Experimental evaluations show that the system produces fluent and engaging responses (perplexity as low as 22.3, engagement approx0.80), while human studies confirm significant gains in realism, safety, and effectiveness over strong baselines. In federated settings, models trained with FedAvg sustain up to 30 rounds while preserving high engagement (approx0.80), strong relevance (approx0.74), and low PII leakage (leq0.0085). Even with differential privacy, novelty and safety remain stable, indicating that robust privacy can be achieved without sacrificing performance. The evaluation of guard models (LlamaGuard, LlamaGuard2/3, MD-Judge) shows a straightforward pattern: stricter moderation settings reduce the chance of exposing personal information, but they also limit how much the model engages in conversation. In contrast, more relaxed settings allow longer and richer interactions, which improve scam detection, but at the cost of higher privacy risk. To our knowledge, this is the first framework to unify real-time scam-baiting, federated privacy preservation, and calibrated safety moderation into a proactive defense paradigm.
LDP-Feat: Image Features with Local Differential Privacy
Modern computer vision services often require users to share raw feature descriptors with an untrusted server. This presents an inherent privacy risk, as raw descriptors may be used to recover the source images from which they were extracted. To address this issue, researchers recently proposed privatizing image features by embedding them within an affine subspace containing the original feature as well as adversarial feature samples. In this paper, we propose two novel inversion attacks to show that it is possible to (approximately) recover the original image features from these embeddings, allowing us to recover privacy-critical image content. In light of such successes and the lack of theoretical privacy guarantees afforded by existing visual privacy methods, we further propose the first method to privatize image features via local differential privacy, which, unlike prior approaches, provides a guaranteed bound for privacy leakage regardless of the strength of the attacks. In addition, our method yields strong performance in visual localization as a downstream task while enjoying the privacy guarantee.
Unmasking the Reality of PII Masking Models: Performance Gaps and the Call for Accountability
Privacy Masking is a critical concept under data privacy involving anonymization and de-anonymization of personally identifiable information (PII). Privacy masking techniques rely on Named Entity Recognition (NER) approaches under NLP support in identifying and classifying named entities in each text. NER approaches, however, have several limitations including (a) content sensitivity including ambiguous, polysemic, context dependent or domain specific content, (b) phrasing variabilities including nicknames and alias, informal expressions, alternative representations, emerging expressions, evolving naming conventions and (c) formats or syntax variations, typos, misspellings. However, there are a couple of PII datasets that have been widely used by researchers and the open-source community to train models on PII detection or masking. These datasets have been used to train models including Piiranha and Starpii, which have been downloaded over 300k and 580k times on HuggingFace. We examine the quality of the PII masking by these models given the limitations of the datasets and of the NER approaches. We curate a dataset of 17K unique, semi-synthetic sentences containing 16 types of PII by compiling information from across multiple jurisdictions including India, U.K and U.S. We generate sentences (using language models) containing these PII at five different NER detection feature dimensions - (1) Basic Entity Recognition, (2) Contextual Entity Disambiguation, (3) NER in Noisy & Real-World Data, (4) Evolving & Novel Entities Detection and (5) Cross-Lingual or multi-lingual NER) and 1 in adversarial context. We present the results and exhibit the privacy exposure caused by such model use (considering the extent of lifetime downloads of these models). We conclude by highlighting the gaps in measuring performance of the models and the need for contextual disclosure in model cards for such models.
Automated Privacy Information Annotation in Large Language Model Interactions
Users interacting with large language models (LLMs) under their real identifiers often unknowingly risk disclosing private information. Automatically notifying users whether their queries leak privacy and which phrases leak what private information has therefore become a practical need. Existing privacy detection methods, however, were designed for different objectives and application scenarios, typically tagging personally identifiable information (PII) in anonymous content. In this work, to support the development and evaluation of privacy detection models for LLM interactions that are deployable on local user devices, we construct a large-scale multilingual dataset with 249K user queries and 154K annotated privacy phrases. In particular, we build an automated privacy annotation pipeline with cloud-based strong LLMs to automatically extract privacy phrases from dialogue datasets and annotate leaked information. We also design evaluation metrics at the levels of privacy leakage, extracted privacy phrase, and privacy information. We further establish baseline methods using light-weight LLMs with both tuning-free and tuning-based methods, and report a comprehensive evaluation of their performance. Evaluation results reveal a gap between current performance and the requirements of real-world LLM applications, motivating future research into more effective local privacy detection methods grounded in our dataset.
Does Learning Require Memorization? A Short Tale about a Long Tail
State-of-the-art results on image recognition tasks are achieved using over-parameterized learning algorithms that (nearly) perfectly fit the training set and are known to fit well even random labels. This tendency to memorize the labels of the training data is not explained by existing theoretical analyses. Memorization of the training data also presents significant privacy risks when the training data contains sensitive personal information and thus it is important to understand whether such memorization is necessary for accurate learning. We provide the first conceptual explanation and a theoretical model for this phenomenon. Specifically, we demonstrate that for natural data distributions memorization of labels is necessary for achieving close-to-optimal generalization error. Crucially, even labels of outliers and noisy labels need to be memorized. The model is motivated and supported by the results of several recent empirical works. In our model, data is sampled from a mixture of subpopulations and our results show that memorization is necessary whenever the distribution of subpopulation frequencies is long-tailed. Image and text data is known to be long-tailed and therefore our results establish a formal link between these empirical phenomena. Our results allow to quantify the cost of limiting memorization in learning and explain the disparate effects that privacy and model compression have on different subgroups.
Forget Unlearning: Towards True Data-Deletion in Machine Learning
Unlearning algorithms aim to remove deleted data's influence from trained models at a cost lower than full retraining. However, prior guarantees of unlearning in literature are flawed and don't protect the privacy of deleted records. We show that when users delete their data as a function of published models, records in a database become interdependent. So, even retraining a fresh model after deletion of a record doesn't ensure its privacy. Secondly, unlearning algorithms that cache partial computations to speed up the processing can leak deleted information over a series of releases, violating the privacy of deleted records in the long run. To address these, we propose a sound deletion guarantee and show that the privacy of existing records is necessary for the privacy of deleted records. Under this notion, we propose an accurate, computationally efficient, and secure machine unlearning algorithm based on noisy gradient descent.
Scaling Laws for Differentially Private Language Models
Scaling laws have emerged as important components of large language model (LLM) training as they can predict performance gains through scale, and provide guidance on important hyper-parameter choices that would otherwise be expensive. LLMs also rely on large, high-quality training datasets, like those sourced from (sometimes sensitive) user data. Training models on this sensitive user data requires careful privacy protections like differential privacy (DP). However, the dynamics of DP training are significantly different, and consequently their scaling laws are not yet fully understood. In this work, we establish scaling laws that accurately model the intricacies of DP LLM training, providing a complete picture of the compute-privacy-utility tradeoffs and the optimal training configurations in many settings.
Learning to Attack: Uncovering Privacy Risks in Sequential Data Releases
Privacy concerns have become increasingly critical in modern AI and data science applications, where sensitive information is collected, analyzed, and shared across diverse domains such as healthcare, finance, and mobility. While prior research has focused on protecting privacy in a single data release, many real-world systems operate under sequential or continuous data publishing, where the same or related data are released over time. Such sequential disclosures introduce new vulnerabilities, as temporal correlations across releases may enable adversaries to infer sensitive information that remains hidden in any individual release. In this paper, we investigate whether an attacker can compromise privacy in sequential data releases by exploiting dependencies between consecutive publications, even when each individual release satisfies standard privacy guarantees. To this end, we propose a novel attack model that captures these sequential dependencies by integrating a Hidden Markov Model with a reinforcement learning-based bi-directional inference mechanism. This enables the attacker to leverage both earlier and later observations in the sequence to infer private information. We instantiate our framework in the context of trajectory data, demonstrating how an adversary can recover sensitive locations from sequential mobility datasets. Extensive experiments on Geolife, Porto Taxi, and SynMob datasets show that our model consistently outperforms baseline approaches that treat each release independently. The results reveal a fundamental privacy risk inherent to sequential data publishing, where individually protected releases can collectively leak sensitive information when analyzed temporally. These findings underscore the need for new privacy-preserving frameworks that explicitly model temporal dependencies, such as time-aware differential privacy or sequential data obfuscation strategies.
Controlling the Extraction of Memorized Data from Large Language Models via Prompt-Tuning
Large Language Models (LLMs) are known to memorize significant portions of their training data. Parts of this memorized content have been shown to be extractable by simply querying the model, which poses a privacy risk. We present a novel approach which uses prompt-tuning to control the extraction rates of memorized content in LLMs. We present two prompt training strategies to increase and decrease extraction rates, which correspond to an attack and a defense, respectively. We demonstrate the effectiveness of our techniques by using models from the GPT-Neo family on a public benchmark. For the 1.3B parameter GPT-Neo model, our attack yields a 9.3 percentage point increase in extraction rate compared to our baseline. Our defense can be tuned to achieve different privacy-utility trade-offs by a user-specified hyperparameter. We achieve an extraction rate reduction of up to 97.7% relative to our baseline, with a perplexity increase of 16.9%.
Privacy-preserving Optics for Enhancing Protection in Face De-identification
The modern surge in camera usage alongside widespread computer vision technology applications poses significant privacy and security concerns. Current artificial intelligence (AI) technologies aid in recognizing relevant events and assisting in daily tasks in homes, offices, hospitals, etc. The need to access or process personal information for these purposes raises privacy concerns. While software-level solutions like face de-identification provide a good privacy/utility trade-off, they present vulnerabilities to sniffing attacks. In this paper, we propose a hardware-level face de-identification method to solve this vulnerability. Specifically, our approach first learns an optical encoder along with a regression model to obtain a face heatmap while hiding the face identity from the source image. We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input. We validate our approach with extensive simulations and hardware experiments.
Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models
Knowledge distillation in neural networks refers to compressing a large model or dataset into a smaller version of itself. We introduce Privacy Distillation, a framework that allows a text-to-image generative model to teach another model without exposing it to identifiable data. Here, we are interested in the privacy issue faced by a data provider who wishes to share their data via a multimodal generative model. A question that immediately arises is ``How can a data provider ensure that the generative model is not leaking identifiable information about a patient?''. Our solution consists of (1) training a first diffusion model on real data (2) generating a synthetic dataset using this model and filtering it to exclude images with a re-identifiability risk (3) training a second diffusion model on the filtered synthetic data only. We showcase that datasets sampled from models trained with privacy distillation can effectively reduce re-identification risk whilst maintaining downstream performance.
MUSE: Machine Unlearning Six-Way Evaluation for Language Models
Language models (LMs) are trained on vast amounts of text data, which may include private and copyrighted content. Data owners may request the removal of their data from a trained model due to privacy or copyright concerns. However, exactly unlearning only these datapoints (i.e., retraining with the data removed) is intractable in modern-day models. This has led to the development of many approximate unlearning algorithms. The evaluation of the efficacy of these algorithms has traditionally been narrow in scope, failing to precisely quantify the success and practicality of the algorithm from the perspectives of both the model deployers and the data owners. We address this issue by proposing MUSE, a comprehensive machine unlearning evaluation benchmark that enumerates six diverse desirable properties for unlearned models: (1) no verbatim memorization, (2) no knowledge memorization, (3) no privacy leakage, (4) utility preservation on data not intended for removal, (5) scalability with respect to the size of removal requests, and (6) sustainability over sequential unlearning requests. Using these criteria, we benchmark how effectively eight popular unlearning algorithms on 7B-parameter LMs can unlearn Harry Potter books and news articles. Our results demonstrate that most algorithms can prevent verbatim memorization and knowledge memorization to varying degrees, but only one algorithm does not lead to severe privacy leakage. Furthermore, existing algorithms fail to meet deployer's expectations because they often degrade general model utility and also cannot sustainably accommodate successive unlearning requests or large-scale content removal. Our findings identify key issues with the practicality of existing unlearning algorithms on language models, and we release our benchmark to facilitate further evaluations: muse-bench.github.io
Visualising Personal Data Flows: Insights from a Case Study of Booking.com
Commercial organisations are holding and processing an ever-increasing amount of personal data. Policies and laws are continually changing to require these companies to be more transparent regarding the collection, storage, processing and sharing of this data. This paper reports our work of taking Booking.com as a case study to visualise personal data flows extracted from their privacy policy. By showcasing how the company shares its consumers' personal data, we raise questions and extend discussions on the challenges and limitations of using privacy policies to inform online users about the true scale and the landscape of personal data flows. This case study can inform us about future research on more data flow-oriented privacy policy analysis and on the construction of a more comprehensive ontology on personal data flows in complicated business ecosystems.
FedMentor: Domain-Aware Differential Privacy for Heterogeneous Federated LLMs in Mental Health
Privacy-preserving adaptation of Large Language Models (LLMs) in sensitive domains (e.g., mental health) requires balancing strict confidentiality with model utility and safety. We propose FedMentor, a federated fine-tuning framework that integrates Low-Rank Adaptation (LoRA) and domain-aware Differential Privacy (DP) to meet per-domain privacy budgets while maintaining performance. Each client (domain) applies a custom DP noise scale proportional to its data sensitivity, and the server adaptively reduces noise when utility falls below a threshold. In experiments on three mental health datasets, we show that FedMentor improves safety over standard Federated Learning without privacy, raising safe output rates by up to three points and lowering toxicity, while maintaining utility (BERTScore F1 and ROUGE-L) within 0.5% of the non-private baseline and close to the centralized upper bound. The framework scales to backbones with up to 1.7B parameters on single-GPU clients, requiring < 173 MB of communication per round. FedMentor demonstrates a practical approach to privately fine-tune LLMs for safer deployments in healthcare and other sensitive fields.
Privacy and Utility Preserving Sensor-Data Transformations
Sensitive inferences and user re-identification are major threats to privacy when raw sensor data from wearable or portable devices are shared with cloud-assisted applications. To mitigate these threats, we propose mechanisms to transform sensor data before sharing them with applications running on users' devices. These transformations aim at eliminating patterns that can be used for user re-identification or for inferring potentially sensitive activities, while introducing a minor utility loss for the target application (or task). We show that, on gesture and activity recognition tasks, we can prevent inference of potentially sensitive activities while keeping the reduction in recognition accuracy of non-sensitive activities to less than 5 percentage points. We also show that we can reduce the accuracy of user re-identification and of the potential inference of gender to the level of a random guess, while keeping the accuracy of activity recognition comparable to that obtained on the original data.
Private and Reliable Neural Network Inference
Reliable neural networks (NNs) provide important inference-time reliability guarantees such as fairness and robustness. Complementarily, privacy-preserving NN inference protects the privacy of client data. So far these two emerging areas have been largely disconnected, yet their combination will be increasingly important. In this work, we present the first system which enables privacy-preserving inference on reliable NNs. Our key idea is to design efficient fully homomorphic encryption (FHE) counterparts for the core algorithmic building blocks of randomized smoothing, a state-of-the-art technique for obtaining reliable models. The lack of required control flow in FHE makes this a demanding task, as na\"ive solutions lead to unacceptable runtime. We employ these building blocks to enable privacy-preserving NN inference with robustness and fairness guarantees in a system called Phoenix. Experimentally, we demonstrate that Phoenix achieves its goals without incurring prohibitive latencies. To our knowledge, this is the first work which bridges the areas of client data privacy and reliability guarantees for NNs.
MAGPIE: A benchmark for Multi-AGent contextual PrIvacy Evaluation
A core challenge for autonomous LLM agents in collaborative settings is balancing robust privacy understanding and preservation alongside task efficacy. Existing privacy benchmarks only focus on simplistic, single-turn interactions where private information can be trivially omitted without affecting task outcomes. In this paper, we introduce MAGPIE (Multi-AGent contextual PrIvacy Evaluation), a novel benchmark of 200 high-stakes tasks designed to evaluate privacy understanding and preservation in multi-agent collaborative, non-adversarial scenarios. MAGPIE integrates private information as essential for task resolution, forcing agents to balance effective collaboration with strategic information control. Our evaluation reveals that state-of-the-art agents, including GPT-5 and Gemini 2.5-Pro, exhibit significant privacy leakage, with Gemini 2.5-Pro leaking up to 50.7% and GPT-5 up to 35.1% of the sensitive information even when explicitly instructed not to. Moreover, these agents struggle to achieve consensus or task completion and often resort to undesirable behaviors such as manipulation and power-seeking (e.g., Gemini 2.5-Pro demonstrating manipulation in 38.2% of the cases). These findings underscore that current LLM agents lack robust privacy understanding and are not yet adequately aligned to simultaneously preserve privacy and maintain effective collaboration in complex environments.
zPROBE: Zero Peek Robustness Checks for Federated Learning
Privacy-preserving federated learning allows multiple users to jointly train a model with coordination of a central server. The server only learns the final aggregation result, thus the users' (private) training data is not leaked from the individual model updates. However, keeping the individual updates private allows malicious users to perform Byzantine attacks and degrade the accuracy without being detected. Best existing defenses against Byzantine workers rely on robust rank-based statistics, e.g., median, to find malicious updates. However, implementing privacy-preserving rank-based statistics is nontrivial and not scalable in the secure domain, as it requires sorting all individual updates. We establish the first private robustness check that uses high break point rank-based statistics on aggregated model updates. By exploiting randomized clustering, we significantly improve the scalability of our defense without compromising privacy. We leverage our statistical bounds in zero-knowledge proofs to detect and remove malicious updates without revealing the private user updates. Our novel framework, zPROBE, enables Byzantine resilient and secure federated learning. Empirical evaluations demonstrate that zPROBE provides a low overhead solution to defend against state-of-the-art Byzantine attacks while preserving privacy.
Searching for Privacy Risks in LLM Agents via Simulation
The widespread deployment of LLM-based agents is likely to introduce a critical privacy threat: malicious agents that proactively engage others in multi-turn interactions to extract sensitive information. These dynamic dialogues enable adaptive attack strategies that can cause severe privacy violations, yet their evolving nature makes it difficult to anticipate and discover sophisticated vulnerabilities manually. To tackle this problem, we present a search-based framework that alternates between improving attacker and defender instructions by simulating privacy-critical agent interactions. Each simulation involves three roles: data subject, data sender, and data recipient. While the data subject's behavior is fixed, the attacker (data recipient) attempts to extract sensitive information from the defender (data sender) through persistent and interactive exchanges. To explore this interaction space efficiently, our search algorithm employs LLMs as optimizers, using parallel search with multiple threads and cross-thread propagation to analyze simulation trajectories and iteratively propose new instructions. Through this process, we find that attack strategies escalate from simple direct requests to sophisticated multi-turn tactics such as impersonation and consent forgery, while defenses advance from rule-based constraints to identity-verification state machines. The discovered attacks and defenses transfer across diverse scenarios and backbone models, demonstrating strong practical utility for building privacy-aware agents.
SoK: Demystifying Privacy Enhancing Technologies Through the Lens of Software Developers
In the absence of data protection measures, software applications lead to privacy breaches, posing threats to end-users and software organisations. Privacy Enhancing Technologies (PETs) are technical measures that protect personal data, thus minimising such privacy breaches. However, for software applications to deliver data protection using PETs, software developers should actively and correctly incorporate PETs into the software they develop. Therefore, to uncover ways to encourage and support developers to embed PETs into software, this Systematic Literature Review (SLR) analyses 39 empirical studies on developers' privacy practices. It reports the usage of six PETs in software application scenarios. Then, it discusses challenges developers face when integrating PETs into software, ranging from intrinsic challenges, such as the unawareness of PETs, to extrinsic challenges, such as the increased development cost. Next, the SLR presents the existing solutions to address these challenges, along with the limitations of the solutions. Further, it outlines future research avenues to better understand PETs from a developer perspective and minimise the challenges developers face when incorporating PETs into software.
Analyzing Leakage of Personally Identifiable Information in Language Models
Language Models (LMs) have been shown to leak information about training data through sentence-level membership inference and reconstruction attacks. Understanding the risk of LMs leaking Personally Identifiable Information (PII) has received less attention, which can be attributed to the false assumption that dataset curation techniques such as scrubbing are sufficient to prevent PII leakage. Scrubbing techniques reduce but do not prevent the risk of PII leakage: in practice scrubbing is imperfect and must balance the trade-off between minimizing disclosure and preserving the utility of the dataset. On the other hand, it is unclear to which extent algorithmic defenses such as differential privacy, designed to guarantee sentence- or user-level privacy, prevent PII disclosure. In this work, we introduce rigorous game-based definitions for three types of PII leakage via black-box extraction, inference, and reconstruction attacks with only API access to an LM. We empirically evaluate the attacks against GPT-2 models fine-tuned with and without defenses in three domains: case law, health care, and e-mails. Our main contributions are (i) novel attacks that can extract up to 10times more PII sequences than existing attacks, (ii) showing that sentence-level differential privacy reduces the risk of PII disclosure but still leaks about 3% of PII sequences, and (iii) a subtle connection between record-level membership inference and PII reconstruction. Code to reproduce all experiments in the paper is available at https://github.com/microsoft/analysing_pii_leakage.
The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration
As large language models (LLMs) become integral to multi-agent systems, new privacy risks emerge that extend beyond memorization, direct inference, or single-turn evaluations. In particular, seemingly innocuous responses, when composed across interactions, can cumulatively enable adversaries to recover sensitive information, a phenomenon we term compositional privacy leakage. We present the first systematic study of such compositional privacy leaks and possible mitigation methods in multi-agent LLM systems. First, we develop a framework that models how auxiliary knowledge and agent interactions jointly amplify privacy risks, even when each response is benign in isolation. Next, to mitigate this, we propose and evaluate two defense strategies: (1) Theory-of-Mind defense (ToM), where defender agents infer a questioner's intent by anticipating how their outputs may be exploited by adversaries, and (2) Collaborative Consensus Defense (CoDef), where responder agents collaborate with peers who vote based on a shared aggregated state to restrict sensitive information spread. Crucially, we balance our evaluation across compositions that expose sensitive information and compositions that yield benign inferences. Our experiments quantify how these defense strategies differ in balancing the privacy-utility trade-off. We find that while chain-of-thought alone offers limited protection to leakage (~39% sensitive blocking rate), our ToM defense substantially improves sensitive query blocking (up to 97%) but can reduce benign task success. CoDef achieves the best balance, yielding the highest Balanced Outcome (79.8%), highlighting the benefit of combining explicit reasoning with defender collaboration. Together, our results expose a new class of risks in collaborative LLM deployments and provide actionable insights for designing safeguards against compositional, context-driven privacy leakage.
Privacy-Preserving Distributed Learning Framework for 6G Telecom Ecosystems
We present a privacy-preserving distributed learning framework for telecom ecosystems in the 6G-era that enables the vision of shared ownership and governance of ML models, while protecting the privacy of the data owners. We demonstrate its benefits by applying it to the use-case of Quality of Transmission (QoT) estimation in multi-domain multi-vendor optical networks, where no data of individual domains is shared with the network management system (NMS).
Privacy-Aware Visual Language Models
This paper aims to advance our understanding of how Visual Language Models (VLMs) handle privacy-sensitive information, a crucial concern as these technologies become integral to everyday life. To this end, we introduce a new benchmark PrivBench, which contains images from 8 sensitive categories such as passports, or fingerprints. We evaluate 10 state-of-the-art VLMs on this benchmark and observe a generally limited understanding of privacy, highlighting a significant area for model improvement. Based on this we introduce PrivTune, a new instruction-tuning dataset aimed at equipping VLMs with knowledge about visual privacy. By tuning two pretrained VLMs, TinyLLaVa and MiniGPT-v2, on this small dataset, we achieve strong gains in their ability to recognize sensitive content, outperforming even GPT4-V. At the same time, we show that privacy-tuning only minimally affects the VLMs performance on standard benchmarks such as VQA. Overall, this paper lays out a crucial challenge for making VLMs effective in handling real-world data safely and provides a simple recipe that takes the first step towards building privacy-aware VLMs.
Controlled Generation for Private Synthetic Text
Text anonymization is essential for responsibly developing and deploying AI in high-stakes domains such as healthcare, social services, and law. In this work, we propose a novel methodology for privacy-preserving synthetic text generation that leverages the principles of de-identification and the Hiding In Plain Sight (HIPS) theory. Our approach introduces entity-aware control codes to guide controllable generation using either in-context learning (ICL) or prefix tuning. The ICL variant ensures privacy levels consistent with the underlying de-identification system, while the prefix tuning variant incorporates a custom masking strategy and loss function to support scalable, high-quality generation. Experiments on legal and clinical datasets demonstrate that our method achieves a strong balance between privacy protection and utility, offering a practical and effective solution for synthetic text generation in sensitive domains.
Faceless Person Recognition; Privacy Implications in Social Media
As we shift more of our lives into the virtual domain, the volume of data shared on the web keeps increasing and presents a threat to our privacy. This works contributes to the understanding of privacy implications of such data sharing by analysing how well people are recognisable in social media data. To facilitate a systematic study we define a number of scenarios considering factors such as how many heads of a person are tagged and if those heads are obfuscated or not. We propose a robust person recognition system that can handle large variations in pose and clothing, and can be trained with few training samples. Our results indicate that a handful of images is enough to threaten users' privacy, even in the presence of obfuscation. We show detailed experimental results, and discuss their implications.
Can Language Models be Instructed to Protect Personal Information?
Large multimodal language models have proven transformative in numerous applications. However, these models have been shown to memorize and leak pre-training data, raising serious user privacy and information security concerns. While data leaks should be prevented, it is also crucial to examine the trade-off between the privacy protection and model utility of proposed approaches. In this paper, we introduce PrivQA -- a multimodal benchmark to assess this privacy/utility trade-off when a model is instructed to protect specific categories of personal information in a simulated scenario. We also propose a technique to iteratively self-moderate responses, which significantly improves privacy. However, through a series of red-teaming experiments, we find that adversaries can also easily circumvent these protections with simple jailbreaking methods through textual and/or image inputs. We believe PrivQA has the potential to support the development of new models with improved privacy protections, as well as the adversarial robustness of these protections. We release the entire PrivQA dataset at https://llm-access-control.github.io/.
Differentially Private Multivariate Time Series Forecasting of Aggregated Human Mobility With Deep Learning: Input or Gradient Perturbation?
This paper investigates the problem of forecasting multivariate aggregated human mobility while preserving the privacy of the individuals concerned. Differential privacy, a state-of-the-art formal notion, has been used as the privacy guarantee in two different and independent steps when training deep learning models. On one hand, we considered gradient perturbation, which uses the differentially private stochastic gradient descent algorithm to guarantee the privacy of each time series sample in the learning stage. On the other hand, we considered input perturbation, which adds differential privacy guarantees in each sample of the series before applying any learning. We compared four state-of-the-art recurrent neural networks: Long Short-Term Memory, Gated Recurrent Unit, and their Bidirectional architectures, i.e., Bidirectional-LSTM and Bidirectional-GRU. Extensive experiments were conducted with a real-world multivariate mobility dataset, which we published openly along with this paper. As shown in the results, differentially private deep learning models trained under gradient or input perturbation achieve nearly the same performance as non-private deep learning models, with loss in performance varying between 0.57% to 2.8%. The contribution of this paper is significant for those involved in urban planning and decision-making, providing a solution to the human mobility multivariate forecast problem through differentially private deep learning models.
Privacy Preserving Prompt Engineering: A Survey
Pre-trained language models (PLMs) have demonstrated significant proficiency in solving a wide range of general natural language processing (NLP) tasks. Researchers have observed a direct correlation between the performance of these models and their sizes. As a result, the sizes of these models have notably expanded in recent years, persuading researchers to adopt the term large language models (LLMs) to characterize the larger-sized PLMs. The size expansion comes with a distinct capability called in-context learning (ICL), which represents a special form of prompting and allows the models to be utilized through the presentation of demonstration examples without modifications to the model parameters. Although interesting, privacy concerns have become a major obstacle in its widespread usage. Multiple studies have examined the privacy risks linked to ICL and prompting in general, and have devised techniques to alleviate these risks. Thus, there is a necessity to organize these mitigation techniques for the benefit of the community. This survey provides a systematic overview of the privacy protection methods employed during ICL and prompting in general. We review, analyze, and compare different methods under this paradigm. Furthermore, we provide a summary of the resources accessible for the development of these frameworks. Finally, we discuss the limitations of these frameworks and offer a detailed examination of the promising areas that necessitate further exploration.
Lessons from the AdKDD'21 Privacy-Preserving ML Challenge
Designing data sharing mechanisms providing performance and strong privacy guarantees is a hot topic for the Online Advertising industry. Namely, a prominent proposal discussed under the Improving Web Advertising Business Group at W3C only allows sharing advertising signals through aggregated, differentially private reports of past displays. To study this proposal extensively, an open Privacy-Preserving Machine Learning Challenge took place at AdKDD'21, a premier workshop on Advertising Science with data provided by advertising company Criteo. In this paper, we describe the challenge tasks, the structure of the available datasets, report the challenge results, and enable its full reproducibility. A key finding is that learning models on large, aggregated data in the presence of a small set of unaggregated data points can be surprisingly efficient and cheap. We also run additional experiments to observe the sensitivity of winning methods to different parameters such as privacy budget or quantity of available privileged side information. We conclude that the industry needs either alternate designs for private data sharing or a breakthrough in learning with aggregated data only to keep ad relevance at a reasonable level.
Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory
The interactive use of large language models (LLMs) in AI assistants (at work, home, etc.) introduces a new set of inference-time privacy risks: LLMs are fed different types of information from multiple sources in their inputs and are expected to reason about what to share in their outputs, for what purpose and with whom, within a given context. In this work, we draw attention to the highly critical yet overlooked notion of contextual privacy by proposing ConfAIde, a benchmark designed to identify critical weaknesses in the privacy reasoning capabilities of instruction-tuned LLMs. Our experiments show that even the most capable models such as GPT-4 and ChatGPT reveal private information in contexts that humans would not, 39% and 57% of the time, respectively. This leakage persists even when we employ privacy-inducing prompts or chain-of-thought reasoning. Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation
Federated learning (FL) allows clients to collaboratively train a global model without sharing their local data with a server. However, clients' contributions to the server can still leak sensitive information. Differential privacy (DP) addresses such leakage by providing formal privacy guarantees, with mechanisms that add randomness to the clients' contributions. The randomness makes it infeasible to train large transformer-based models, common in modern federated learning systems. In this work, we empirically evaluate the practicality of fine-tuning large scale on-device transformer-based models with differential privacy in a federated learning system. We conduct comprehensive experiments on various system properties for tasks spanning a multitude of domains: speech recognition, computer vision (CV) and natural language understanding (NLU). Our results show that full fine-tuning under differentially private federated learning (DP-FL) generally leads to huge performance degradation which can be alleviated by reducing the dimensionality of contributions through parameter-efficient fine-tuning (PEFT). Our benchmarks of existing DP-PEFT methods show that DP-Low-Rank Adaptation (DP-LoRA) consistently outperforms other methods. An even more promising approach, DyLoRA, which makes the low rank variable, when naively combined with FL would straightforwardly break differential privacy. We therefore propose an adaptation method that can be combined with differential privacy and call it DP-DyLoRA. Finally, we are able to reduce the accuracy degradation and word error rate (WER) increase due to DP to less than 2% and 7% respectively with 1 million clients and a stringent privacy budget of ε=2.
Node-Level Differentially Private Graph Neural Networks
Graph Neural Networks (GNNs) are a popular technique for modelling graph-structured data and computing node-level representations via aggregation of information from the neighborhood of each node. However, this aggregation implies an increased risk of revealing sensitive information, as a node can participate in the inference for multiple nodes. This implies that standard privacy-preserving machine learning techniques, such as differentially private stochastic gradient descent (DP-SGD) - which are designed for situations where each data point participates in the inference for one point only - either do not apply, or lead to inaccurate models. In this work, we formally define the problem of learning GNN parameters with node-level privacy, and provide an algorithmic solution with a strong differential privacy guarantee. We employ a careful sensitivity analysis and provide a non-trivial extension of the privacy-by-amplification technique to the GNN setting. An empirical evaluation on standard benchmark datasets demonstrates that our method is indeed able to learn accurate privacy-preserving GNNs which outperform both private and non-private methods that completely ignore graph information.
EgoBlur: Responsible Innovation in Aria
Project Aria pushes the frontiers of Egocentric AI with large-scale real-world data collection using purposely designed glasses with privacy first approach. To protect the privacy of bystanders being recorded by the glasses, our research protocols are designed to ensure recorded video is processed by an AI anonymization model that removes bystander faces and vehicle license plates. Detected face and license plate regions are processed with a Gaussian blur such that these personal identification information (PII) regions are obscured. This process helps to ensure that anonymized versions of the video is retained for research purposes. In Project Aria, we have developed a state-of-the-art anonymization system EgoBlur. In this paper, we present extensive analysis of EgoBlur on challenging datasets comparing its performance with other state-of-the-art systems from industry and academia including extensive Responsible AI analysis on recently released Casual Conversations V2 dataset.
Disparate Impact on Group Accuracy of Linearization for Private Inference
Ensuring privacy-preserving inference on cryptographically secure data is a well-known computational challenge. To alleviate the bottleneck of costly cryptographic computations in non-linear activations, recent methods have suggested linearizing a targeted portion of these activations in neural networks. This technique results in significantly reduced runtimes with often negligible impacts on accuracy. In this paper, we demonstrate that such computational benefits may lead to increased fairness costs. Specifically, we find that reducing the number of ReLU activations disproportionately decreases the accuracy for minority groups compared to majority groups. To explain these observations, we provide a mathematical interpretation under restricted assumptions about the nature of the decision boundary, while also showing the prevalence of this problem across widely used datasets and architectures. Finally, we show how a simple procedure altering the fine-tuning step for linearized models can serve as an effective mitigation strategy.
Mind the Third Eye! Benchmarking Privacy Awareness in MLLM-powered Smartphone Agents
Smartphones bring significant convenience to users but also enable devices to extensively record various types of personal information. Existing smartphone agents powered by Multimodal Large Language Models (MLLMs) have achieved remarkable performance in automating different tasks. However, as the cost, these agents are granted substantial access to sensitive users' personal information during this operation. To gain a thorough understanding of the privacy awareness of these agents, we present the first large-scale benchmark encompassing 7,138 scenarios to the best of our knowledge. In addition, for privacy context in scenarios, we annotate its type (e.g., Account Credentials), sensitivity level, and location. We then carefully benchmark seven available mainstream smartphone agents. Our results demonstrate that almost all benchmarked agents show unsatisfying privacy awareness (RA), with performance remaining below 60% even with explicit hints. Overall, closed-source agents show better privacy ability than open-source ones, and Gemini 2.0-flash achieves the best, achieving an RA of 67%. We also find that the agents' privacy detection capability is highly related to scenario sensitivity level, i.e., the scenario with a higher sensitivity level is typically more identifiable. We hope the findings enlighten the research community to rethink the unbalanced utility-privacy tradeoff about smartphone agents. Our code and benchmark are available at https://zhixin-l.github.io/SAPA-Bench.
Why Is Public Pretraining Necessary for Private Model Training?
In the privacy-utility tradeoff of a model trained on benchmark language and vision tasks, remarkable improvements have been widely reported with the use of pretraining on publicly available data. This is in part due to the benefits of transfer learning, which is the standard motivation for pretraining in non-private settings. However, the stark contrast in the improvement achieved through pretraining under privacy compared to non-private settings suggests that there may be a deeper, distinct cause driving these gains. To explain this phenomenon, we hypothesize that the non-convex loss landscape of a model training necessitates an optimization algorithm to go through two phases. In the first, the algorithm needs to select a good "basin" in the loss landscape. In the second, the algorithm solves an easy optimization within that basin. The former is a harder problem to solve with private data, while the latter is harder to solve with public data due to a distribution shift or data scarcity. Guided by this intuition, we provide theoretical constructions that provably demonstrate the separation between private training with and without public pretraining. Further, systematic experiments on CIFAR10 and LibriSpeech provide supporting evidence for our hypothesis.
NullFace: Training-Free Localized Face Anonymization
Privacy concerns around ever increasing number of cameras are increasing in today's digital age. Although existing anonymization methods are able to obscure identity information, they often struggle to preserve the utility of the images. In this work, we introduce a training-free method for face anonymization that preserves key non-identity-related attributes. Our approach utilizes a pre-trained text-to-image diffusion model without requiring optimization or training. It begins by inverting the input image to recover its initial noise. The noise is then denoised through an identity-conditioned diffusion process, where modified identity embeddings ensure the anonymized face is distinct from the original identity. Our approach also supports localized anonymization, giving users control over which facial regions are anonymized or kept intact. Comprehensive evaluations against state-of-the-art methods show our approach excels in anonymization, attribute preservation, and image quality. Its flexibility, robustness, and practicality make it well-suited for real-world applications. Code and data can be found at https://github.com/hanweikung/nullface .
Post-processing Private Synthetic Data for Improving Utility on Selected Measures
Existing private synthetic data generation algorithms are agnostic to downstream tasks. However, end users may have specific requirements that the synthetic data must satisfy. Failure to meet these requirements could significantly reduce the utility of the data for downstream use. We introduce a post-processing technique that improves the utility of the synthetic data with respect to measures selected by the end user, while preserving strong privacy guarantees and dataset quality. Our technique involves resampling from the synthetic data to filter out samples that do not meet the selected utility measures, using an efficient stochastic first-order algorithm to find optimal resampling weights. Through comprehensive numerical experiments, we demonstrate that our approach consistently improves the utility of synthetic data across multiple benchmark datasets and state-of-the-art synthetic data generation algorithms.
Comparing Feature-based and Context-aware Approaches to PII Generalization Level Prediction
Protecting Personal Identifiable Information (PII) in text data is crucial for privacy, but current PII generalization methods face challenges such as uneven data distributions and limited context awareness. To address these issues, we propose two approaches: a feature-based method using machine learning to improve performance on structured inputs, and a novel context-aware framework that considers the broader context and semantic relationships between the original text and generalized candidates. The context-aware approach employs Multilingual-BERT for text representation, functional transformations, and mean squared error scoring to evaluate candidates. Experiments on the WikiReplace dataset demonstrate the effectiveness of both methods, with the context-aware approach outperforming the feature-based one across different scales. This work contributes to advancing PII generalization techniques by highlighting the importance of feature selection, ensemble learning, and incorporating contextual information for better privacy protection in text anonymization.
Extracting Training Data from Diffusion Models
Image diffusion models such as DALL-E 2, Imagen, and Stable Diffusion have attracted significant attention due to their ability to generate high-quality synthetic images. In this work, we show that diffusion models memorize individual images from their training data and emit them at generation time. With a generate-and-filter pipeline, we extract over a thousand training examples from state-of-the-art models, ranging from photographs of individual people to trademarked company logos. We also train hundreds of diffusion models in various settings to analyze how different modeling and data decisions affect privacy. Overall, our results show that diffusion models are much less private than prior generative models such as GANs, and that mitigating these vulnerabilities may require new advances in privacy-preserving training.
Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting
Large language models (LLMs) demonstrate remarkable medical expertise, but data privacy concerns impede their direct use in healthcare environments. Although offering improved data privacy protection, domain-specific small language models (SLMs) often underperform LLMs, emphasizing the need for methods that reduce this performance gap while alleviating privacy concerns. In this paper, we present a simple yet effective method that harnesses LLMs' medical proficiency to boost SLM performance in medical tasks under privacy-restricted scenarios. Specifically, we mitigate patient privacy issues by extracting keywords from medical data and prompting the LLM to generate a medical knowledge-intensive context by simulating clinicians' thought processes. This context serves as additional input for SLMs, augmenting their decision-making capabilities. Our method significantly enhances performance in both few-shot and full training settings across three medical knowledge-intensive tasks, achieving up to a 22.57% increase in absolute accuracy compared to SLM fine-tuning without context, and sets new state-of-the-art results in two medical tasks within privacy-restricted scenarios. Further out-of-domain testing and experiments in two general domain datasets showcase its generalizability and broad applicability.
Breaking Anonymity at Scale: Re-identifying the Trajectories of 100K Real Users in Japan
Mobility traces represent a critical class of personal data, often subjected to privacy-preserving transformations before public release. In this study, we analyze the anonymized Yjmob100k dataset, which captures the trajectories of 100,000 users in Japan, and demonstrate how existing anonymization techniques fail to protect their sensitive attributes. We leverage population density patterns, structural correlations, and temporal activity profiles to re-identify the dataset's real-world location and timing. Our results reveal that the anonymization process carried out for Yjmob100k is inefficient and preserves enough spatial and temporal structure to enable re-identification. This work underscores the limitations of current trajectory anonymization methods and calls for more robust privacy mechanisms in the publication of mobility data.
When the signal is in the noise: Exploiting Diffix's Sticky Noise
Anonymized data is highly valuable to both businesses and researchers. A large body of research has however shown the strong limits of the de-identification release-and-forget model, where data is anonymized and shared. This has led to the development of privacy-preserving query-based systems. Based on the idea of "sticky noise", Diffix has been recently proposed as a novel query-based mechanism satisfying alone the EU Article~29 Working Party's definition of anonymization. According to its authors, Diffix adds less noise to answers than solutions based on differential privacy while allowing for an unlimited number of queries. This paper presents a new class of noise-exploitation attacks, exploiting the noise added by the system to infer private information about individuals in the dataset. Our first differential attack uses samples extracted from Diffix in a likelihood ratio test to discriminate between two probability distributions. We show that using this attack against a synthetic best-case dataset allows us to infer private information with 89.4% accuracy using only 5 attributes. Our second cloning attack uses dummy conditions that conditionally strongly affect the output of the query depending on the value of the private attribute. Using this attack on four real-world datasets, we show that we can infer private attributes of at least 93% of the users in the dataset with accuracy between 93.3% and 97.1%, issuing a median of 304 queries per user. We show how to optimize this attack, targeting 55.4% of the users and achieving 91.7% accuracy, using a maximum of only 32 queries per user. Our attacks demonstrate that adding data-dependent noise, as done by Diffix, is not sufficient to prevent inference of private attributes. We furthermore argue that Diffix alone fails to satisfy Art. 29 WP's definition of anonymization. [...]
On User-Level Private Convex Optimization
We introduce a new mechanism for stochastic convex optimization (SCO) with user-level differential privacy guarantees. The convergence rates of this mechanism are similar to those in the prior work of Levy et al. (2021); Narayanan et al. (2022), but with two important improvements. Our mechanism does not require any smoothness assumptions on the loss. Furthermore, our bounds are also the first where the minimum number of users needed for user-level privacy has no dependence on the dimension and only a logarithmic dependence on the desired excess error. The main idea underlying the new mechanism is to show that the optimizers of strongly convex losses have low local deletion sensitivity, along with an output perturbation method for functions with low local deletion sensitivity, which could be of independent interest.
PRvL: Quantifying the Capabilities and Risks of Large Language Models for PII Redaction
Redacting Personally Identifiable Information (PII) from unstructured text is critical for ensuring data privacy in regulated domains. While earlier approaches have relied on rule-based systems and domain-specific Named Entity Recognition (NER) models, these methods fail to generalize across formats and contexts. Recent advances in Large Language Models (LLMs) offer a promising alternative, yet the effect of architectural and training choices on redaction performance remains underexplored. LLMs have demonstrated strong performance in tasks that require contextual language understanding, including the redaction of PII in free-form text. Prior work suggests that with appropriate adaptation, LLMs can become effective contextual privacy learners. However, the consequences of architectural and training choices for PII Redaction remain underexplored. In this work, we present a comprehensive analysis of LLMs as privacy-preserving PII Redaction systems. We evaluate a range of LLM architectures and training strategies for their effectiveness in PII Redaction. Our analysis measures redaction performance, semantic preservation, and PII leakage, and compares these outcomes against latency and computational cost. The results provide practical guidance for configuring LLM-based redactors that are accurate, efficient, and privacy-aware. To support reproducibility and real-world deployment, we release PRvL, an open-source suite of fine-tuned models, and evaluation tools for general-purpose PII Redaction. PRvL is built entirely on open-source LLMs and supports multiple inference settings for flexibility and compliance. It is designed to be easily customized for different domains and fully operable within secure, self-managed environments. This enables data owners to perform redactions without relying on third-party services or exposing sensitive content beyond their own infrastructure.
Leave-one-out Distinguishability in Machine Learning
We introduce a new analytical framework to quantify the changes in a machine learning algorithm's output distribution following the inclusion of a few data points in its training set, a notion we define as leave-one-out distinguishability (LOOD). This problem is key to measuring data **memorization** and **information leakage** in machine learning, and the **influence** of training data points on model predictions. We illustrate how our method broadens and refines existing empirical measures of memorization and privacy risks associated with training data. We use Gaussian processes to model the randomness of machine learning algorithms, and validate LOOD with extensive empirical analysis of information leakage using membership inference attacks. Our theoretical framework enables us to investigate the causes of information leakage and where the leakage is high. For example, we analyze the influence of activation functions, on data memorization. Additionally, our method allows us to optimize queries that disclose the most significant information about the training data in the leave-one-out setting. We illustrate how optimal queries can be used for accurate **reconstruction** of training data.
DP-SGD Without Clipping: The Lipschitz Neural Network Way
State-of-the-art approaches for training Differentially Private (DP) Deep Neural Networks (DNN) face difficulties to estimate tight bounds on the sensitivity of the network's layers, and instead rely on a process of per-sample gradient clipping. This clipping process not only biases the direction of gradients but also proves costly both in memory consumption and in computation. To provide sensitivity bounds and bypass the drawbacks of the clipping process, we propose to rely on Lipschitz constrained networks. Our theoretical analysis reveals an unexplored link between the Lipschitz constant with respect to their input and the one with respect to their parameters. By bounding the Lipschitz constant of each layer with respect to its parameters, we prove that we can train these networks with privacy guarantees. Our analysis not only allows the computation of the aforementioned sensitivities at scale, but also provides guidance on how to maximize the gradient-to-noise ratio for fixed privacy guarantees. The code has been released as a Python package available at https://github.com/Algue-Rythme/lip-dp
PrivPAS: A real time Privacy-Preserving AI System and applied ethics
With 3.78 billion social media users worldwide in 2021 (48% of the human population), almost 3 billion images are shared daily. At the same time, a consistent evolution of smartphone cameras has led to a photography explosion with 85% of all new pictures being captured using smartphones. However, lately, there has been an increased discussion of privacy concerns when a person being photographed is unaware of the picture being taken or has reservations about the same being shared. These privacy violations are amplified for people with disabilities, who may find it challenging to raise dissent even if they are aware. Such unauthorized image captures may also be misused to gain sympathy by third-party organizations, leading to a privacy breach. Privacy for people with disabilities has so far received comparatively less attention from the AI community. This motivates us to work towards a solution to generate privacy-conscious cues for raising awareness in smartphone users of any sensitivity in their viewfinder content. To this end, we introduce PrivPAS (A real time Privacy-Preserving AI System) a novel framework to identify sensitive content. Additionally, we curate and annotate a dataset to identify and localize accessibility markers and classify whether an image is sensitive to a featured subject with a disability. We demonstrate that the proposed lightweight architecture, with a memory footprint of a mere 8.49MB, achieves a high mAP of 89.52% on resource-constrained devices. Furthermore, our pipeline, trained on face anonymized data, achieves an F1-score of 73.1%.
Beyond Blanket Masking: Examining Granularity for Privacy Protection in Images Captured by Blind and Low Vision Users
As visual assistant systems powered by visual language models (VLMs) become more prevalent, concerns over user privacy have grown, particularly for blind and low vision users who may unknowingly capture personal private information in their images. Existing privacy protection methods rely on coarse-grained segmentation, which uniformly masks entire private objects, often at the cost of usability. In this work, we propose FiGPriv, a fine-grained privacy protection framework that selectively masks only high-risk private information while preserving low-risk information. Our approach integrates fine-grained segmentation with a data-driven risk scoring mechanism. We evaluate our framework using the BIV-Priv-Seg dataset and show that FiG-Priv preserves +26% of image content, enhancing the ability of VLMs to provide useful responses by 11% and identify the image content by 45%, while ensuring privacy protection. Project Page: https://artcs1.github.io/VLMPrivacy/
Closed-Form Bounds for DP-SGD against Record-level Inference
Machine learning models trained with differentially-private (DP) algorithms such as DP-SGD enjoy resilience against a wide range of privacy attacks. Although it is possible to derive bounds for some attacks based solely on an (varepsilon,delta)-DP guarantee, meaningful bounds require a small enough privacy budget (i.e., injecting a large amount of noise), which results in a large loss in utility. This paper presents a new approach to evaluate the privacy of machine learning models against specific record-level threats, such as membership and attribute inference, without the indirection through DP. We focus on the popular DP-SGD algorithm, and derive simple closed-form bounds. Our proofs model DP-SGD as an information theoretic channel whose inputs are the secrets that an attacker wants to infer (e.g., membership of a data record) and whose outputs are the intermediate model parameters produced by iterative optimization. We obtain bounds for membership inference that match state-of-the-art techniques, whilst being orders of magnitude faster to compute. Additionally, we present a novel data-dependent bound against attribute inference. Our results provide a direct, interpretable, and practical way to evaluate the privacy of trained models against specific inference threats without sacrificing utility.
Balancing Transparency and Risk: The Security and Privacy Risks of Open-Source Machine Learning Models
The field of artificial intelligence (AI) has experienced remarkable progress in recent years, driven by the widespread adoption of open-source machine learning models in both research and industry. Considering the resource-intensive nature of training on vast datasets, many applications opt for models that have already been trained. Hence, a small number of key players undertake the responsibility of training and publicly releasing large pre-trained models, providing a crucial foundation for a wide range of applications. However, the adoption of these open-source models carries inherent privacy and security risks that are often overlooked. To provide a concrete example, an inconspicuous model may conceal hidden functionalities that, when triggered by specific input patterns, can manipulate the behavior of the system, such as instructing self-driving cars to ignore the presence of other vehicles. The implications of successful privacy and security attacks encompass a broad spectrum, ranging from relatively minor damage like service interruptions to highly alarming scenarios, including physical harm or the exposure of sensitive user data. In this work, we present a comprehensive overview of common privacy and security threats associated with the use of open-source models. By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.
Communication-Efficient Learning of Deep Networks from Decentralized Data
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning. We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100x as compared to synchronized stochastic gradient descent.
Clients Collaborate: Flexible Differentially Private Federated Learning with Guaranteed Improvement of Utility-Privacy Trade-off
To defend against privacy leakage of user data, differential privacy is widely used in federated learning, but it is not free. The addition of noise randomly disrupts the semantic integrity of the model and this disturbance accumulates with increased communication rounds. In this paper, we introduce a novel federated learning framework with rigorous privacy guarantees, named FedCEO, designed to strike a trade-off between model utility and user privacy by letting clients ''Collaborate with Each Other''. Specifically, we perform efficient tensor low-rank proximal optimization on stacked local model parameters at the server, demonstrating its capability to flexibly truncate high-frequency components in spectral space. This capability implies that our FedCEO can effectively recover the disrupted semantic information by smoothing the global semantic space for different privacy settings and continuous training processes. Moreover, we improve the SOTA utility-privacy trade-off bound by order of d, where d is the input dimension. We illustrate our theoretical results with experiments on representative datasets and observe significant performance improvements and strict privacy guarantees under different privacy settings. The code is available at https://github.com/6lyc/FedCEO_Collaborate-with-Each-Other.
Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution for enhancing the accuracy and credibility of Large Language Models (LLMs), particularly in Question & Answer tasks. This is achieved by incorporating proprietary and private data from integrated databases. However, private RAG systems face significant challenges due to the scarcity of private domain data and critical data privacy issues. These obstacles impede the deployment of private RAG systems, as developing privacy-preserving RAG systems requires a delicate balance between data security and data availability. To address these challenges, we regard federated learning (FL) as a highly promising technology for privacy-preserving RAG services. We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG). This framework facilitates collaborative training of client-side RAG retrieval models. The parameters of these models are aggregated and distributed on a central-server, ensuring data privacy without direct sharing of raw data. In FedE4RAG, knowledge distillation is employed for communication between the server and client models. This technique improves the generalization of local RAG retrievers during the federated learning process. Additionally, we apply homomorphic encryption within federated learning to safeguard model parameters and mitigate concerns related to data leakage. Extensive experiments conducted on the real-world dataset have validated the effectiveness of FedE4RAG. The results demonstrate that our proposed framework can markedly enhance the performance of private RAG systems while maintaining robust data privacy protection.
