Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMLRC-Bench: Can Language Agents Solve Machine Learning Research Challenges?
Existing evaluation of large language model (LLM) agents on scientific discovery lacks objective baselines and metrics to assess the viability of their proposed methods. To address this issue, we introduce MLRC-Bench, a benchmark designed to quantify how effectively language agents can tackle challenging Machine Learning (ML) Research Competitions. Our benchmark highlights open research problems that demand novel methodologies, in contrast to recent benchmarks such as OpenAI's MLE-Bench (Chan et al., 2024) and METR's RE-Bench (Wijk et al., 2024), which focus on well-established research tasks that are largely solvable through sufficient engineering effort. Unlike prior work, e.g., AI Scientist (Lu et al., 2024b), which evaluates the end-to-end agentic pipeline by using LLM-as-a-judge, MLRC-Bench measures the key steps of proposing and implementing novel research methods and evaluates them with newly proposed rigorous protocol and objective metrics. Our curated suite of 7 competition tasks reveals significant challenges for LLM agents. Even the best-performing tested agent (gemini-exp-1206 under MLAB (Huang et al., 2024a)) closes only 9.3% of the gap between baseline and top human participant scores. Furthermore, our analysis reveals a misalignment between the LLM-judged innovation and their actual performance on cutting-edge ML research problems. MLRC-Bench is a dynamic benchmark, which is designed to continually grow with new ML competitions to encourage rigorous and objective evaluations of AI's research capabilities.
Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges
Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. However, continuously executing the entire DNN on mobile devices can quickly deplete their battery. Although task offloading to cloud/edge servers may decrease the mobile device's computational burden, erratic patterns in channel quality, network, and edge server load can lead to a significant delay in task execution. Recently, approaches based on split computing (SC) have been proposed, where the DNN is split into a head and a tail model, executed respectively on the mobile device and on the edge server. Ultimately, this may reduce bandwidth usage as well as energy consumption. Another approach, called early exiting (EE), trains models to embed multiple "exits" earlier in the architecture, each providing increasingly higher target accuracy. Therefore, the trade-off between accuracy and delay can be tuned according to the current conditions or application demands. In this paper, we provide a comprehensive survey of the state of the art in SC and EE strategies by presenting a comparison of the most relevant approaches. We conclude the paper by providing a set of compelling research challenges.
The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities
This report examines the fine-tuning of Large Language Models (LLMs), integrating theoretical insights with practical applications. It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI. A comparison of fine-tuning methodologies, including supervised, unsupervised, and instruction-based approaches, highlights their applicability to different tasks. The report introduces a structured seven-stage pipeline for fine-tuning LLMs, spanning data preparation, model initialization, hyperparameter tuning, and model deployment. Emphasis is placed on managing imbalanced datasets and optimization techniques. Parameter-efficient methods like Low-Rank Adaptation (LoRA) and Half Fine-Tuning are explored for balancing computational efficiency with performance. Advanced techniques such as memory fine-tuning, Mixture of Experts (MoE), and Mixture of Agents (MoA) are discussed for leveraging specialized networks and multi-agent collaboration. The report also examines novel approaches like Proximal Policy Optimization (PPO) and Direct Preference Optimization (DPO), which align LLMs with human preferences, alongside pruning and routing optimizations to improve efficiency. Further sections cover validation frameworks, post-deployment monitoring, and inference optimization, with attention to deploying LLMs on distributed and cloud-based platforms. Emerging areas such as multimodal LLMs, fine-tuning for audio and speech, and challenges related to scalability, privacy, and accountability are also addressed. This report offers actionable insights for researchers and practitioners navigating LLM fine-tuning in an evolving landscape.
Aligning Generative Music AI with Human Preferences: Methods and Challenges
Recent advances in generative AI for music have achieved remarkable fidelity and stylistic diversity, yet these systems often fail to align with nuanced human preferences due to the specific loss functions they use. This paper advocates for the systematic application of preference alignment techniques to music generation, addressing the fundamental gap between computational optimization and human musical appreciation. Drawing on recent breakthroughs including MusicRL's large-scale preference learning, multi-preference alignment frameworks like diffusion-based preference optimization in DiffRhythm+, and inference-time optimization techniques like Text2midi-InferAlign, we discuss how these techniques can address music's unique challenges: temporal coherence, harmonic consistency, and subjective quality assessment. We identify key research challenges including scalability to long-form compositions, reliability amongst others in preference modelling. Looking forward, we envision preference-aligned music generation enabling transformative applications in interactive composition tools and personalized music services. This work calls for sustained interdisciplinary research combining advances in machine learning, music-theory to create music AI systems that truly serve human creative and experiential needs.
Probing the Critical Point (CritPt) of AI Reasoning: a Frontier Physics Research Benchmark
While large language models (LLMs) with reasoning capabilities are progressing rapidly on high-school math competitions and coding, can they reason effectively through complex, open-ended challenges found in frontier physics research? And crucially, what kinds of reasoning tasks do physicists want LLMs to assist with? To address these questions, we present the CritPt (Complex Research using Integrated Thinking - Physics Test, pronounced "critical point"), the first benchmark designed to test LLMs on unpublished, research-level reasoning tasks that broadly covers modern physics research areas, including condensed matter, quantum physics, atomic, molecular & optical physics, astrophysics, high energy physics, mathematical physics, statistical physics, nuclear physics, nonlinear dynamics, fluid dynamics and biophysics. CritPt consists of 71 composite research challenges designed to simulate full-scale research projects at the entry level, which are also decomposed to 190 simpler checkpoint tasks for more fine-grained insights. All problems are newly created by 50+ active physics researchers based on their own research. Every problem is hand-curated to admit a guess-resistant and machine-verifiable answer and is evaluated by an automated grading pipeline heavily customized for advanced physics-specific output formats. We find that while current state-of-the-art LLMs show early promise on isolated checkpoints, they remain far from being able to reliably solve full research-scale challenges: the best average accuracy among base models is only 4.0% , achieved by GPT-5 (high), moderately rising to around 10% when equipped with coding tools. Through the realistic yet standardized evaluation offered by CritPt, we highlight a large disconnect between current model capabilities and realistic physics research demands, offering a foundation to guide the development of scientifically grounded AI tools.
Foundation Models in Robotics: Applications, Challenges, and the Future
We survey applications of pretrained foundation models in robotics. Traditional deep learning models in robotics are trained on small datasets tailored for specific tasks, which limits their adaptability across diverse applications. In contrast, foundation models pretrained on internet-scale data appear to have superior generalization capabilities, and in some instances display an emergent ability to find zero-shot solutions to problems that are not present in the training data. Foundation models may hold the potential to enhance various components of the robot autonomy stack, from perception to decision-making and control. For example, large language models can generate code or provide common sense reasoning, while vision-language models enable open-vocabulary visual recognition. However, significant open research challenges remain, particularly around the scarcity of robot-relevant training data, safety guarantees and uncertainty quantification, and real-time execution. In this survey, we study recent papers that have used or built foundation models to solve robotics problems. We explore how foundation models contribute to improving robot capabilities in the domains of perception, decision-making, and control. We discuss the challenges hindering the adoption of foundation models in robot autonomy and provide opportunities and potential pathways for future advancements. The GitHub project corresponding to this paper (Preliminary release. We are committed to further enhancing and updating this work to ensure its quality and relevance) can be found here: https://github.com/robotics-survey/Awesome-Robotics-Foundation-Models
Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges
Natural Language Processing (NLP) is revolutionising the way both professionals and laypersons operate in the legal field. The considerable potential for NLP in the legal sector, especially in developing computational assistance tools for various legal processes, has captured the interest of researchers for years. This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 154 studies, with a final selection of 131 after manual filtering. It explores foundational concepts related to NLP in the legal domain, illustrating the unique aspects and challenges of processing legal texts, such as extensive document lengths, complex language, and limited open legal datasets. We provide an overview of NLP tasks specific to legal text, such as Document Summarisation, Named Entity Recognition, Question Answering, Argument Mining, Text Classification, and Judgement Prediction. Furthermore, we analyse both developed legal-oriented language models, and approaches for adapting general-purpose language models to the legal domain. Additionally, we identify sixteen open research challenges, including the detection and mitigation of bias in artificial intelligence applications, the need for more robust and interpretable models, and improving explainability to handle the complexities of legal language and reasoning.
YFCC100M: The New Data in Multimedia Research
We present the Yahoo Flickr Creative Commons 100 Million Dataset (YFCC100M), the largest public multimedia collection that has ever been released. The dataset contains a total of 100 million media objects, of which approximately 99.2 million are photos and 0.8 million are videos, all of which carry a Creative Commons license. Each media object in the dataset is represented by several pieces of metadata, e.g. Flickr identifier, owner name, camera, title, tags, geo, media source. The collection provides a comprehensive snapshot of how photos and videos were taken, described, and shared over the years, from the inception of Flickr in 2004 until early 2014. In this article we explain the rationale behind its creation, as well as the implications the dataset has for science, research, engineering, and development. We further present several new challenges in multimedia research that can now be expanded upon with our dataset.
WebWeaver: Structuring Web-Scale Evidence with Dynamic Outlines for Open-Ended Deep Research
This paper tackles open-ended deep research (OEDR), a complex challenge where AI agents must synthesize vast web-scale information into insightful reports. Current approaches are plagued by dual-fold limitations: static research pipelines that decouple planning from evidence acquisition and one-shot generation paradigms that easily suffer from long-context failure issues like "loss in the middle" and hallucinations. To address these challenges, we introduce WebWeaver, a novel dual-agent framework that emulates the human research process. The planner operates in a dynamic cycle, iteratively interleaving evidence acquisition with outline optimization to produce a comprehensive, source-grounded outline linking to a memory bank of evidence. The writer then executes a hierarchical retrieval and writing process, composing the report section by section. By performing targeted retrieval of only the necessary evidence from the memory bank for each part, it effectively mitigates long-context issues. Our framework establishes a new state-of-the-art across major OEDR benchmarks, including DeepResearch Bench, DeepConsult, and DeepResearchGym. These results validate our human-centric, iterative methodology, demonstrating that adaptive planning and focused synthesis are crucial for producing high-quality, reliable, and well-structured reports.
Compound AI Systems Optimization: A Survey of Methods, Challenges, and Future Directions
Recent advancements in large language models (LLMs) and AI systems have led to a paradigm shift in the design and optimization of complex AI workflows. By integrating multiple components, compound AI systems have become increasingly adept at performing sophisticated tasks. However, as these systems grow in complexity, new challenges arise in optimizing not only individual components but also their interactions. While traditional optimization methods such as supervised fine-tuning (SFT) and reinforcement learning (RL) remain foundational, the rise of natural language feedback introduces promising new approaches, especially for optimizing non-differentiable systems. This paper provides a systematic review of recent progress in optimizing compound AI systems, encompassing both numerical and language-based techniques. We formalize the notion of compound AI system optimization, classify existing methods along several key dimensions, and highlight open research challenges and future directions in this rapidly evolving field. A list of surveyed papers is publicly available at https://github.com/MiuLab/AISysOpt-Survey.
AI Agentic Programming: A Survey of Techniques, Challenges, and Opportunities
AI agentic programming is an emerging paradigm in which large language models (LLMs) autonomously plan, execute, and interact with external tools like compilers, debuggers, and version control systems to iteratively perform complex software development tasks. Unlike conventional code generation tools, agentic systems are capable of decomposing high-level goals, coordinating multi-step processes, and adapting their behavior based on intermediate feedback. These capabilities are transforming the software development practice. As this emerging field evolves rapidly, there is a need to define its scope, consolidate its technical foundations, and identify open research challenges. This survey provides a comprehensive and timely review of AI agentic programming. We introduce a taxonomy of agent behaviors and system architectures, and examine core techniques including planning, memory and context management, tool integration, and execution monitoring. We also analyze existing benchmarks and evaluation methodologies used to assess coding agent performance. Our study identifies several key challenges, including limitations in handling long context, a lack of persistent memory across tasks, and concerns around safety, alignment with user intent, and collaboration with human developers. We discuss emerging opportunities to improve the reliability, adaptability, and transparency of agentic systems. By synthesizing recent advances and outlining future directions, this survey aims to provide a foundation for research and development in building the next generation of intelligent and trustworthy AI coding agents.
Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models
Much recent work seeks to evaluate values and opinions in large language models (LLMs) using multiple-choice surveys and questionnaires. Most of this work is motivated by concerns around real-world LLM applications. For example, politically-biased LLMs may subtly influence society when they are used by millions of people. Such real-world concerns, however, stand in stark contrast to the artificiality of current evaluations: real users do not typically ask LLMs survey questions. Motivated by this discrepancy, we challenge the prevailing constrained evaluation paradigm for values and opinions in LLMs and explore more realistic unconstrained evaluations. As a case study, we focus on the popular Political Compass Test (PCT). In a systematic review, we find that most prior work using the PCT forces models to comply with the PCT's multiple-choice format. We show that models give substantively different answers when not forced; that answers change depending on how models are forced; and that answers lack paraphrase robustness. Then, we demonstrate that models give different answers yet again in a more realistic open-ended answer setting. We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model
In this study, we introduce CT-LLM, a 2B large language model (LLM) that illustrates a pivotal shift towards prioritizing the Chinese language in developing LLMs. Uniquely initiated from scratch, CT-LLM diverges from the conventional methodology by primarily incorporating Chinese textual data, utilizing an extensive corpus of 1,200 billion tokens, including 800 billion Chinese tokens, 300 billion English tokens, and 100 billion code tokens. This strategic composition facilitates the model's exceptional proficiency in understanding and processing Chinese, a capability further enhanced through alignment techniques. Demonstrating remarkable performance on the CHC-Bench, CT-LLM excels in Chinese language tasks, and showcases its adeptness in English through SFT. This research challenges the prevailing paradigm of training LLMs predominantly on English corpora and then adapting them to other languages, broadening the horizons for LLM training methodologies. By open-sourcing the full process of training a Chinese LLM, including a detailed data processing procedure with the obtained Massive Appropriate Pretraining Chinese Corpus (MAP-CC), a well-chosen multidisciplinary Chinese Hard Case Benchmark (CHC-Bench), and the 2B-size Chinese Tiny LLM (CT-LLM), we aim to foster further exploration and innovation in both academia and industry, paving the way for more inclusive and versatile language models.
Evade ChatGPT Detectors via A Single Space
ChatGPT brings revolutionary social value but also raises concerns about the misuse of AI-generated text. Consequently, an important question is how to detect whether texts are generated by ChatGPT or by human. Existing detectors are built upon the assumption that there are distributional gaps between human-generated and AI-generated text. These gaps are typically identified using statistical information or classifiers. Our research challenges the distributional gap assumption in detectors. We find that detectors do not effectively discriminate the semantic and stylistic gaps between human-generated and AI-generated text. Instead, the "subtle differences", such as an extra space, become crucial for detection. Based on this discovery, we propose the SpaceInfi strategy to evade detection. Experiments demonstrate the effectiveness of this strategy across multiple benchmarks and detectors. We also provide a theoretical explanation for why SpaceInfi is successful in evading perplexity-based detection. And we empirically show that a phenomenon called token mutation causes the evasion for language model-based detectors. Our findings offer new insights and challenges for understanding and constructing more applicable ChatGPT detectors.
Understanding Neural Architecture Search Techniques
Automatic methods for generating state-of-the-art neural network architectures without human experts have generated significant attention recently. This is because of the potential to remove human experts from the design loop which can reduce costs and decrease time to model deployment. Neural architecture search (NAS) techniques have improved significantly in their computational efficiency since the original NAS was proposed. This reduction in computation is enabled via weight sharing such as in Efficient Neural Architecture Search (ENAS). However, recently a body of work confirms our discovery that ENAS does not do significantly better than random search with weight sharing, contradicting the initial claims of the authors. We provide an explanation for this phenomenon by investigating the interpretability of the ENAS controller's hidden state. We find models sampled from identical controller hidden states have no correlation with various graph similarity metrics, so no notion of structural similarity is learned. This failure mode implies the RNN controller does not condition on past architecture choices. Lastly, we propose a solution to this failure mode by forcing the controller's hidden state to encode pasts decisions by training it with a memory buffer of previously sampled architectures. Doing this improves hidden state interpretability by increasing the correlation between controller hidden states and graph similarity metrics.
CodeS: Towards Building Open-source Language Models for Text-to-SQL
Language models have shown promising performance on the task of translating natural language questions into SQL queries (Text-to-SQL). However, most of the state-of-the-art (SOTA) approaches rely on powerful yet closed-source large language models (LLMs), such as ChatGPT and GPT-4, which may have the limitations of unclear model architectures, data privacy risks, and expensive inference overheads. To address the limitations, we introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B, specifically designed for the text-to-SQL task. CodeS is a fully open-source language model, which achieves superior accuracy with much smaller parameter sizes. This paper studies the research challenges in building CodeS. To enhance the SQL generation abilities of CodeS, we adopt an incremental pre-training approach using a specifically curated SQL-centric corpus. Based on this, we address the challenges of schema linking and rapid domain adaptation through strategic prompt construction and a bi-directional data augmentation technique. We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark, the newly released BIRD benchmark, robustness-diagnostic benchmarks such as Spider-DK, Spider-Syn, Spider-Realistic, and Dr.Spider, as well as two real-world datasets created for financial and academic applications. The experimental results show that our CodeS achieves new SOTA accuracy and robustness on nearly all challenging text-to-SQL benchmarks.
A Large-Scale Dataset of Search Interests Related to Disease X Originating from Different Geographic Regions
The World Health Organization added Disease X to their shortlist of blueprint priority diseases to represent a hypothetical, unknown pathogen that could cause a future epidemic. During different virus outbreaks of the past, such as COVID-19, Influenza, Lyme Disease, and Zika virus, researchers from various disciplines utilized Google Trends to mine multimodal components of web behavior to study, investigate, and analyze the global awareness, preparedness, and response associated with these respective virus outbreaks. As the world prepares for Disease X, a dataset on web behavior related to Disease X would be crucial to contribute towards the timely advancement of research in this field. Furthermore, none of the prior works in this field have focused on the development of a dataset to compile relevant web behavior data, which would help to prepare for Disease X. To address these research challenges, this work presents a dataset of web behavior related to Disease X, which emerged from different geographic regions of the world, between February 2018 and August 2023. Specifically, this dataset presents the search interests related to Disease X from 94 geographic regions. The dataset was developed by collecting data using Google Trends. The relevant search interests for all these regions for each month in this time range are available in this dataset. This paper also discusses the compliance of this dataset with the FAIR principles of scientific data management. Finally, an analysis of this dataset is presented to uphold the applicability, relevance, and usefulness of this dataset for the investigation of different research questions in the interrelated fields of Big Data, Data Mining, Healthcare, Epidemiology, and Data Analysis with a specific focus on Disease X.
Rethinking Learning Rate Tuning in the Era of Large Language Models
Large Language Models (LLMs) represent the recent success of deep learning in achieving remarkable human-like predictive performance. It has become a mainstream strategy to leverage fine-tuning to adapt LLMs for various real-world applications due to the prohibitive expenses associated with LLM training. The learning rate is one of the most important hyperparameters in LLM fine-tuning with direct impacts on both fine-tuning efficiency and fine-tuned LLM quality. Existing learning rate policies are primarily designed for training traditional deep neural networks (DNNs), which may not work well for LLM fine-tuning. We reassess the research challenges and opportunities of learning rate tuning in the coming era of Large Language Models. This paper makes three original contributions. First, we revisit existing learning rate policies to analyze the critical challenges of learning rate tuning in the era of LLMs. Second, we present LRBench++ to benchmark learning rate policies and facilitate learning rate tuning for both traditional DNNs and LLMs. Third, our experimental analysis with LRBench++ demonstrates the key differences between LLM fine-tuning and traditional DNN training and validates our analysis.
Deep Learning and Computer Vision for Glaucoma Detection: A Review
Glaucoma is the leading cause of irreversible blindness worldwide and poses significant diagnostic challenges due to its reliance on subjective evaluation. However, recent advances in computer vision and deep learning have demonstrated the potential for automated assessment. In this paper, we survey recent studies on AI-based glaucoma diagnosis using fundus, optical coherence tomography, and visual field images, with a particular emphasis on deep learning-based methods. We provide an updated taxonomy that organizes methods into architectural paradigms and includes links to available source code to enhance the reproducibility of the methods. Through rigorous benchmarking on widely-used public datasets, we reveal performance gaps in generalizability, uncertainty estimation, and multimodal integration. Additionally, our survey curates key datasets while highlighting limitations such as scale, labeling inconsistencies, and bias. We outline open research challenges and detail promising directions for future studies. This survey is expected to be useful for both AI researchers seeking to translate advances into practice and ophthalmologists aiming to improve clinical workflows and diagnosis using the latest AI outcomes.
Can Foundation Models Wrangle Your Data?
Foundation Models (FMs) are models trained on large corpora of data that, at very large scale, can generalize to new tasks without any task-specific finetuning. As these models continue to grow in size, innovations continue to push the boundaries of what these models can do on language and image tasks. This paper aims to understand an underexplored area of FMs: classical data tasks like cleaning and integration. As a proof-of-concept, we cast five data cleaning and integration tasks as prompting tasks and evaluate the performance of FMs on these tasks. We find that large FMs generalize and achieve SoTA performance on data cleaning and integration tasks, even though they are not trained for these data tasks. We identify specific research challenges and opportunities that these models present, including challenges with private and domain specific data, and opportunities to make data management systems more accessible to non-experts. We make our code and experiments publicly available at: https://github.com/HazyResearch/fm_data_tasks.
The Arcade Learning Environment: An Evaluation Platform for General Agents
In this article we introduce the Arcade Learning Environment (ALE): both a challenge problem and a platform and methodology for evaluating the development of general, domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600 game environments, each one different, interesting, and designed to be a challenge for human players. ALE presents significant research challenges for reinforcement learning, model learning, model-based planning, imitation learning, transfer learning, and intrinsic motivation. Most importantly, it provides a rigorous testbed for evaluating and comparing approaches to these problems. We illustrate the promise of ALE by developing and benchmarking domain-independent agents designed using well-established AI techniques for both reinforcement learning and planning. In doing so, we also propose an evaluation methodology made possible by ALE, reporting empirical results on over 55 different games. All of the software, including the benchmark agents, is publicly available.
Advances in Feed-Forward 3D Reconstruction and View Synthesis: A Survey
3D reconstruction and view synthesis are foundational problems in computer vision, graphics, and immersive technologies such as augmented reality (AR), virtual reality (VR), and digital twins. Traditional methods rely on computationally intensive iterative optimization in a complex chain, limiting their applicability in real-world scenarios. Recent advances in feed-forward approaches, driven by deep learning, have revolutionized this field by enabling fast and generalizable 3D reconstruction and view synthesis. This survey offers a comprehensive review of feed-forward techniques for 3D reconstruction and view synthesis, with a taxonomy according to the underlying representation architectures including point cloud, 3D Gaussian Splatting (3DGS), Neural Radiance Fields (NeRF), etc. We examine key tasks such as pose-free reconstruction, dynamic 3D reconstruction, and 3D-aware image and video synthesis, highlighting their applications in digital humans, SLAM, robotics, and beyond. In addition, we review commonly used datasets with detailed statistics, along with evaluation protocols for various downstream tasks. We conclude by discussing open research challenges and promising directions for future work, emphasizing the potential of feed-forward approaches to advance the state of the art in 3D vision.
Compression in 3D Gaussian Splatting: A Survey of Methods, Trends, and Future Directions
3D Gaussian Splatting (3DGS) has recently emerged as a pioneering approach in explicit scene rendering and computer graphics. Unlike traditional neural radiance field (NeRF) methods, which typically rely on implicit, coordinate-based models to map spatial coordinates to pixel values, 3DGS utilizes millions of learnable 3D Gaussians. Its differentiable rendering technique and inherent capability for explicit scene representation and manipulation positions 3DGS as a potential game-changer for the next generation of 3D reconstruction and representation technologies. This enables 3DGS to deliver real-time rendering speeds while offering unparalleled editability levels. However, despite its advantages, 3DGS suffers from substantial memory and storage requirements, posing challenges for deployment on resource-constrained devices. In this survey, we provide a comprehensive overview focusing on the scalability and compression of 3DGS. We begin with a detailed background overview of 3DGS, followed by a structured taxonomy of existing compression methods. Additionally, we analyze and compare current methods from the topological perspective, evaluating their strengths and limitations in terms of fidelity, compression ratios, and computational efficiency. Furthermore, we explore how advancements in efficient NeRF representations can inspire future developments in 3DGS optimization. Finally, we conclude with current research challenges and highlight key directions for future exploration.
A Closer Look at Few-shot Classification Again
Few-shot classification consists of a training phase where a model is learned on a relatively large dataset and an adaptation phase where the learned model is adapted to previously-unseen tasks with limited labeled samples. In this paper, we empirically prove that the training algorithm and the adaptation algorithm can be completely disentangled, which allows algorithm analysis and design to be done individually for each phase. Our meta-analysis for each phase reveals several interesting insights that may help better understand key aspects of few-shot classification and connections with other fields such as visual representation learning and transfer learning. We hope the insights and research challenges revealed in this paper can inspire future work in related directions. Code and pre-trained models (in PyTorch) are available at https://github.com/Frankluox/CloserLookAgainFewShot.
Alexa, play with robot: Introducing the First Alexa Prize SimBot Challenge on Embodied AI
The Alexa Prize program has empowered numerous university students to explore, experiment, and showcase their talents in building conversational agents through challenges like the SocialBot Grand Challenge and the TaskBot Challenge. As conversational agents increasingly appear in multimodal and embodied contexts, it is important to explore the affordances of conversational interaction augmented with computer vision and physical embodiment. This paper describes the SimBot Challenge, a new challenge in which university teams compete to build robot assistants that complete tasks in a simulated physical environment. This paper provides an overview of the SimBot Challenge, which included both online and offline challenge phases. We describe the infrastructure and support provided to the teams including Alexa Arena, the simulated environment, and the ML toolkit provided to teams to accelerate their building of vision and language models. We summarize the approaches the participating teams took to overcome research challenges and extract key lessons learned. Finally, we provide analysis of the performance of the competing SimBots during the competition.
Retrieval-Augmented Generation with Graphs (GraphRAG)
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
VIEScore: Towards Explainable Metrics for Conditional Image Synthesis Evaluation
In the rapidly advancing field of conditional image generation research, challenges such as limited explainability lie in effectively evaluating the performance and capabilities of various models. This paper introduces VIESCORE, a Visual Instruction-guided Explainable metric for evaluating any conditional image generation tasks. VIESCORE leverages general knowledge from Multimodal Large Language Models (MLLMs) as the backbone and does not require training or fine-tuning. We evaluate VIESCORE on seven prominent tasks in conditional image tasks and found: (1) VIESCORE (GPT4-v) achieves a high Spearman correlation of 0.3 with human evaluations, while the human-to-human correlation is 0.45. (2) VIESCORE (with open-source MLLM) is significantly weaker than GPT-4v in evaluating synthetic images. (3) VIESCORE achieves a correlation on par with human ratings in the generation tasks but struggles in editing tasks. With these results, we believe VIESCORE shows its great potential to replace human judges in evaluating image synthesis tasks.
Toward Edge General Intelligence with Agentic AI and Agentification: Concepts, Technologies, and Future Directions
The rapid expansion of sixth-generation (6G) wireless networks and the Internet of Things (IoT) has catalyzed the evolution from centralized cloud intelligence towards decentralized edge general intelligence. However, traditional edge intelligence methods, characterized by static models and limited cognitive autonomy, fail to address the dynamic, heterogeneous, and resource-constrained scenarios inherent to emerging edge networks. Agentic artificial intelligence (Agentic AI) emerges as a transformative solution, enabling edge systems to autonomously perceive multimodal environments, reason contextually, and adapt proactively through continuous perception-reasoning-action loops. In this context, the agentification of edge intelligence serves as a key paradigm shift, where distributed entities evolve into autonomous agents capable of collaboration and continual adaptation. This paper presents a comprehensive survey dedicated to Agentic AI and agentification frameworks tailored explicitly for edge general intelligence. First, we systematically introduce foundational concepts and clarify distinctions from traditional edge intelligence paradigms. Second, we analyze important enabling technologies, including compact model compression, energy-aware computing strategies, robust connectivity frameworks, and advanced knowledge representation and reasoning mechanisms. Third, we provide representative case studies demonstrating Agentic AI's capabilities in low-altitude economy networks, intent-driven networking, vehicular networks, and human-centric service provisioning, supported by numerical evaluations. Furthermore, we identify current research challenges, review emerging open-source platforms, and highlight promising future research directions to guide robust, scalable, and trustworthy Agentic AI deployments for next-generation edge environments.
Multimodal Fusion and Vision-Language Models: A Survey for Robot Vision
Robot vision has greatly benefited from advancements in multimodal fusion techniques and vision-language models (VLMs). We systematically review the applications of multimodal fusion in key robotic vision tasks, including semantic scene understanding, simultaneous localization and mapping (SLAM), 3D object detection, navigation and localization, and robot manipulation. We compare VLMs based on large language models (LLMs) with traditional multimodal fusion methods, analyzing their advantages, limitations, and synergies. Additionally, we conduct an in-depth analysis of commonly used datasets, evaluating their applicability and challenges in real-world robotic scenarios. Furthermore, we identify critical research challenges such as cross-modal alignment, efficient fusion strategies, real-time deployment, and domain adaptation, and propose future research directions, including self-supervised learning for robust multimodal representations, transformer-based fusion architectures, and scalable multimodal frameworks. Through a comprehensive review, comparative analysis, and forward-looking discussion, we provide a valuable reference for advancing multimodal perception and interaction in robotic vision. A comprehensive list of studies in this survey is available at https://github.com/Xiaofeng-Han-Res/MF-RV.
A Survey of NL2SQL with Large Language Models: Where are we, and where are we going?
Translating users' natural language queries (NL) into SQL queries (i.e., NL2SQL) can significantly reduce barriers to accessing relational databases and support various commercial applications. The performance of NL2SQL has been greatly enhanced with the emergence of Large Language Models (LLMs). In this survey, we provide a comprehensive review of NL2SQL techniques powered by LLMs, covering its entire lifecycle from the following four aspects: (1) Model: NL2SQL translation techniques that tackle not only NL ambiguity and under-specification, but also properly map NL with database schema and instances; (2) Data: From the collection of training data, data synthesis due to training data scarcity, to NL2SQL benchmarks; (3) Evaluation: Evaluating NL2SQL methods from multiple angles using different metrics and granularities; and (4) Error Analysis: analyzing NL2SQL errors to find the root cause and guiding NL2SQL models to evolve. Moreover, we provide a rule of thumb for developing NL2SQL solutions. Finally, we discuss the research challenges and open problems of NL2SQL in the LLMs era.
Fairness Definitions in Language Models Explained
Language Models (LMs) have demonstrated exceptional performance across various Natural Language Processing (NLP) tasks. Despite these advancements, LMs can inherit and amplify societal biases related to sensitive attributes such as gender and race, limiting their adoption in real-world applications. Therefore, fairness has been extensively explored in LMs, leading to the proposal of various fairness notions. However, the lack of clear agreement on which fairness definition to apply in specific contexts (e.g., medium-sized LMs versus large-sized LMs) and the complexity of understanding the distinctions between these definitions can create confusion and impede further progress. To this end, this paper proposes a systematic survey that clarifies the definitions of fairness as they apply to LMs. Specifically, we begin with a brief introduction to LMs and fairness in LMs, followed by a comprehensive, up-to-date overview of existing fairness notions in LMs and the introduction of a novel taxonomy that categorizes these concepts based on their foundational principles and operational distinctions. We further illustrate each definition through experiments, showcasing their practical implications and outcomes. Finally, we discuss current research challenges and open questions, aiming to foster innovative ideas and advance the field. The implementation and additional resources are publicly available at https://github.com/LavinWong/Fairness-in-Large-Language-Models/tree/main/definitions.
Querying Large Language Models with SQL
In many use-cases, information is stored in text but not available in structured data. However, extracting data from natural language text to precisely fit a schema, and thus enable querying, is a challenging task. With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents. Thus, we envision the use of SQL queries to cover a broad range of data that is not captured by traditional databases by tapping the information in LLMs. To ground this vision, we present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM. The main idea is to execute some operators of the the query plan with prompts that retrieve data from the LLM. For a large class of SQL queries, querying LLMs returns well structured relations, with encouraging qualitative results. Preliminary experimental results make pre-trained LLMs a promising addition to the field of database systems, introducing a new direction for hybrid query processing. However, we pinpoint several research challenges that must be addressed to build a DBMS that exploits LLMs. While some of these challenges necessitate integrating concepts from the NLP literature, others offer novel research avenues for the DB community.
Manipulation and Peer Mechanisms: A Survey
In peer mechanisms, the competitors for a prize also determine who wins. Each competitor may be asked to rank, grade, or nominate peers for the prize. Since the prize can be valuable, such as financial aid, course grades, or an award at a conference, competitors may be tempted to manipulate the mechanism. We survey approaches to prevent or discourage the manipulation of peer mechanisms. We conclude our survey by identifying several important research challenges.
Spurious Correlations in Machine Learning: A Survey
Machine learning systems are known to be sensitive to spurious correlations between biased features of the inputs (e.g., background, texture, and secondary objects) and the corresponding labels. These features and their correlations with the labels are known as "spurious" because they tend to change with shifts in real-world data distributions, which can negatively impact the model's generalization and robustness. In this survey, we provide a comprehensive review of this issue, along with a taxonomy of current state-of-the-art methods for addressing spurious correlations in machine learning models. Additionally, we summarize existing datasets, benchmarks, and metrics to aid future research. The paper concludes with a discussion of the recent advancements and future research challenges in this field, aiming to provide valuable insights for researchers in the related domains.
Multimodal Image Synthesis and Editing: The Generative AI Era
As information exists in various modalities in real world, effective interaction and fusion among multimodal information plays a key role for the creation and perception of multimodal data in computer vision and deep learning research. With superb power in modeling the interaction among multimodal information, multimodal image synthesis and editing has become a hot research topic in recent years. Instead of providing explicit guidance for network training, multimodal guidance offers intuitive and flexible means for image synthesis and editing. On the other hand, this field is also facing several challenges in alignment of multimodal features, synthesis of high-resolution images, faithful evaluation metrics, etc. In this survey, we comprehensively contextualize the advance of the recent multimodal image synthesis and editing and formulate taxonomies according to data modalities and model types. We start with an introduction to different guidance modalities in image synthesis and editing, and then describe multimodal image synthesis and editing approaches extensively according to their model types. After that, we describe benchmark datasets and evaluation metrics as well as corresponding experimental results. Finally, we provide insights about the current research challenges and possible directions for future research. A project associated with this survey is available at https://github.com/fnzhan/Generative-AI.
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Although deep learning has made great progress in recent years, the exploding economic and environmental costs of training neural networks are becoming unsustainable. To address this problem, there has been a great deal of research on *algorithmically-efficient deep learning*, which seeks to reduce training costs not at the hardware or implementation level, but through changes in the semantics of the training program. In this paper, we present a structured and comprehensive overview of the research in this field. First, we formalize the *algorithmic speedup* problem, then we use fundamental building blocks of algorithmically efficient training to develop a taxonomy. Our taxonomy highlights commonalities of seemingly disparate methods and reveals current research gaps. Next, we present evaluation best practices to enable comprehensive, fair, and reliable comparisons of speedup techniques. To further aid research and applications, we discuss common bottlenecks in the training pipeline (illustrated via experiments) and offer taxonomic mitigation strategies for them. Finally, we highlight some unsolved research challenges and present promising future directions.
Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art
Recent years have witnessed enormous progress in AI-related fields such as computer vision, machine learning, and autonomous vehicles. As with any rapidly growing field, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several survey papers on particular sub-problems have appeared, no comprehensive survey on problems, datasets, and methods in computer vision for autonomous vehicles has been published. This book attempts to narrow this gap by providing a survey on the state-of-the-art datasets and techniques. Our survey includes both the historically most relevant literature as well as the current state of the art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding, and end-to-end learning for autonomous driving. Towards this goal, we analyze the performance of the state of the art on several challenging benchmarking datasets, including KITTI, MOT, and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we also provide a website that allows navigating topics as well as methods and provides additional information.
MC^2: A Multilingual Corpus of Minority Languages in China
Large-scale corpora play a vital role in the construction of large language models (LLMs). However, existing LLMs exhibit limited abilities in understanding low-resource languages, including the minority languages in China, due to a lack of training data. To improve the accessibility of these languages, we present MC^2, a Multilingual Corpus of Minority Languages in China, which is the largest open-source corpus so far. It encompasses four underrepresented languages, i.e., Tibetan, Uyghur, Kazakh in the Kazakh Arabic script, and Mongolian in the traditional Mongolian script. Notably, two writing systems in MC^2 are long neglected in previous corpora. As we identify serious contamination in the low-resource language split in the existing multilingual corpora, we propose a quality-centric solution for collecting MC^2, prioritizing quality and accuracy while enhancing representativeness and diversity. By in-depth analysis, we demonstrate the new research challenges MC^2 brings, such as long-text modeling and multiplicity of writing systems. We hope MC^2 can help enhance the equity of the underrepresented languages in China and provide a reliable data foundation for further research on low-resource languages.
The Computational and Latency Advantage of Quantum Communication Networks
This article summarises the current status of classical communication networks and identifies some critical open research challenges that can only be solved by leveraging quantum technologies. By now, the main goal of quantum communication networks has been security. However, quantum networks can do more than just exchange secure keys or serve the needs of quantum computers. In fact, the scientific community is still investigating on the possible use cases/benefits that quantum communication networks can bring. Thus, this article aims at pointing out and clearly describing how quantum communication networks can enhance in-network distributed computing and reduce the overall end-to-end latency, beyond the intrinsic limits of classical technologies. Furthermore, we also explain how entanglement can reduce the communication complexity (overhead) that future classical virtualised networks will experience.
Larimar: Large Language Models with Episodic Memory Control
Efficient and accurate updating of knowledge stored in Large Language Models (LLMs) is one of the most pressing research challenges today. This paper presents Larimar - a novel, brain-inspired architecture for enhancing LLMs with a distributed episodic memory. Larimar's memory allows for dynamic, one-shot updates of knowledge without the need for computationally expensive re-training or fine-tuning. Experimental results on multiple fact editing benchmarks demonstrate that Larimar attains accuracy comparable to most competitive baselines, even in the challenging sequential editing setup, but also excels in speed - yielding speed-ups of 4-10x depending on the base LLM - as well as flexibility due to the proposed architecture being simple, LLM-agnostic, and hence general. We further provide mechanisms for selective fact forgetting and input context length generalization with Larimar and show their effectiveness.
Decoding the Sociotechnical Dimensions of Digital Misinformation: A Comprehensive Literature Review
This paper presents a systematic literature review in Computer Science that provide an overview of the initiatives related to digital misinformation. This is an exploratory study that covers research from 1993 to 2020, focusing on the investigation of the phenomenon of misinformation. The review consists of 788 studies from SCOPUS, IEEE, and ACM digital libraries, synthesizing the primary research directions and sociotechnical challenges. These challenges are classified into Physical, Empirical, Syntactic, Semantic, Pragmatic, and Social dimensions, drawing from Organizational Semiotics. The mapping identifies issues related to the concept of misinformation, highlights deficiencies in mitigation strategies, discusses challenges in approaching stakeholders, and unveils various sociotechnical aspects relevant to understanding and mitigating the harmful effects of digital misinformation. As contributions, this study present a novel categorization of mitigation strategies, a sociotechnical taxonomy for classifying types of false information and elaborate on the inter-relation of sociotechnical aspects and their impacts.
Automatic Evaluation and Moderation of Open-domain Dialogue Systems
The development of Open-Domain Dialogue Systems (ODS)is a trending topic due to the large number of research challenges, large societal and business impact, and advances in the underlying technology. However, the development of these kinds of systems requires two important characteristics:1) automatic evaluation mechanisms that show high correlations with human judgements across multiple dialogue evaluation aspects (with explainable features for providing constructive and explicit feedback on the quality of generative models' responses for quick development and deployment)and 2) mechanisms that can help to control chatbot responses,while avoiding toxicity and employing intelligent ways to handle toxic user comments and keeping interaction flow and engagement. This track at the 10th Dialogue System Technology Challenge (DSTC10) is part of the ongoing effort to promote scalable and toxic-free ODS. This paper describes the datasets and baselines provided to participants, as well as submission evaluation results for each of the two proposed subtasks.
Multi-Platform Aggregated Dataset of Online Communities (MADOC)
The Multi-platform Aggregated Dataset of Online Communities (MADOC) is a comprehensive dataset that facilitates computational social science research by providing FAIR-compliant standardized access to cross-platform analysis of online social dynamics. MADOC aggregates and standardizes data from Bluesky, Koo, Reddit, and Voat (2012-2024), containing 18.9 million posts, 236 million comments, and 23.1 million unique users. The dataset enables comparative studies of toxic behavior evolution across platforms through standardized interaction records and sentiment analysis. By providing UUID-anonymized user histories and temporal alignment of banned communities' activity patterns, MADOC supports research on content moderation impacts and platform migration trends. Distributed via Zenodo with persistent identifiers and Python/R toolkits, the dataset adheres to FAIR principles while addressing post-API-era research challenges through ethical aggregation of public social media archives.
MineRL: A Large-Scale Dataset of Minecraft Demonstrations
The sample inefficiency of standard deep reinforcement learning methods precludes their application to many real-world problems. Methods which leverage human demonstrations require fewer samples but have been researched less. As demonstrated in the computer vision and natural language processing communities, large-scale datasets have the capacity to facilitate research by serving as an experimental and benchmarking platform for new methods. However, existing datasets compatible with reinforcement learning simulators do not have sufficient scale, structure, and quality to enable the further development and evaluation of methods focused on using human examples. Therefore, we introduce a comprehensive, large-scale, simulator-paired dataset of human demonstrations: MineRL. The dataset consists of over 60 million automatically annotated state-action pairs across a variety of related tasks in Minecraft, a dynamic, 3D, open-world environment. We present a novel data collection scheme which allows for the ongoing introduction of new tasks and the gathering of complete state information suitable for a variety of methods. We demonstrate the hierarchality, diversity, and scale of the MineRL dataset. Further, we show the difficulty of the Minecraft domain along with the potential of MineRL in developing techniques to solve key research challenges within it.
SigmaCollab: An Application-Driven Dataset for Physically Situated Collaboration
We introduce SigmaCollab, a dataset enabling research on physically situated human-AI collaboration. The dataset consists of a set of 85 sessions in which untrained participants were guided by a mixed-reality assistive AI agent in performing procedural tasks in the physical world. SigmaCollab includes a set of rich, multimodal data streams, such as the participant and system audio, egocentric camera views from the head-mounted device, depth maps, head, hand and gaze tracking information, as well as additional annotations performed post-hoc. While the dataset is relatively small in size (~ 14 hours), its application-driven and interactive nature brings to the fore novel research challenges for human-AI collaboration, and provides more realistic testing grounds for various AI models operating in this space. In future work, we plan to use the dataset to construct a set of benchmarks for physically situated collaboration in mixed-reality task assistive scenarios. SigmaCollab is available at https://github.com/microsoft/SigmaCollab.
Satlas: A Large-Scale Dataset for Remote Sensing Image Understanding
Remote sensing images are useful for a wide variety of earth monitoring applications, from tracking deforestation to tackling illegal fishing. The earth is extremely diverse -- the amount of potential tasks in remote sensing images is massive, and the sizes of features range from several kilometers to just tens of centimeters. However, creating generalizable computer vision methods is a challenge in part due to the lack of a large-scale dataset that captures these diverse features for many tasks. In this paper, we present Satlas, a remote sensing dataset and benchmark that is large in both breadth and scale, comprising 302M labels under 137 categories and seven label types. We evaluate eight baselines and a proposed method on Satlas, and find that there is substantial room for improvement in addressing research challenges specific to remote sensing, including processing image time series that consist of images from very different types of sensors, and taking advantage of long-range spatial context. Moreover, we find that pre-training on Satlas substantially improves performance on downstream tasks, increasing average accuracy by 18% over ImageNet and 6% over the next best baseline.
Cost-Based Goal Recognition Meets Deep Learning
The ability to observe the effects of actions performed by others and to infer their intent, most likely goals, or course of action, is known as a plan or intention recognition cognitive capability and has long been one of the fundamental research challenges in AI. Deep learning has recently been making significant inroads on various pattern recognition problems, except for intention recognition. While extensively explored since the seventies, the problem remains unsolved for most interesting cases in various areas, ranging from natural language understanding to human behavior understanding based on video feeds. This paper compares symbolic inverse planning, one of the most investigated approaches to goal recognition, to deep learning using CNN and LTSM neural network architectures, on five synthetic benchmarks often used in the literature. The results show that the deep learning approach achieves better goal-prediction accuracy and timeliness than the symbolic cost-based plan recognizer in these domains. Although preliminary, these results point to interesting future research avenues.
Large Language Models: A Survey
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks, since the release of ChatGPT in November 2022. LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data, as predicted by scaling laws kaplan2020scaling,hoffmann2022training. The research area of LLMs, while very recent, is evolving rapidly in many different ways. In this paper, we review some of the most prominent LLMs, including three popular LLM families (GPT, LLaMA, PaLM), and discuss their characteristics, contributions and limitations. We also give an overview of techniques developed to build, and augment LLMs. We then survey popular datasets prepared for LLM training, fine-tuning, and evaluation, review widely used LLM evaluation metrics, and compare the performance of several popular LLMs on a set of representative benchmarks. Finally, we conclude the paper by discussing open challenges and future research directions.
Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and 10+ machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications.
Fake Artificial Intelligence Generated Contents (FAIGC): A Survey of Theories, Detection Methods, and Opportunities
In recent years, generative artificial intelligence models, represented by Large Language Models (LLMs) and Diffusion Models (DMs), have revolutionized content production methods. These artificial intelligence-generated content (AIGC) have become deeply embedded in various aspects of daily life and work. However, these technologies have also led to the emergence of Fake Artificial Intelligence Generated Content (FAIGC), posing new challenges in distinguishing genuine information. It is crucial to recognize that AIGC technology is akin to a double-edged sword; its potent generative capabilities, while beneficial, also pose risks for the creation and dissemination of FAIGC. In this survey, We propose a new taxonomy that provides a more comprehensive breakdown of the space of FAIGC methods today. Next, we explore the modalities and generative technologies of FAIGC. We introduce FAIGC detection methods and summarize the related benchmark from various perspectives. Finally, we discuss outstanding challenges and promising areas for future research.
Topologies of Reasoning: Demystifying Chains, Trees, and Graphs of Thoughts
The field of natural language processing (NLP) has witnessed significant progress in recent years, with a notable focus on improving large language models' (LLM) performance through innovative prompting techniques. Among these, prompt engineering coupled with structures has emerged as a promising paradigm, with designs such as Chain-of-Thought, Tree of Thoughts, or Graph of Thoughts, in which the overall LLM reasoning is guided by a structure such as a graph. As illustrated with numerous examples, this paradigm significantly enhances the LLM's capability to solve numerous tasks, ranging from logical or mathematical reasoning to planning or creative writing. To facilitate the understanding of this growing field and pave the way for future developments, we devise a general blueprint for effective and efficient LLM reasoning schemes. For this, we conduct an in-depth analysis of the prompt execution pipeline, clarifying and clearly defining different concepts. We then build the first taxonomy of structure-enhanced LLM reasoning schemes. We focus on identifying fundamental classes of harnessed structures, and we analyze the representations of these structures, algorithms executed with these structures, and many others. We refer to these structures as reasoning topologies, because their representation becomes to a degree spatial, as they are contained within the LLM context. Our study compares existing prompting schemes using the proposed taxonomy, discussing how certain design choices lead to different patterns in performance and cost. We also outline theoretical underpinnings, relationships between prompting and others parts of the LLM ecosystem such as knowledge bases, and the associated research challenges. Our work will help to advance future prompt engineering techniques.
Knowledge Engineering using Large Language Models
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.
Source Code Data Augmentation for Deep Learning: A Survey
The increasingly popular adoption of deep learning models in many critical source code tasks motivates the development of data augmentation (DA) techniques to enhance training data and improve various capabilities (e.g., robustness and generalizability) of these models. Although a series of DA methods have been proposed and tailored for source code models, there lacks a comprehensive survey and examination to understand their effectiveness and implications. This paper fills this gap by conducting a comprehensive and integrative survey of data augmentation for source code, wherein we systematically compile and encapsulate existing literature to provide a comprehensive overview of the field. We start with an introduction of data augmentation in source code and then provide a discussion on major representative approaches. Next, we highlight the general strategies and techniques to optimize the DA quality. Subsequently, we underscore techniques useful in real-world source code scenarios and downstream tasks. Finally, we outline the prevailing challenges and potential opportunities for future research. In essence, we aim to demystify the corpus of existing literature on source code DA for deep learning, and foster further exploration in this sphere. Complementing this, we present a continually updated GitHub repository that hosts a list of update-to-date papers on DA for source code modeling, accessible at https://github.com/terryyz/DataAug4Code.
Diffusion Model-Based Video Editing: A Survey
The rapid development of diffusion models (DMs) has significantly advanced image and video applications, making "what you want is what you see" a reality. Among these, video editing has gained substantial attention and seen a swift rise in research activity, necessitating a comprehensive and systematic review of the existing literature. This paper reviews diffusion model-based video editing techniques, including theoretical foundations and practical applications. We begin by overviewing the mathematical formulation and image domain's key methods. Subsequently, we categorize video editing approaches by the inherent connections of their core technologies, depicting evolutionary trajectory. This paper also dives into novel applications, including point-based editing and pose-guided human video editing. Additionally, we present a comprehensive comparison using our newly introduced V2VBench. Building on the progress achieved to date, the paper concludes with ongoing challenges and potential directions for future research.
Prompting Frameworks for Large Language Models: A Survey
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at https://github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
One missing piece in Vision and Language: A Survey on Comics Understanding
Vision-language models have recently evolved into versatile systems capable of high performance across a range of tasks, such as document understanding, visual question answering, and grounding, often in zero-shot settings. Comics Understanding, a complex and multifaceted field, stands to greatly benefit from these advances. Comics, as a medium, combine rich visual and textual narratives, challenging AI models with tasks that span image classification, object detection, instance segmentation, and deeper narrative comprehension through sequential panels. However, the unique structure of comics -- characterized by creative variations in style, reading order, and non-linear storytelling -- presents a set of challenges distinct from those in other visual-language domains. In this survey, we present a comprehensive review of Comics Understanding from both dataset and task perspectives. Our contributions are fivefold: (1) We analyze the structure of the comics medium, detailing its distinctive compositional elements; (2) We survey the widely used datasets and tasks in comics research, emphasizing their role in advancing the field; (3) We introduce the Layer of Comics Understanding (LoCU) framework, a novel taxonomy that redefines vision-language tasks within comics and lays the foundation for future work; (4) We provide a detailed review and categorization of existing methods following the LoCU framework; (5) Finally, we highlight current research challenges and propose directions for future exploration, particularly in the context of vision-language models applied to comics. This survey is the first to propose a task-oriented framework for comics intelligence and aims to guide future research by addressing critical gaps in data availability and task definition. A project associated with this survey is available at https://github.com/emanuelevivoli/awesome-comics-understanding.
Vision-Language Models for Vision Tasks: A Survey
Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks (DNNs) training, and they usually train a DNN for each single visual recognition task, leading to a laborious and time-consuming visual recognition paradigm. To address the two challenges, Vision-Language Models (VLMs) have been intensively investigated recently, which learns rich vision-language correlation from web-scale image-text pairs that are almost infinitely available on the Internet and enables zero-shot predictions on various visual recognition tasks with a single VLM. This paper provides a systematic review of visual language models for various visual recognition tasks, including: (1) the background that introduces the development of visual recognition paradigms; (2) the foundations of VLM that summarize the widely-adopted network architectures, pre-training objectives, and downstream tasks; (3) the widely-adopted datasets in VLM pre-training and evaluations; (4) the review and categorization of existing VLM pre-training methods, VLM transfer learning methods, and VLM knowledge distillation methods; (5) the benchmarking, analysis and discussion of the reviewed methods; (6) several research challenges and potential research directions that could be pursued in the future VLM studies for visual recognition. A project associated with this survey has been created at https://github.com/jingyi0000/VLM_survey.
Layered gradient accumulation and modular pipeline parallelism: fast and efficient training of large language models
The advent of the transformer has sparked a quick growth in the size of language models, far outpacing hardware improvements. (Dense) transformers are expected to reach the trillion-parameter scale in the near future, for which training requires thousands or even tens of thousands of GPUs. We investigate the challenges of training at this scale and beyond on commercially available hardware. In particular, we analyse the shortest possible training time for different configurations of distributed training, leveraging empirical scaling laws for language models to estimate the optimal (critical) batch size. Contrary to popular belief, we find no evidence for a memory wall, and instead argue that the real limitation -- other than the cost -- lies in the training duration. In addition to this analysis, we introduce two new methods, layered gradient accumulation and modular pipeline parallelism, which together cut the shortest training time by half. The methods also reduce data movement, lowering the network requirement to a point where a fast InfiniBand connection is not necessary. This increased network efficiency also improve on the methods introduced with the ZeRO optimizer, reducing the memory usage to a tiny fraction of the available GPU memory.
CrowdSpeech and VoxDIY: Benchmark Datasets for Crowdsourced Audio Transcription
Domain-specific data is the crux of the successful transfer of machine learning systems from benchmarks to real life. In simple problems such as image classification, crowdsourcing has become one of the standard tools for cheap and time-efficient data collection: thanks in large part to advances in research on aggregation methods. However, the applicability of crowdsourcing to more complex tasks (e.g., speech recognition) remains limited due to the lack of principled aggregation methods for these modalities. The main obstacle towards designing aggregation methods for more advanced applications is the absence of training data, and in this work, we focus on bridging this gap in speech recognition. For this, we collect and release CrowdSpeech -- the first publicly available large-scale dataset of crowdsourced audio transcriptions. Evaluation of existing and novel aggregation methods on our data shows room for improvement, suggesting that our work may entail the design of better algorithms. At a higher level, we also contribute to the more general challenge of developing the methodology for reliable data collection via crowdsourcing. In that, we design a principled pipeline for constructing datasets of crowdsourced audio transcriptions in any novel domain. We show its applicability on an under-resourced language by constructing VoxDIY -- a counterpart of CrowdSpeech for the Russian language. We also release the code that allows a full replication of our data collection pipeline and share various insights on best practices of data collection via crowdsourcing.
Toward Unsupervised Realistic Visual Question Answering
The problem of realistic VQA (RVQA), where a model has to reject unanswerable questions (UQs) and answer answerable ones (AQs), is studied. We first point out 2 drawbacks in current RVQA research, where (1) datasets contain too many unchallenging UQs and (2) a large number of annotated UQs are required for training. To resolve the first drawback, we propose a new testing dataset, RGQA, which combines AQs from an existing VQA dataset with around 29K human-annotated UQs. These UQs consist of both fine-grained and coarse-grained image-question pairs generated with 2 approaches: CLIP-based and Perturbation-based. To address the second drawback, we introduce an unsupervised training approach. This combines pseudo UQs obtained by randomly pairing images and questions, with an RoI Mixup procedure to generate more fine-grained pseudo UQs, and model ensembling to regularize model confidence. Experiments show that using pseudo UQs significantly outperforms RVQA baselines. RoI Mixup and model ensembling further increase the gain. Finally, human evaluation reveals a performance gap between humans and models, showing that more RVQA research is needed.
3D Question Answering for City Scene Understanding
3D multimodal question answering (MQA) plays a crucial role in scene understanding by enabling intelligent agents to comprehend their surroundings in 3D environments. While existing research has primarily focused on indoor household tasks and outdoor roadside autonomous driving tasks, there has been limited exploration of city-level scene understanding tasks. Furthermore, existing research faces challenges in understanding city scenes, due to the absence of spatial semantic information and human-environment interaction information at the city level.To address these challenges, we investigate 3D MQA from both dataset and method perspectives. From the dataset perspective, we introduce a novel 3D MQA dataset named City-3DQA for city-level scene understanding, which is the first dataset to incorporate scene semantic and human-environment interactive tasks within the city. From the method perspective, we propose a Scene graph enhanced City-level Understanding method (Sg-CityU), which utilizes the scene graph to introduce the spatial semantic. A new benchmark is reported and our proposed Sg-CityU achieves accuracy of 63.94 % and 63.76 % in different settings of City-3DQA. Compared to indoor 3D MQA methods and zero-shot using advanced large language models (LLMs), Sg-CityU demonstrates state-of-the-art (SOTA) performance in robustness and generalization.
Toward Embodied AGI: A Review of Embodied AI and the Road Ahead
Artificial General Intelligence (AGI) is often envisioned as inherently embodied. With recent advances in robotics and foundational AI models, we stand at the threshold of a new era-one marked by increasingly generalized embodied AI systems. This paper contributes to the discourse by introducing a systematic taxonomy of Embodied AGI spanning five levels (L1-L5). We review existing research and challenges at the foundational stages (L1-L2) and outline the key components required to achieve higher-level capabilities (L3-L5). Building on these insights and existing technologies, we propose a conceptual framework for an L3+ robotic brain, offering both a technical outlook and a foundation for future exploration.
Challenges and Research Directions from the Operational Use of a Machine Learning Damage Assessment System via Small Uncrewed Aerial Systems at Hurricanes Debby and Helene
This paper details four principal challenges encountered with machine learning (ML) damage assessment using small uncrewed aerial systems (sUAS) at Hurricanes Debby and Helene that prevented, degraded, or delayed the delivery of data products during operations and suggests three research directions for future real-world deployments. The presence of these challenges is not surprising given that a review of the literature considering both datasets and proposed ML models suggests this is the first sUAS-based ML system for disaster damage assessment actually deployed as a part of real-world operations. The sUAS-based ML system was applied by the State of Florida to Hurricanes Helene (2 orthomosaics, 3.0 gigapixels collected over 2 sorties by a Wintra WingtraOne sUAS) and Debby (1 orthomosaic, 0.59 gigapixels collected via 1 sortie by a Wintra WingtraOne sUAS) in Florida. The same model was applied to crewed aerial imagery of inland flood damage resulting from post-tropical remnants of Hurricane Debby in Pennsylvania (436 orthophotos, 136.5 gigapixels), providing further insights into the advantages and limitations of sUAS for disaster response. The four challenges (variationin spatial resolution of input imagery, spatial misalignment between imagery and geospatial data, wireless connectivity, and data product format) lead to three recommendations that specify research needed to improve ML model capabilities to accommodate the wide variation of potential spatial resolutions used in practice, handle spatial misalignment, and minimize the dependency on wireless connectivity. These recommendations are expected to improve the effective operational use of sUAS and sUAS-based ML damage assessment systems for disaster response.
Current Challenges and Visions in Music Recommender Systems Research
Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.
Report from the NSF Future Directions Workshop on Automatic Evaluation of Dialog: Research Directions and Challenges
This is a report on the NSF Future Directions Workshop on Automatic Evaluation of Dialog. The workshop explored the current state of the art along with its limitations and suggested promising directions for future work in this important and very rapidly changing area of research.
Challenges and Complexities in Machine Learning based Credit Card Fraud Detection
Credit cards play an exploding role in modern economies. Its popularity and ubiquity have created a fertile ground for fraud, assisted by the cross boarder reach and instantaneous confirmation. While transactions are growing, the fraud percentages are also on the rise as well as the true cost of a dollar fraud. Volume of transactions, uniqueness of frauds and ingenuity of the fraudster are main challenges in detecting frauds. The advent of machine learning, artificial intelligence and big data has opened up new tools in the fight against frauds. Given past transactions, a machine learning algorithm has the ability to 'learn' infinitely complex characteristics in order to identify frauds in real-time, surpassing the best human investigators. However, the developments in fraud detection algorithms has been challenging and slow due the massively unbalanced nature of fraud data, absence of benchmarks and standard evaluation metrics to identify better performing classifiers, lack of sharing and disclosure of research findings and the difficulties in getting access to confidential transaction data for research. This work investigates the properties of typical massively imbalanced fraud data sets, their availability, suitability for research use while exploring the widely varying nature of fraud distributions. Furthermore, we show how human annotation errors compound with machine classification errors. We also carry out experiments to determine the effect of PCA obfuscation (as a means of disseminating sensitive transaction data for research and machine learning) on algorithmic performance of classifiers and show that while PCA does not significantly degrade performance, care should be taken to use the appropriate principle component size (dimensions) to avoid overfitting.
Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends
The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting PTMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.
Machine Learning Methods for the Design and Operation of Liquid Rocket Engines -- Research Activities at the DLR Institute of Space Propulsion
The last years have witnessed an enormous interest in the use of artificial intelligence methods, especially machine learning algorithms. This also has a major impact on aerospace engineering in general, and the design and operation of liquid rocket engines in particular, and research in this area is growing rapidly. The paper describes current machine learning applications at the DLR Institute of Space Propulsion. Not only applications in the field of modeling are presented, but also convincing results that prove the capabilities of machine learning methods for control and condition monitoring are described in detail. Furthermore, the advantages and disadvantages of the presented methods as well as current and future research directions are discussed.
Trends, Applications, and Challenges in Human Attention Modelling
Human attention modelling has proven, in recent years, to be particularly useful not only for understanding the cognitive processes underlying visual exploration, but also for providing support to artificial intelligence models that aim to solve problems in various domains, including image and video processing, vision-and-language applications, and language modelling. This survey offers a reasoned overview of recent efforts to integrate human attention mechanisms into contemporary deep learning models and discusses future research directions and challenges. For a comprehensive overview on the ongoing research refer to our dedicated repository available at https://github.com/aimagelab/awesome-human-visual-attention.
Compose and Fuse: Revisiting the Foundational Bottlenecks in Multimodal Reasoning
Multimodal large language models (MLLMs) promise enhanced reasoning by integrating diverse inputs such as text, vision, and audio. Yet cross-modal reasoning remains underexplored, with conflicting reports on whether added modalities help or harm performance. These inconsistencies stem from a lack of controlled evaluation frameworks and analysis of models' internals to isolate when and why modality interactions support or undermine reasoning. We address this gap through a logic-grounded evaluation framework that categorizes multimodal reasoning into six interaction patterns, varying how facts are distributed across modalities and logically combined. Empirically, additional modalities enhance reasoning only when they provide independent and sufficient reasoning paths, while redundant or chained entailment support often hurts performance. Moreover, reasoning degrades in three systematic ways: weaker modalities drag down overall performance, conflicts bias preference toward certain modalities, and joint signals from different modalities fail to be integrated effectively. Therefore, we identify two core failures: task-composition bottleneck, where recognition and reasoning cannot be jointly executed in one pass, and fusion bottleneck, where early integration introduces bias. For further investigation, we find that attention patterns fail to encode fact usefulness, but a simple two-step prompting (recognize then reason) restores performance, confirming the task-composition bottleneck. Moreover, modality identity remains recoverable in early layers, and softening attention in early fusion improves reasoning, highlighting biased fusion as another failure mode. Overall, our findings show that integration, not perception, is the main barrier to multimodal reasoning, suggesting composition-aware training and early fusion control as promising directions.
Robot Learning with Sparsity and Scarcity
Unlike in language or vision, one of the fundamental challenges in robot learning is the lack of access to vast data resources. We can further break down the problem into (1) data sparsity from the angle of data representation and (2) data scarcity from the angle of data quantity. In this thesis, I will discuss selected works on two domains: (1) tactile sensing and (2) rehabilitation robots, which are exemplars of data sparsity and scarcity, respectively. Tactile sensing is an essential modality for robotics, but tactile data are often sparse, and for each interaction with the physical world, tactile sensors can only obtain information about the local area of contact. I will discuss my work on learning vision-free tactile-only exploration and manipulation policies through model-free reinforcement learning to make efficient use of sparse tactile information. On the other hand, rehabilitation robots are an example of data scarcity to the extreme due to the significant challenge of collecting biosignals from disabled-bodied subjects at scale for training. I will discuss my work in collaboration with the medical school and clinicians on intent inferral for stroke survivors, where a hand orthosis developed in our lab collects a set of biosignals from the patient and uses them to infer the activity that the patient intends to perform, so the orthosis can provide the right type of physical assistance at the right moment. My work develops machine learning algorithms that enable intent inferral with minimal data, including semi-supervised, meta-learning, and generative AI methods.
LLM-as-a-Coauthor: Can Mixed Human-Written and Machine-Generated Text Be Detected?
With the rapid development and widespread application of Large Language Models (LLMs), the use of Machine-Generated Text (MGT) has become increasingly common, bringing with it potential risks, especially in terms of quality and integrity in fields like news, education, and science. Current research mainly focuses on purely MGT detection without adequately addressing mixed scenarios, including AI-revised Human-Written Text (HWT) or human-revised MGT. To tackle this challenge, we define mixtext, a form of mixed text involving both AI and human-generated content. Then, we introduce MixSet, the first dataset dedicated to studying these mixtext scenarios. Leveraging MixSet, we executed comprehensive experiments to assess the efficacy of prevalent MGT detectors in handling mixtext situations, evaluating their performance in terms of effectiveness, robustness, and generalization. Our findings reveal that existing detectors struggle to identify mixtext, particularly in dealing with subtle modifications and style adaptability. This research underscores the urgent need for more fine-grain detectors tailored for mixtext, offering valuable insights for future research. Code and Models are available at https://github.com/Dongping-Chen/MixSet.
Quantum machine learning for image classification
Image classification, a pivotal task in multiple industries, faces computational challenges due to the burgeoning volume of visual data. This research addresses these challenges by introducing two quantum machine learning models that leverage the principles of quantum mechanics for effective computations. Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era, where circuits with a large number of qubits are currently infeasible. This model demonstrated a record-breaking classification accuracy of 99.21% on the full MNIST dataset, surpassing the performance of known quantum-classical models, while having eight times fewer parameters than its classical counterpart. Also, the results of testing this hybrid model on a Medical MNIST (classification accuracy over 99%), and on CIFAR-10 (classification accuracy over 82%), can serve as evidence of the generalizability of the model and highlights the efficiency of quantum layers in distinguishing common features of input data. Our second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process. The model matches the performance of its classical counterpart, having four times fewer trainable parameters, and outperforms a classical model with equal weight parameters. These models represent advancements in quantum machine learning research and illuminate the path towards more accurate image classification systems.
Enterprise-Grade Security for the Model Context Protocol (MCP): Frameworks and Mitigation Strategies
The Model Context Protocol (MCP), introduced by Anthropic, provides a standardized framework for artificial intelligence (AI) systems to interact with external data sources and tools in real-time. While MCP offers significant advantages for AI integration and capability extension, it introduces novel security challenges that demand rigorous analysis and mitigation. This paper builds upon foundational research into MCP architecture and preliminary security assessments to deliver enterprise-grade mitigation frameworks and detailed technical implementation strategies. Through systematic threat modeling and analysis of MCP implementations and analysis of potential attack vectors, including sophisticated threats like tool poisoning, we present actionable security patterns tailored for MCP implementers and adopters. The primary contribution of this research lies in translating theoretical security concerns into a practical, implementable framework with actionable controls, thereby providing essential guidance for the secure enterprise adoption and governance of integrated AI systems.
RAG-RL: Advancing Retrieval-Augmented Generation via RL and Curriculum Learning
Recent research highlights the challenges retrieval models face in retrieving useful contexts and the limitations of generation models in effectively utilizing those contexts in retrieval-augmented generation (RAG) settings. To address these challenges, we introduce RAG-RL, the first reasoning language model (RLM) specifically trained for RAG. RAG-RL demonstrates that stronger answer generation models can identify relevant contexts within larger sets of retrieved information -- thereby alleviating the burden on retrievers -- while also being able to utilize those contexts more effectively. Moreover, we show that curriculum design in the reinforcement learning (RL) post-training process is a powerful approach to enhancing model performance. We benchmark our method on two open-domain question-answering datasets and achieve state-of-the-art results, surpassing previous SOTA generative reader models. In addition, we offers empirical insights into various curriculum learning strategies, providing a deeper understanding of their impact on model performance.
BirdSet: A Multi-Task Benchmark for Classification in Avian Bioacoustics
Deep learning (DL) models have emerged as a powerful tool in avian bioacoustics to diagnose environmental health and biodiversity. However, inconsistencies in research pose notable challenges hindering progress in this domain. Reliable DL models need to analyze bird calls flexibly across various species and environments to fully harness the potential of bioacoustics in a cost-effective passive acoustic monitoring scenario. Data fragmentation and opacity across studies complicate a comprehensive evaluation of general model performance. To overcome these challenges, we present the BirdSet benchmark, a unified framework consolidating research efforts with a holistic approach for classifying bird vocalizations in avian bioacoustics. BirdSet harmonizes open-source bird recordings into a curated dataset collection. This unified approach provides an in-depth understanding of model performance and identifies potential shortcomings across different tasks. By establishing baseline results of current models, BirdSet aims to facilitate comparability, guide subsequent data collection, and increase accessibility for newcomers to avian bioacoustics.
Applications of machine Learning to improve the efficiency and range of microbial biosynthesis: a review of state-of-art techniques
In the modern world, technology is at its peak. Different avenues in programming and technology have been explored for data analysis, automation, and robotics. Machine learning is key to optimize data analysis, make accurate predictions, and hasten/improve existing functions. Thus, presently, the field of machine learning in artificial intelligence is being developed and its uses in varying fields are being explored. One field in which its uses stand out is that of microbial biosynthesis. In this paper, a comprehensive overview of the differing machine learning programs used in biosynthesis is provided, alongside brief descriptions of the fields of machine learning and microbial biosynthesis separately. This information includes past trends, modern developments, future improvements, explanations of processes, and current problems they face. Thus, this paper's main contribution is to distill developments in, and provide a holistic explanation of, 2 key fields and their applicability to improve industry/research. It also highlights challenges and research directions, acting to instigate more research and development in the growing fields. Finally, the paper aims to act as a reference for academics performing research, industry professionals improving their processes, and students looking to understand the concept of machine learning in biosynthesis.
SemanticCite: Citation Verification with AI-Powered Full-Text Analysis and Evidence-Based Reasoning
Effective scientific communication depends on accurate citations that validate sources and guide readers to supporting evidence. Yet academic literature faces mounting challenges: semantic citation errors that misrepresent sources, AI-generated hallucinated references, and traditional citation formats that point to entire papers without indicating which sections substantiate specific claims. We introduce SemanticCite, an AI-powered system that verifies citation accuracy through full-text source analysis while providing rich contextual information via detailed reasoning and relevant text snippets. Our approach combines multiple retrieval methods with a four-class classification system (Supported, Partially Supported, Unsupported, Uncertain) that captures nuanced claim-source relationships and enables appropriate remedial actions for different error types. Our experiments show that fine-tuned lightweight language models achieve performance comparable to large commercial systems with significantly lower computational requirements, making large-scale citation verification practically feasible. The system provides transparent, evidence-based explanations that support user understanding and trust. We contribute a comprehensive dataset of over 1,000 citations with detailed alignments, functional classifications, semantic annotations, and bibliometric metadata across eight disciplines, alongside fine-tuned models and the complete verification framework as open-source software. SemanticCite addresses critical challenges in research integrity through scalable citation verification, streamlined peer review, and quality control for AI-generated content, providing an open-source foundation for maintaining citation accuracy at scale.
Foundational Models Defining a New Era in Vision: A Survey and Outlook
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world. The complex relations between objects and their locations, ambiguities, and variations in the real-world environment can be better described in human language, naturally governed by grammatical rules and other modalities such as audio and depth. The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time. These models are referred to as foundational models. The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions. In this survey, we provide a comprehensive review of such emerging foundational models, including typical architecture designs to combine different modalities (vision, text, audio, etc), training objectives (contrastive, generative), pre-training datasets, fine-tuning mechanisms, and the common prompting patterns; textual, visual, and heterogeneous. We discuss the open challenges and research directions for foundational models in computer vision, including difficulties in their evaluations and benchmarking, gaps in their real-world understanding, limitations of their contextual understanding, biases, vulnerability to adversarial attacks, and interpretability issues. We review recent developments in this field, covering a wide range of applications of foundation models systematically and comprehensively. A comprehensive list of foundational models studied in this work is available at https://github.com/awaisrauf/Awesome-CV-Foundational-Models.
SEW: Self-Evolving Agentic Workflows for Automated Code Generation
Large Language Models (LLMs) have demonstrated effectiveness in code generation tasks. To enable LLMs to address more complex coding challenges, existing research has focused on crafting multi-agent systems with agentic workflows, where complex coding tasks are decomposed into sub-tasks, assigned to specialized agents. Despite their effectiveness, current approaches heavily rely on hand-crafted agentic workflows, with both agent topologies and prompts manually designed, which limits their ability to automatically adapt to different types of coding problems. To address these limitations and enable automated workflow design, we propose Self-Evolving Workflow (SEW), a novel self-evolving framework that automatically generates and optimises multi-agent workflows. Extensive experiments on three coding benchmark datasets, including the challenging LiveCodeBench, demonstrate that our SEW can automatically design agentic workflows and optimise them through self-evolution, bringing up to 33\% improvement on LiveCodeBench compared to using the backbone LLM only. Furthermore, by investigating different representation schemes of workflow, we provide insights into the optimal way to encode workflow information with text.
DAiSEE: Towards User Engagement Recognition in the Wild
We introduce DAiSEE, the first multi-label video classification dataset comprising of 9068 video snippets captured from 112 users for recognizing the user affective states of boredom, confusion, engagement, and frustration in the wild. The dataset has four levels of labels namely - very low, low, high, and very high for each of the affective states, which are crowd annotated and correlated with a gold standard annotation created using a team of expert psychologists. We have also established benchmark results on this dataset using state-of-the-art video classification methods that are available today. We believe that DAiSEE will provide the research community with challenges in feature extraction, context-based inference, and development of suitable machine learning methods for related tasks, thus providing a springboard for further research. The dataset is available for download at https://people.iith.ac.in/vineethnb/resources/daisee/index.html.
AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations
Multi-task learning (MTL) aims to enhance the performance and efficiency of machine learning models by simultaneously training them on multiple tasks. However, MTL research faces two challenges: 1) effectively modeling the relationships between tasks to enable knowledge sharing, and 2) jointly learning task-specific and shared knowledge. In this paper, we present a novel model called Adaptive Task-to-Task Fusion Network (AdaTT) to address both challenges. AdaTT is a deep fusion network built with task-specific and optional shared fusion units at multiple levels. By leveraging a residual mechanism and a gating mechanism for task-to-task fusion, these units adaptively learn both shared knowledge and task-specific knowledge. To evaluate AdaTT's performance, we conduct experiments on a public benchmark and an industrial recommendation dataset using various task groups. Results demonstrate AdaTT significantly outperforms existing state-of-the-art baselines. Furthermore, our end-to-end experiments reveal that the model exhibits better performance compared to alternatives.
Exploring Recommendation Capabilities of GPT-4V(ision): A Preliminary Case Study
Large Multimodal Models (LMMs) have demonstrated impressive performance across various vision and language tasks, yet their potential applications in recommendation tasks with visual assistance remain unexplored. To bridge this gap, we present a preliminary case study investigating the recommendation capabilities of GPT-4V(ison), a recently released LMM by OpenAI. We construct a series of qualitative test samples spanning multiple domains and employ these samples to assess the quality of GPT-4V's responses within recommendation scenarios. Evaluation results on these test samples prove that GPT-4V has remarkable zero-shot recommendation abilities across diverse domains, thanks to its robust visual-text comprehension capabilities and extensive general knowledge. However, we have also identified some limitations in using GPT-4V for recommendations, including a tendency to provide similar responses when given similar inputs. This report concludes with an in-depth discussion of the challenges and research opportunities associated with utilizing GPT-4V in recommendation scenarios. Our objective is to explore the potential of extending LMMs from vision and language tasks to recommendation tasks. We hope to inspire further research into next-generation multimodal generative recommendation models, which can enhance user experiences by offering greater diversity and interactivity. All images and prompts used in this report will be accessible at https://github.com/PALIN2018/Evaluate_GPT-4V_Rec.
SciPIP: An LLM-based Scientific Paper Idea Proposer
The exponential growth of knowledge and the increasing complexity of interdisciplinary research pose significant challenges for researchers, including information overload and difficulties in exploring novel ideas. The advancements in large language models (LLMs), such as GPT-4, have shown great potential in enhancing idea proposals, but how to effectively utilize large models for reasonable idea proposal has not been thoroughly explored. This paper proposes a scientific paper idea proposer (SciPIP). Based on a user-provided research background, SciPIP retrieves helpful papers from a literature database while leveraging the capabilities of LLMs to generate more novel and feasible ideas. To this end, 1) we construct a literature retrieval database, extracting lots of papers' multi-dimension information for fast access. Then, a literature retrieval method based on semantics, entity, and citation co-occurrences is proposed to search relevant literature from multiple aspects based on the user-provided background. 2) After literature retrieval, we introduce dual-path idea proposal strategies, where one path infers solutions from the retrieved literature and the other path generates original ideas through model brainstorming. We then combine the two to achieve a good balance between feasibility and originality. Through extensive experiments on the natural language processing (NLP) field, we demonstrate that SciPIP can retrieve citations similar to those of existing top conference papers and generate many ideas consistent with them. Additionally, we evaluate the originality of other ideas generated by SciPIP using large language models, further validating the effectiveness of our proposed method. The code and the database are released at https://github.com/cheerss/SciPIP.
Vision Language Models in Autonomous Driving and Intelligent Transportation Systems
The applications of Vision-Language Models (VLMs) in the fields of Autonomous Driving (AD) and Intelligent Transportation Systems (ITS) have attracted widespread attention due to their outstanding performance and the ability to leverage Large Language Models (LLMs). By integrating language data, the vehicles, and transportation systems are able to deeply understand real-world environments, improving driving safety and efficiency. In this work, we present a comprehensive survey of the advances in language models in this domain, encompassing current models and datasets. Additionally, we explore the potential applications and emerging research directions. Finally, we thoroughly discuss the challenges and research gap. The paper aims to provide researchers with the current work and future trends of VLMs in AD and ITS.
To Compress or Not to Compress- Self-Supervised Learning and Information Theory: A Review
Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.
An Immersive Multi-Elevation Multi-Seasonal Dataset for 3D Reconstruction and Visualization
Significant progress has been made in photo-realistic scene reconstruction over recent years. Various disparate efforts have enabled capabilities such as multi-appearance or large-scale modeling; however, there lacks a welldesigned dataset that can evaluate the holistic progress of scene reconstruction. We introduce a collection of imagery of the Johns Hopkins Homewood Campus, acquired at different seasons, times of day, in multiple elevations, and across a large scale. We perform a multi-stage calibration process, which efficiently recover camera parameters from phone and drone cameras. This dataset can enable researchers to rigorously explore challenges in unconstrained settings, including effects of inconsistent illumination, reconstruction from large scale and from significantly different perspectives, etc.
Multiagent Multitraversal Multimodal Self-Driving: Open MARS Dataset
Large-scale datasets have fueled recent advancements in AI-based autonomous vehicle research. However, these datasets are usually collected from a single vehicle's one-time pass of a certain location, lacking multiagent interactions or repeated traversals of the same place. Such information could lead to transformative enhancements in autonomous vehicles' perception, prediction, and planning capabilities. To bridge this gap, in collaboration with the self-driving company May Mobility, we present the MARS dataset which unifies scenarios that enable MultiAgent, multitraveRSal, and multimodal autonomous vehicle research. More specifically, MARS is collected with a fleet of autonomous vehicles driving within a certain geographical area. Each vehicle has its own route and different vehicles may appear at nearby locations. Each vehicle is equipped with a LiDAR and surround-view RGB cameras. We curate two subsets in MARS: one facilitates collaborative driving with multiple vehicles simultaneously present at the same location, and the other enables memory retrospection through asynchronous traversals of the same location by multiple vehicles. We conduct experiments in place recognition and neural reconstruction. More importantly, MARS introduces new research opportunities and challenges such as multitraversal 3D reconstruction, multiagent perception, and unsupervised object discovery. Our data and codes can be found at https://ai4ce.github.io/MARS/.
Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis
For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.
Mimicking-Bench: A Benchmark for Generalizable Humanoid-Scene Interaction Learning via Human Mimicking
Learning generic skills for humanoid robots interacting with 3D scenes by mimicking human data is a key research challenge with significant implications for robotics and real-world applications. However, existing methodologies and benchmarks are constrained by the use of small-scale, manually collected demonstrations, lacking the general dataset and benchmark support necessary to explore scene geometry generalization effectively. To address this gap, we introduce Mimicking-Bench, the first comprehensive benchmark designed for generalizable humanoid-scene interaction learning through mimicking large-scale human animation references. Mimicking-Bench includes six household full-body humanoid-scene interaction tasks, covering 11K diverse object shapes, along with 20K synthetic and 3K real-world human interaction skill references. We construct a complete humanoid skill learning pipeline and benchmark approaches for motion retargeting, motion tracking, imitation learning, and their various combinations. Extensive experiments highlight the value of human mimicking for skill learning, revealing key challenges and research directions.
Large Language Model Enhanced Text-to-SQL Generation: A Survey
Text-to-SQL translates natural language queries into Structured Query Language (SQL) commands, enabling users to interact with databases using natural language. Essentially, the text-to-SQL task is a text generation task, and its development is primarily dependent on changes in language models. Especially with the rapid development of Large Language Models (LLMs), the pattern of text-to-SQL has undergone significant changes. Existing survey work mainly focuses on rule-based and neural-based approaches, but it still lacks a survey of Text-to-SQL with LLMs. In this paper, we survey the large language model enhanced text-to-SQL generations, classifying them into prompt engineering, fine-tuning, pre-trained, and Agent groups according to training strategies. We also summarize datasets and evaluation metrics comprehensively. This survey could help people better understand the pattern, research status, and challenges of LLM-based text-to-SQL generations.
Survey of Hallucination in Natural Language Generation
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
LEAF: A Benchmark for Federated Settings
Modern federated networks, such as those comprised of wearable devices, mobile phones, or autonomous vehicles, generate massive amounts of data each day. This wealth of data can help to learn models that can improve the user experience on each device. However, the scale and heterogeneity of federated data presents new challenges in research areas such as federated learning, meta-learning, and multi-task learning. As the machine learning community begins to tackle these challenges, we are at a critical time to ensure that developments made in these areas are grounded with realistic benchmarks. To this end, we propose LEAF, a modular benchmarking framework for learning in federated settings. LEAF includes a suite of open-source federated datasets, a rigorous evaluation framework, and a set of reference implementations, all geared towards capturing the obstacles and intricacies of practical federated environments.
Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation
Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN
Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
Numerous applications of large language models (LLMs) rely on their ability to perform step-by-step reasoning. However, the reasoning behavior of LLMs remains poorly understood, posing challenges to research, development, and safety. To address this gap, we introduce landscape of thoughts-the first visualization tool for users to inspect the reasoning paths of chain-of-thought and its derivatives on any multi-choice dataset. Specifically, we represent the states in a reasoning path as feature vectors that quantify their distances to all answer choices. These features are then visualized in two-dimensional plots using t-SNE. Qualitative and quantitative analysis with the landscape of thoughts effectively distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks. It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty. Additionally, users can adapt our tool to a model that predicts the property they observe. We showcase this advantage by adapting our tool to a lightweight verifier that evaluates the correctness of reasoning paths. The code is publicly available at: https://github.com/tmlr-group/landscape-of-thoughts.
DialogueForge: LLM Simulation of Human-Chatbot Dialogue
Collecting human-chatbot dialogues typically demands substantial manual effort and is time-consuming, which limits and poses challenges for research on conversational AI. In this work, we propose DialogueForge - a framework for generating AI-simulated conversations in human-chatbot style. To initialize each generated conversation, DialogueForge uses seed prompts extracted from real human-chatbot interactions. We test a variety of LLMs to simulate the human chatbot user, ranging from state-of-the-art proprietary models to small-scale open-source LLMs, and generate multi-turn dialogues tailored to specific tasks. In addition, we explore fine-tuning techniques to enhance the ability of smaller models to produce indistinguishable human-like dialogues. We evaluate the quality of the simulated conversations and compare different models using the UniEval and GTEval evaluation protocols. Our experiments show that large proprietary models (e.g., GPT-4o) generally outperform others in generating more realistic dialogues, while smaller open-source models (e.g., Llama, Mistral) offer promising performance with greater customization. We demonstrate that the performance of smaller models can be significantly improved by employing supervised fine-tuning techniques. Nevertheless, maintaining coherent and natural long-form human-like dialogues remains a common challenge across all models.
Decade of Natural Language Processing in Chronic Pain: A Systematic Review
In recent years, the intersection of Natural Language Processing (NLP) and public health has opened innovative pathways for investigating various domains, including chronic pain in textual datasets. Despite the promise of NLP in chronic pain, the literature is dispersed across various disciplines, and there is a need to consolidate existing knowledge, identify knowledge gaps in the literature, and inform future research directions in this emerging field. This review aims to investigate the state of the research on NLP-based interventions designed for chronic pain research. A search strategy was formulated and executed across PubMed, Web of Science, IEEE Xplore, Scopus, and ACL Anthology to find studies published in English between 2014 and 2024. After screening 132 papers, 26 studies were included in the final review. Key findings from this review underscore the significant potential of NLP techniques to address pressing challenges in chronic pain research. The past 10 years in this field have showcased the utilization of advanced methods (transformers like RoBERTa and BERT) achieving high-performance metrics (e.g., F1>0.8) in classification tasks, while unsupervised approaches like Latent Dirichlet Allocation (LDA) and k-means clustering have proven effective for exploratory analyses. Results also reveal persistent challenges such as limited dataset diversity, inadequate sample sizes, and insufficient representation of underrepresented populations. Future research studies should explore multimodal data validation systems, context-aware mechanistic modeling, and the development of standardized evaluation metrics to enhance reproducibility and equity in chronic pain research.
Generative AI in Industrial Machine Vision -- A Review
Machine vision enhances automation, quality control, and operational efficiency in industrial applications by enabling machines to interpret and act on visual data. While traditional computer vision algorithms and approaches remain widely utilized, machine learning has become pivotal in current research activities. In particular, generative AI demonstrates promising potential by improving pattern recognition capabilities, through data augmentation, increasing image resolution, and identifying anomalies for quality control. However, the application of generative AI in machine vision is still in its early stages due to challenges in data diversity, computational requirements, and the necessity for robust validation methods. A comprehensive literature review is essential to understand the current state of generative AI in industrial machine vision, focusing on recent advancements, applications, and research trends. Thus, a literature review based on the PRISMA guidelines was conducted, analyzing over 1,200 papers on generative AI in industrial machine vision. Our findings reveal various patterns in current research, with the primary use of generative AI being data augmentation, for machine vision tasks such as classification and object detection. Furthermore, we gather a collection of application challenges together with data requirements to enable a successful application of generative AI in industrial machine vision. This overview aims to provide researchers with insights into the different areas and applications within current research, highlighting significant advancements and identifying opportunities for future work.
OV-PARTS: Towards Open-Vocabulary Part Segmentation
Segmenting and recognizing diverse object parts is a crucial ability in applications spanning various computer vision and robotic tasks. While significant progress has been made in object-level Open-Vocabulary Semantic Segmentation (OVSS), i.e., segmenting objects with arbitrary text, the corresponding part-level research poses additional challenges. Firstly, part segmentation inherently involves intricate boundaries, while limited annotated data compounds the challenge. Secondly, part segmentation introduces an open granularity challenge due to the diverse and often ambiguous definitions of parts in the open world. Furthermore, the large-scale vision and language models, which play a key role in the open vocabulary setting, struggle to recognize parts as effectively as objects. To comprehensively investigate and tackle these challenges, we propose an Open-Vocabulary Part Segmentation (OV-PARTS) benchmark. OV-PARTS includes refined versions of two publicly available datasets: Pascal-Part-116 and ADE20K-Part-234. And it covers three specific tasks: Generalized Zero-Shot Part Segmentation, Cross-Dataset Part Segmentation, and Few-Shot Part Segmentation, providing insights into analogical reasoning, open granularity and few-shot adapting abilities of models. Moreover, we analyze and adapt two prevailing paradigms of existing object-level OVSS methods for OV-PARTS. Extensive experimental analysis is conducted to inspire future research in leveraging foundational models for OV-PARTS. The code and dataset are available at https://github.com/OpenRobotLab/OV_PARTS.
On the Challenges of Using Black-Box APIs for Toxicity Evaluation in Research
Perception of toxicity evolves over time and often differs between geographies and cultural backgrounds. Similarly, black-box commercially available APIs for detecting toxicity, such as the Perspective API, are not static, but frequently retrained to address any unattended weaknesses and biases. We evaluate the implications of these changes on the reproducibility of findings that compare the relative merits of models and methods that aim to curb toxicity. Our findings suggest that research that relied on inherited automatic toxicity scores to compare models and techniques may have resulted in inaccurate findings. Rescoring all models from HELM, a widely respected living benchmark, for toxicity with the recent version of the API led to a different ranking of widely used foundation models. We suggest caution in applying apples-to-apples comparisons between studies and lay recommendations for a more structured approach to evaluating toxicity over time. Code and data are available at https://github.com/for-ai/black-box-api-challenges.
The Landscape and Challenges of HPC Research and LLMs
Recently, language models (LMs), especially large language models (LLMs), have revolutionized the field of deep learning. Both encoder-decoder models and prompt-based techniques have shown immense potential for natural language processing and code-based tasks. Over the past several years, many research labs and institutions have invested heavily in high-performance computing, approaching or breaching exascale performance levels. In this paper, we posit that adapting and utilizing such language model-based techniques for tasks in high-performance computing (HPC) would be very beneficial. This study presents our reasoning behind the aforementioned position and highlights how existing ideas can be improved and adapted for HPC tasks.
Trends, Limitations and Open Challenges in Automatic Readability Assessment Research
Readability assessment is the task of evaluating the reading difficulty of a given piece of text. Although research on computational approaches to readability assessment is now two decades old, there is not much work on synthesizing this research. This article is a brief survey of contemporary research on developing computational models for readability assessment. We identify the common approaches, discuss their shortcomings, and identify some challenges for the future. Where possible, we also connect computational research with insights from related work in other disciplines such as education and psychology.
30+ Years of Source Separation Research: Achievements and Future Challenges
Source separation (SS) of acoustic signals is a research field that emerged in the mid-1990s and has flourished ever since. On the occasion of ICASSP's 50th anniversary, we review the major contributions and advancements in the past three decades in the speech, audio, and music SS research field. We will cover both single- and multi-channel SS approaches. We will also look back on key efforts to foster a culture of scientific evaluation in the research field, including challenges, performance metrics, and datasets. We will conclude by discussing current trends and future research directions.
Recent Advances, Applications, and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2023 Symposium
The third ML4H symposium was held in person on December 10, 2023, in New Orleans, Louisiana, USA. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the ML4H community. Encouraged by the successful virtual roundtables in the previous year, we organized eleven in-person roundtables and four virtual roundtables at ML4H 2022. The organization of the research roundtables at the conference involved 17 Senior Chairs and 19 Junior Chairs across 11 tables. Each roundtable session included invited senior chairs (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with interest in the session's topic. Herein we detail the organization process and compile takeaways from these roundtable discussions, including recent advances, applications, and open challenges for each topic. We conclude with a summary and lessons learned across all roundtables. This document serves as a comprehensive review paper, summarizing the recent advancements in machine learning for healthcare as contributed by foremost researchers in the field.
The Decades Progress on Code-Switching Research in NLP: A Systematic Survey on Trends and Challenges
Code-Switching, a common phenomenon in written text and conversation, has been studied over decades by the natural language processing (NLP) research community. Initially, code-switching is intensively explored by leveraging linguistic theories and, currently, more machine-learning oriented approaches to develop models. We introduce a comprehensive systematic survey on code-switching research in natural language processing to understand the progress of the past decades and conceptualize the challenges and tasks on the code-switching topic. Finally, we summarize the trends and findings and conclude with a discussion for future direction and open questions for further investigation.
Digital Twins: State of the Art Theory and Practice, Challenges, and Open Research Questions
Digital Twin was introduced over a decade ago, as an innovative all-encompassing tool, with perceived benefits including real-time monitoring, simulation and forecasting. However, the theoretical framework and practical implementations of digital twins (DT) are still far from this vision. Although successful implementations exist, sufficient implementation details are not publicly available, therefore it is difficult to assess their effectiveness, draw comparisons and jointly advance the DT methodology. This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin. Advancements in machine learning, internet of things and big data have contributed hugely to the improvements in DT with regards to its real-time monitoring and forecasting properties. Despite this progress and individual company-based efforts, certain research gaps exist in the field, which have caused delay in the widespread adoption of this concept. We reviewed relevant works and identified that the major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics. We define the necessary components of a digital twin required for a universal reference framework, which also validate its uniqueness as a concept compared to similar concepts like simulation, autonomous systems, etc. This work further assesses the digital twin applications in different domains and the current state of machine learning and big data in it. It thus answers and identifies novel research questions, both of which will help to better understand and advance the theory and practice of digital twins.
TENET: Leveraging Tests Beyond Validation for Code Generation
Test-Driven Development (TDD) is a widely adopted software engineering practice that requires developers to create and execute tests alongside code implementation, ensuring that software behavior is continuously validated and refined. In the era of vibe coding, where developers increasingly delegate code writing to large language models (LLMs) by specifying high-level intentions, TDD becomes even more crucial, as test cases serve as executable specifications that explicitly define and verify intended functionality beyond what natural-language descriptions and code context can convey. While vibe coding under TDD is promising, there are three main challenges: (1) selecting a small yet effective test suite to improve the generation accuracy and control the execution workload, (2) retrieving context such as relevant code effectively, and (3) systematically using test feedback for effective code refinement. To address these challenges, we introduce TENET, an LLM agent for generating functions in complex real-world repositories under the TDD setting. TENET features three components: (1) a novel test harness mechanism that selects a concise test suite to maximize diversity of target usage scenarios; (2) a tailored agent toolset that performs efficient retrieval of relevant code with interactive debugging; and (3) a reflection-based refinement workflow that iteratively analyzes failures, replenishes context, and applies code refinement. TENET achieves 69.08% and 81.77% Pass@1 on RepoCod and RepoEval benchmarks, outperforming the best agentic baselines by 9.49 and 2.17 percentage points, respectively. In addition, this is the first study of test-driven code generation with repository-level context, examining how different aspects of test suites affect the performance of LLM agents under the TDD setting.
OffTopicEval: When Large Language Models Enter the Wrong Chat, Almost Always!
Large Language Model (LLM) safety is one of the most pressing challenges for enabling wide-scale deployment. While most studies and global discussions focus on generic harms, such as models assisting users in harming themselves or others, enterprises face a more fundamental concern: whether LLM-based agents are safe for their intended use case. To address this, we introduce operational safety, defined as an LLM's ability to appropriately accept or refuse user queries when tasked with a specific purpose. We further propose OffTopicEval, an evaluation suite and benchmark for measuring operational safety both in general and within specific agentic use cases. Our evaluations on six model families comprising 20 open-weight LLMs reveal that while performance varies across models, all of them remain highly operationally unsafe. Even the strongest models -- Qwen-3 (235B) with 77.77\% and Mistral (24B) with 79.96\% -- fall far short of reliable operational safety, while GPT models plateau in the 62--73\% range, Phi achieves only mid-level scores (48--70\%), and Gemma and Llama-3 collapse to 39.53\% and 23.84\%, respectively. While operational safety is a core model alignment issue, to suppress these failures, we propose prompt-based steering methods: query grounding (Q-ground) and system-prompt grounding (P-ground), which substantially improve OOD refusal. Q-ground provides consistent gains of up to 23\%, while P-ground delivers even larger boosts, raising Llama-3.3 (70B) by 41\% and Qwen-3 (30B) by 27\%. These results highlight both the urgent need for operational safety interventions and the promise of prompt-based steering as a first step toward more reliable LLM-based agents.
Beyond Monolingual Assumptions: A Survey of Code-Switched NLP in the Era of Large Language Models
Code-switching (CSW), the alternation of languages and scripts within a single utterance, remains a fundamental challenge for multiling ual NLP, even amidst the rapid advances of large language models (LLMs). Most LLMs still struggle with mixed-language inputs, limited CSW datasets, and evaluation biases, hindering deployment in multilingual societies. This survey provides the first comprehensive analysis of CSW-aware LLM research, reviewing unique_references studies spanning five research areas, 12 NLP tasks, 30+ datasets, and 80+ languages. We classify recent advances by architecture, training strategy, and evaluation methodology, outlining how LLMs have reshaped CSW modeling and what challenges persist. The paper concludes with a roadmap emphasizing the need for inclusive datasets, fair evaluation, and linguistically grounded models to achieve truly multilingual intelligence. A curated collection of all resources is maintained at https://github.com/lingo-iitgn/awesome-code-mixing/.
Demystifying deep search: a holistic evaluation with hint-free multi-hop questions and factorised metrics
RAG (Retrieval-Augmented Generation) systems and web agents are increasingly evaluated on multi-hop deep search tasks, yet current practice suffers from two major limitations. First, most benchmarks leak the reasoning path in the question text, allowing models to follow surface cues rather than discover reasoning chains autonomously. Second, evaluation is typically reduced to a single pass rate, which collapses diverse behaviours into one score and obscures whether failures stem from inadequate search, poor knowledge use, or inappropriate refusal. To address these issues, we present WebDetective, a benchmark of hint-free multi-hop questions paired with a controlled Wikipedia sandbox that ensures full traceability of model actions, and a holistic evaluation framework that separates search sufficiency, knowledge utilisation, and refusal behaviour. Our evaluation of 25 state-of-the-art models reveals systematic weaknesses across all architectures: models struggle with knowledge utilisation despite having sufficient evidence and demonstrate near-absent appropriate refusal when evidence is lacking. These patterns expose a fundamental gap: today's systems excel at executing given reasoning paths but fail when required to discover them. We develop an agentic workflow, EvidenceLoop, that explicitly targets the challenges our benchmark identifies, incorporating verification loops and systematic evidence tracking that improve both search and synthesis capabilities. This baseline demonstrates that WebDetective's diagnostic framework can guide concrete architectural improvements, establishing our benchmark as a critical tool for developing genuinely autonomous reasoning systems rather than pattern-following agents.
Psychoacoustic Challenges Of Speech Enhancement On VoIP Platforms
Within the ambit of VoIP (Voice over Internet Protocol) telecommunications, the complexities introduced by acoustic transformations merit rigorous analysis. This research, rooted in the exploration of proprietary sender-side denoising effects, meticulously evaluates platforms such as Google Meets and Zoom. The study draws upon the Deep Noise Suppression (DNS) 2020 dataset, ensuring a structured examination tailored to various denoising settings and receiver interfaces. A methodological novelty is introduced via Blinder-Oaxaca decomposition, traditionally an econometric tool, repurposed herein to analyze acoustic-phonetic perturbations within VoIP systems. To further ground the implications of these transformations, psychoacoustic metrics, specifically PESQ and STOI, were used to explain of perceptual quality and intelligibility. Cumulatively, the insights garnered underscore the intricate landscape of VoIP-influenced acoustic dynamics. In addition to the primary findings, a multitude of metrics are reported, extending the research purview. Moreover, out-of-domain benchmarking for both time and time-frequency domain speech enhancement models is included, thereby enhancing the depth and applicability of this inquiry.
Opportunities and Challenges in Neural Dialog Tutoring
Designing dialog tutors has been challenging as it involves modeling the diverse and complex pedagogical strategies employed by human tutors. Although there have been significant recent advances in neural conversational systems using large language models (LLMs) and growth in available dialog corpora, dialog tutoring has largely remained unaffected by these advances. In this paper, we rigorously analyze various generative language models on two dialog tutoring datasets for language learning using automatic and human evaluations to understand the new opportunities brought by these advances as well as the challenges we must overcome to build models that would be usable in real educational settings. We find that although current approaches can model tutoring in constrained learning scenarios when the number of concepts to be taught and possible teacher strategies are small, they perform poorly in less constrained scenarios. Our human quality evaluation shows that both models and ground-truth annotations exhibit low performance in terms of equitable tutoring, which measures learning opportunities for students and how engaging the dialog is. To understand the behavior of our models in a real tutoring setting, we conduct a user study using expert annotators and find a significantly large number of model reasoning errors in 45% of conversations. Finally, we connect our findings to outline future work.
Challenges and Barriers of Using Low Code Software for Machine Learning
As big data grows ubiquitous across many domains, more and more stakeholders seek to develop Machine Learning (ML) applications on their data. The success of an ML application usually depends on the close collaboration of ML experts and domain experts. However, the shortage of ML engineers remains a fundamental problem. Low-code Machine learning tools/platforms (aka, AutoML) aim to democratize ML development to domain experts by automating many repetitive tasks in the ML pipeline. This research presents an empirical study of around 14k posts (questions + accepted answers) from Stack Overflow (SO) that contained AutoML-related discussions. We examine how these topics are spread across the various Machine Learning Life Cycle (MLLC) phases and their popularity and difficulty. This study offers several interesting findings. First, we find 13 AutoML topics that we group into four categories. The MLOps topic category (43% questions) is the largest, followed by Model (28% questions), Data (27% questions), Documentation (2% questions). Second, Most questions are asked during Model training (29%) (i.e., implementation phase) and Data preparation (25%) MLLC phase. Third, AutoML practitioners find the MLOps topic category most challenging, especially topics related to model deployment & monitoring and Automated ML pipeline. These findings have implications for all three AutoML stakeholders: AutoML researchers, AutoML service vendors, and AutoML developers. Academia and Industry collaboration can improve different aspects of AutoML, such as better DevOps/deployment support and tutorial-based documentation.
Advances and Challenges in Conversational Recommender Systems: A Survey
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs in five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey can help to identify and address challenges in CRSs and inspire future research.
Challenges in Human-Agent Communication
Remarkable advancements in modern generative foundation models have enabled the development of sophisticated and highly capable autonomous agents that can observe their environment, invoke tools, and communicate with other agents to solve problems. Although such agents can communicate with users through natural language, their complexity and wide-ranging failure modes present novel challenges for human-AI interaction. Building on prior research and informed by a communication grounding perspective, we contribute to the study of human-agent communication by identifying and analyzing twelve key communication challenges that these systems pose. These include challenges in conveying information from the agent to the user, challenges in enabling the user to convey information to the agent, and overarching challenges that need to be considered across all human-agent communication. We illustrate each challenge through concrete examples and identify open directions of research. Our findings provide insights into critical gaps in human-agent communication research and serve as an urgent call for new design patterns, principles, and guidelines to support transparency and control in these systems.
Community Research Earth Digital Intelligence Twin (CREDIT)
Recent advancements in artificial intelligence (AI) for numerical weather prediction (NWP) have significantly transformed atmospheric modeling. AI NWP models outperform traditional physics-based systems, such as the Integrated Forecast System (IFS), across several global metrics while requiring fewer computational resources. However, existing AI NWP models face limitations related to training datasets and timestep choices, often resulting in artifacts that reduce model performance. To address these challenges, we introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR. CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models on high-performance computing systems. It offers an end-to-end pipeline for data preprocessing, model training, and evaluation, democratizing access to advanced AI NWP capabilities. We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively, addressing common AI NWP issues like compounding error growth with techniques such as spectral normalization, padding, and multi-step training. Additionally, to illustrate CREDIT's flexibility and state-of-the-art model comparisons, we train the FUXI architecture within this framework. Our findings show that both FUXI and WXFormer, trained on six-hourly ERA5 hybrid sigma-pressure levels, generally outperform IFS HRES in 10-day forecasts, offering potential improvements in efficiency and forecast accuracy. CREDIT's modular design enables researchers to explore various models, datasets, and training configurations, fostering innovation within the scientific community.
Vulnerability Handling of AI-Generated Code -- Existing Solutions and Open Challenges
The increasing use of generative Artificial Intelligence (AI) in modern software engineering, particularly Large Language Models (LLMs) for code generation, has transformed professional software development by boosting productivity and automating development processes. This adoption, however, has highlighted a significant issue: the introduction of security vulnerabilities into the code. These vulnerabilities result, e.g., from flaws in the training data that propagate into the generated code, creating challenges in disclosing them. Traditional vulnerability handling processes often involve extensive manual review. Applying such traditional processes to AI-generated code is challenging. AI-generated code may include several vulnerabilities, possibly in slightly different forms as developers might not build on already implemented code but prompt similar tasks. In this work, we explore the current state of LLM-based approaches for vulnerability handling, focusing on approaches for vulnerability detection, localization, and repair. We provide an overview of recent progress in this area and highlight open challenges that must be addressed in order to establish a reliable and scalable vulnerability handling process of AI-generated code.
