Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVideo Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
Performing multiple heterogeneous visual tasks in dynamic scenes is a hallmark of human perception capability. Despite remarkable progress in image and video recognition via representation learning, current research still focuses on designing specialized networks for singular, homogeneous, or simple combination of tasks. We instead explore the construction of a unified model for major image and video recognition tasks in autonomous driving with diverse input and output structures. To enable such an investigation, we design a new challenge, Video Task Decathlon (VTD), which includes ten representative image and video tasks spanning classification, segmentation, localization, and association of objects and pixels. On VTD, we develop our unified network, VTDNet, that uses a single structure and a single set of weights for all ten tasks. VTDNet groups similar tasks and employs task interaction stages to exchange information within and between task groups. Given the impracticality of labeling all tasks on all frames, and the performance degradation associated with joint training of many tasks, we design a Curriculum training, Pseudo-labeling, and Fine-tuning (CPF) scheme to successfully train VTDNet on all tasks and mitigate performance loss. Armed with CPF, VTDNet significantly outperforms its single-task counterparts on most tasks with only 20% overall computations. VTD is a promising new direction for exploring the unification of perception tasks in autonomous driving.
MTMamba++: Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders
Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a Mamba-based decoder. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging state-space models, while CTM explicitly models task interactions to facilitate information exchange across tasks. We design two types of CTM block, namely F-CTM and S-CTM, to enhance cross-task interaction from feature and semantic perspectives, respectively. Experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets demonstrate the superior performance of MTMamba++ over CNN-based and Transformer-based methods. The code is available at https://github.com/EnVision-Research/MTMamba.
MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders
Multi-task dense scene understanding, which learns a model for multiple dense prediction tasks, has a wide range of application scenarios. Modeling long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba, a novel Mamba-based architecture for multi-task scene understanding. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging Mamba, while CTM explicitly models task interactions to facilitate information exchange across tasks. Experiments on NYUDv2 and PASCAL-Context datasets demonstrate the superior performance of MTMamba over Transformer-based and CNN-based methods. Notably, on the PASCAL-Context dataset, MTMamba achieves improvements of +2.08, +5.01, and +4.90 over the previous best methods in the tasks of semantic segmentation, human parsing, and object boundary detection, respectively. The code is available at https://github.com/EnVision-Research/MTMamba.
Cross-Task Affinity Learning for Multitask Dense Scene Predictions
Multitask learning (MTL) has become prominent for its ability to predict multiple tasks jointly, achieving better per-task performance with fewer parameters than single-task learning. Recently, decoder-focused architectures have significantly improved multitask performance by refining task predictions using features from related tasks. However, most refinement methods struggle to efficiently capture both local and long-range dependencies between task-specific representations and cross-task patterns. In this paper, we introduce the Cross-Task Affinity Learning (CTAL) module, a lightweight framework that enhances task refinement in multitask networks. CTAL effectively captures local and long-range cross-task interactions by optimizing task affinity matrices for parameter-efficient grouped convolutions without concern for information loss. Our results demonstrate state-of-the-art MTL performance for both CNN and transformer backbones, using significantly fewer parameters than single-task learning. Our code is publicly available at https://github.com/Armanfard-Lab/EMA-Net.
Rep-MTL: Unleashing the Power of Representation-level Task Saliency for Multi-Task Learning
Despite the promise of Multi-Task Learning in leveraging complementary knowledge across tasks, existing multi-task optimization (MTO) techniques remain fixated on resolving conflicts via optimizer-centric loss scaling and gradient manipulation strategies, yet fail to deliver consistent gains. In this paper, we argue that the shared representation space, where task interactions naturally occur, offers rich information and potential for operations complementary to existing optimizers, especially for facilitating the inter-task complementarity, which is rarely explored in MTO. This intuition leads to Rep-MTL, which exploits the representation-level task saliency to quantify interactions between task-specific optimization and shared representation learning. By steering these saliencies through entropy-based penalization and sample-wise cross-task alignment, Rep-MTL aims to mitigate negative transfer by maintaining the effective training of individual tasks instead pure conflict-solving, while explicitly promoting complementary information sharing. Experiments are conducted on four challenging MTL benchmarks covering both task-shift and domain-shift scenarios. The results show that Rep-MTL, even paired with the basic equal weighting policy, achieves competitive performance gains with favorable efficiency. Beyond standard performance metrics, Power Law exponent analysis demonstrates Rep-MTL's efficacy in balancing task-specific learning and cross-task sharing. The project page is available at HERE.
Beyond Prompts: Dynamic Conversational Benchmarking of Large Language Models
We introduce a dynamic benchmarking system for conversational agents that evaluates their performance through a single, simulated, and lengthy userleftrightarrowagent interaction. The interaction is a conversation between the user and agent, where multiple tasks are introduced and then undertaken concurrently. We context switch regularly to interleave the tasks, which constructs a realistic testing scenario in which we assess the Long-Term Memory, Continual Learning, and Information Integration capabilities of the agents. Results from both proprietary and open-source Large-Language Models show that LLMs in general perform well on single-task interactions, but they struggle on the same tasks when they are interleaved. Notably, short-context LLMs supplemented with an LTM system perform as well as or better than those with larger contexts. Our benchmark suggests that there are other challenges for LLMs responding to more natural interactions that contemporary benchmarks have heretofore not been able to capture.
OmniFD: A Unified Model for Versatile Face Forgery Detection
Face forgery detection encompasses multiple critical tasks, including identifying forged images and videos and localizing manipulated regions and temporal segments. Current approaches typically employ task-specific models with independent architectures, leading to computational redundancy and ignoring potential correlations across related tasks. We introduce OmniFD, a unified framework that jointly addresses four core face forgery detection tasks within a single model, i.e., image and video classification, spatial localization, and temporal localization. Our architecture consists of three principal components: (1) a shared Swin Transformer encoder that extracts unified 4D spatiotemporal representations from both images and video inputs, (2) a cross-task interaction module with learnable queries that dynamically captures inter-task dependencies through attention-based reasoning, and (3) lightweight decoding heads that transform refined representations into corresponding predictions for all FFD tasks. Extensive experiments demonstrate OmniFD's advantage over task-specific models. Its unified design leverages multi-task learning to capture generalized representations across tasks, especially enabling fine-grained knowledge transfer that facilitates other tasks. For example, video classification accuracy improves by 4.63% when image data are incorporated. Furthermore, by unifying images, videos and the four tasks within one framework, OmniFD achieves superior performance across diverse benchmarks with high efficiency and scalability, e.g., reducing 63% model parameters and 50% training time. It establishes a practical and generalizable solution for comprehensive face forgery detection in real-world applications. The source code is made available at https://github.com/haotianll/OmniFD.
OmniRetarget: Interaction-Preserving Data Generation for Humanoid Whole-Body Loco-Manipulation and Scene Interaction
A dominant paradigm for teaching humanoid robots complex skills is to retarget human motions as kinematic references to train reinforcement learning (RL) policies. However, existing retargeting pipelines often struggle with the significant embodiment gap between humans and robots, producing physically implausible artifacts like foot-skating and penetration. More importantly, common retargeting methods neglect the rich human-object and human-environment interactions essential for expressive locomotion and loco-manipulation. To address this, we introduce OmniRetarget, an interaction-preserving data generation engine based on an interaction mesh that explicitly models and preserves the crucial spatial and contact relationships between an agent, the terrain, and manipulated objects. By minimizing the Laplacian deformation between the human and robot meshes while enforcing kinematic constraints, OmniRetarget generates kinematically feasible trajectories. Moreover, preserving task-relevant interactions enables efficient data augmentation, from a single demonstration to different robot embodiments, terrains, and object configurations. We comprehensively evaluate OmniRetarget by retargeting motions from OMOMO, LAFAN1, and our in-house MoCap datasets, generating over 8-hour trajectories that achieve better kinematic constraint satisfaction and contact preservation than widely used baselines. Such high-quality data enables proprioceptive RL policies to successfully execute long-horizon (up to 30 seconds) parkour and loco-manipulation skills on a Unitree G1 humanoid, trained with only 5 reward terms and simple domain randomization shared by all tasks, without any learning curriculum.
UIPro: Unleashing Superior Interaction Capability For GUI Agents
Building autonomous agents that perceive and operate graphical user interfaces (GUIs) like humans has long been a vision in the field of artificial intelligence. Central to these agents is the capability for GUI interaction, which involves GUI understanding and planning capabilities. Existing methods have tried developing GUI agents based on the multi-modal comprehension ability of vision-language models (VLMs). However, the limited scenario, insufficient size, and heterogeneous action spaces hinder the progress of building generalist GUI agents. To resolve these issues, this paper proposes UIPro, a novel generalist GUI agent trained with extensive multi-platform and multi-task GUI interaction data, coupled with a unified action space. We first curate a comprehensive dataset encompassing 20.6 million GUI understanding tasks to pre-train UIPro, granting it a strong GUI grounding capability, which is key to downstream GUI agent tasks. Subsequently, we establish a unified action space to harmonize heterogeneous GUI agent task datasets and produce a merged dataset to foster the action prediction ability of UIPro via continued fine-tuning. Experimental results demonstrate UIPro's superior performance across multiple GUI task benchmarks on various platforms, highlighting the effectiveness of our approach.
From Supervision to Exploration: What Does Protein Language Model Learn During Reinforcement Learning?
Protein language models (PLMs) have advanced computational protein science through large-scale pretraining and scalable architectures. In parallel, reinforcement learning (RL) has broadened exploration and enabled precise multi-objective optimization in protein design. Yet whether RL can push PLMs beyond their pretraining priors to uncover latent sequence-structure-function rules remains unclear. We address this by pairing RL with PLMs across four domains: antimicrobial peptide design, kinase variant optimization, antibody engineering, and inverse folding. Using diverse RL algorithms and model classes, we ask if RL improves sampling efficiency and, more importantly, if it reveals capabilities not captured by supervised learning. Across benchmarks, RL consistently boosts success rates and sample efficiency. Performance follows a three-factor interaction: task headroom, reward fidelity, and policy capacity jointly determine gains. When rewards are accurate and informative, policies have sufficient capacity, and tasks leave room beyond supervised baselines, improvements scale; when rewards are noisy or capacity is constrained, gains saturate despite exploration. This view yields practical guidance for RL in protein design: prioritize reward modeling and calibration before scaling policy size, match algorithm and regularization strength to task difficulty, and allocate capacity where marginal gains are largest. Implementation is available at https://github.com/chq1155/RL-PLM.
Compositional Generative Inverse Design
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem that arises across fields such as mechanical engineering to aerospace engineering. Inverse design is typically formulated as an optimization problem, with recent works leveraging optimization across learned dynamics models. However, as models are optimized they tend to fall into adversarial modes, preventing effective sampling. We illustrate that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples and significantly improve design performance. We further illustrate how such a design system is compositional, enabling us to combine multiple different diffusion models representing subcomponents of our desired system to design systems with every specified component. In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes that are more complex than those in the training data. Our method generalizes to more objects for N-body dataset and discovers formation flying to minimize drag in the multi-airfoil design task. Project website and code can be found at https://github.com/AI4Science-WestlakeU/cindm.
AGENTiGraph: An Interactive Knowledge Graph Platform for LLM-based Chatbots Utilizing Private Data
Large Language Models~(LLMs) have demonstrated capabilities across various applications but face challenges such as hallucination, limited reasoning abilities, and factual inconsistencies, especially when tackling complex, domain-specific tasks like question answering~(QA). While Knowledge Graphs~(KGs) have been shown to help mitigate these issues, research on the integration of LLMs with background KGs remains limited. In particular, user accessibility and the flexibility of the underlying KG have not been thoroughly explored. We introduce AGENTiGraph (Adaptive Generative ENgine for Task-based Interaction and Graphical Representation), a platform for knowledge management through natural language interaction. It integrates knowledge extraction, integration, and real-time visualization. AGENTiGraph employs a multi-agent architecture to dynamically interpret user intents, manage tasks, and integrate new knowledge, ensuring adaptability to evolving user requirements and data contexts. Our approach demonstrates superior performance in knowledge graph interactions, particularly for complex domain-specific tasks. Experimental results on a dataset of 3,500 test cases show AGENTiGraph significantly outperforms state-of-the-art zero-shot baselines, achieving 95.12\% accuracy in task classification and 90.45\% success rate in task execution. User studies corroborate its effectiveness in real-world scenarios. To showcase versatility, we extended AGENTiGraph to legislation and healthcare domains, constructing specialized KGs capable of answering complex queries in legal and medical contexts.
CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs
Effective prompt design is essential for improving the planning capabilities of large language model (LLM)-driven agents. However, existing structured prompting strategies are typically limited to single-agent, plan-only settings, and often evaluate performance solely based on task accuracy - overlooking critical factors such as token efficiency, modularity, and scalability in multi-agent environments. To address these limitations, we introduce CodeAgents, a prompting framework that codifies multi-agent reasoning and enables structured, token-efficient planning in multi-agent systems. In CodeAgents, all components of agent interaction - Task, Plan, Feedback, system roles, and external tool invocations - are codified into modular pseudocode enriched with control structures (e.g., loops, conditionals), boolean logic, and typed variables. This design transforms loosely connected agent plans into cohesive, interpretable, and verifiable multi-agent reasoning programs. We evaluate the proposed framework across three diverse benchmarks - GAIA, HotpotQA, and VirtualHome - using a range of representative LLMs. Results show consistent improvements in planning performance, with absolute gains of 3-36 percentage points over natural language prompting baselines. On VirtualHome, our method achieves a new state-of-the-art success rate of 56%. In addition, our approach reduces input and output token usage by 55-87% and 41-70%, respectively, underscoring the importance of token-aware evaluation metrics in the development of scalable multi-agent LLM systems. The code and resources are available at: https://anonymous.4open.science/r/CodifyingAgent-5A86
UCFE: A User-Centric Financial Expertise Benchmark for Large Language Models
This paper introduces the UCFE: User-Centric Financial Expertise benchmark, an innovative framework designed to evaluate the ability of large language models (LLMs) to handle complex real-world financial tasks. UCFE benchmark adopts a hybrid approach that combines human expert evaluations with dynamic, task-specific interactions to simulate the complexities of evolving financial scenarios. Firstly, we conducted a user study involving 804 participants, collecting their feedback on financial tasks. Secondly, based on this feedback, we created our dataset that encompasses a wide range of user intents and interactions. This dataset serves as the foundation for benchmarking 12 LLM services using the LLM-as-Judge methodology. Our results show a significant alignment between benchmark scores and human preferences, with a Pearson correlation coefficient of 0.78, confirming the effectiveness of the UCFE dataset and our evaluation approach. UCFE benchmark not only reveals the potential of LLMs in the financial sector but also provides a robust framework for assessing their performance and user satisfaction.The benchmark dataset and evaluation code are available.
CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues
Recent advancements in instruction-tuning datasets have predominantly focused on specific tasks like mathematical or logical reasoning. There has been a notable gap in data designed for aligning language models to maintain topic relevance in conversations - a critical aspect for deploying chatbots to production. We introduce the CantTalkAboutThis dataset to help language models remain focused on the subject at hand during task-oriented interactions. It consists of synthetic dialogues on a wide range of conversation topics from different domains. These dialogues are interspersed with distractor turns that intentionally divert the chatbot from the predefined topic. Fine-tuning language models on this dataset helps make them resilient to deviating from the role assigned and improves their ability to maintain topical coherence compared to general-purpose instruction-tuned LLMs like GPT-4-turbo and Mixtral-Instruct. Additionally, preliminary observations suggest that training models on this dataset also enhance their performance on fine-grained instruction following tasks.
Demonstration-free Autonomous Reinforcement Learning via Implicit and Bidirectional Curriculum
While reinforcement learning (RL) has achieved great success in acquiring complex skills solely from environmental interactions, it assumes that resets to the initial state are readily available at the end of each episode. Such an assumption hinders the autonomous learning of embodied agents due to the time-consuming and cumbersome workarounds for resetting in the physical world. Hence, there has been a growing interest in autonomous RL (ARL) methods that are capable of learning from non-episodic interactions. However, existing works on ARL are limited by their reliance on prior data and are unable to learn in environments where task-relevant interactions are sparse. In contrast, we propose a demonstration-free ARL algorithm via Implicit and Bi-directional Curriculum (IBC). With an auxiliary agent that is conditionally activated upon learning progress and a bidirectional goal curriculum based on optimal transport, our method outperforms previous methods, even the ones that leverage demonstrations.
Unifying Multimodal Large Language Model Capabilities and Modalities via Model Merging
While foundation models update slowly due to resource-intensive training requirements, domain-specific models evolve between updates. Model merging aims to combine multiple expert models into a single, more capable model, thereby reducing storage and serving costs while supporting decentralized model development. Despite its potential, previous studies have primarily focused on merging visual classification models or Large Language Models (LLMs) for code and math tasks. Multimodal Large Language Models (MLLMs), which extend the capabilities of LLMs through large-scale multimodal training, have gained traction. However, there lacks a benchmark for model merging research that clearly divides the tasks for MLLM training and evaluation. In this paper, (i) we introduce the model merging benchmark for MLLMs, which includes multiple tasks such as VQA, Geometry, Chart, OCR, and Grounding, providing both LoRA and full fine-tuning models. Moreover, we explore how model merging can combine different modalities (e.g., vision-language, audio-language, and video-language models), moving toward the Omni-language model. (ii) We implement 10 model merging algorithms on the benchmark. Furthermore, we propose a novel method that removes noise from task vectors and robustly optimizes the merged vector based on a loss defined over task vector interactions, achieving an average performance gain of 2.48%. (iii) We find that model merging offers a promising way for building improved MLLMs without requiring data training. Our results also demonstrate that the complementarity among multiple modalities outperforms individual modalities.
UniToMBench: Integrating Perspective-Taking to Improve Theory of Mind in LLMs
Theory of Mind (ToM), the ability to understand the mental states of oneself and others, remains a challenging area for large language models (LLMs), which often fail to predict human mental states accurately. In this paper, we introduce UniToMBench, a unified benchmark that integrates the strengths of SimToM and TOMBENCH to systematically improve and assess ToM capabilities in LLMs by integrating multi-interaction task designs and evolving story scenarios. Supported by a custom dataset of over 1,000 hand-written scenarios, UniToMBench combines perspective-taking techniques with diverse evaluation metrics to better stimulate social cognition in LLMs. Through evaluation, we observe that while models like GPT-4o and GPT-4o Mini show consistently high accuracy in tasks involving emotional and belief-related scenarios, with results usually above 80%, there is significant variability in their performance across knowledge-based tasks. These results highlight both the strengths and limitations of current LLMs in ToM-related tasks, underscoring the value of UniToMBench as a comprehensive tool for future development. Our code is publicly available here: https://github.com/Shamant/unifiedtombenchmark.
ArK: Augmented Reality with Knowledge Interactive Emergent Ability
Despite the growing adoption of mixed reality and interactive AI agents, it remains challenging for these systems to generate high quality 2D/3D scenes in unseen environments. The common practice requires deploying an AI agent to collect large amounts of data for model training for every new task. This process is costly, or even impossible, for many domains. In this study, we develop an infinite agent that learns to transfer knowledge memory from general foundation models (e.g. GPT4, DALLE) to novel domains or scenarios for scene understanding and generation in the physical or virtual world. The heart of our approach is an emerging mechanism, dubbed Augmented Reality with Knowledge Inference Interaction (ArK), which leverages knowledge-memory to generate scenes in unseen physical world and virtual reality environments. The knowledge interactive emergent ability (Figure 1) is demonstrated as the observation learns i) micro-action of cross-modality: in multi-modality models to collect a large amount of relevant knowledge memory data for each interaction task (e.g., unseen scene understanding) from the physical reality; and ii) macro-behavior of reality-agnostic: in mix-reality environments to improve interactions that tailor to different characterized roles, target variables, collaborative information, and so on. We validate the effectiveness of ArK on the scene generation and editing tasks. We show that our ArK approach, combined with large foundation models, significantly improves the quality of generated 2D/3D scenes, compared to baselines, demonstrating the potential benefit of incorporating ArK in generative AI for applications such as metaverse and gaming simulation.
Programmable Locking Cells (PLC) for Modular Robots with High Stiffness Tunability and Morphological Adaptability
Robotic systems operating in unstructured environments require the ability to switch between compliant and rigid states to perform diverse tasks such as adaptive grasping, high-force manipulation, shape holding, and navigation in constrained spaces, among others. However, many existing variable stiffness solutions rely on complex actuation schemes, continuous input power, or monolithic designs, limiting their modularity and scalability. This paper presents the Programmable Locking Cell (PLC)-a modular, tendon-driven unit that achieves discrete stiffness modulation through mechanically interlocked joints actuated by cable tension. Each unit transitions between compliant and firm states via structural engagement, and the assembled system exhibits high stiffness variation-up to 950% per unit-without susceptibility to damage under high payload in the firm state. Multiple PLC units can be assembled into reconfigurable robotic structures with spatially programmable stiffness. We validate the design through two functional prototypes: (1) a variable-stiffness gripper capable of adaptive grasping, firm holding, and in-hand manipulation; and (2) a pipe-traversing robot composed of serial PLC units that achieves shape adaptability and stiffness control in confined environments. These results demonstrate the PLC as a scalable, structure-centric mechanism for programmable stiffness and motion, enabling robotic systems with reconfigurable morphology and task-adaptive interaction.
RadVLM: A Multitask Conversational Vision-Language Model for Radiology
The widespread use of chest X-rays (CXRs), coupled with a shortage of radiologists, has driven growing interest in automated CXR analysis and AI-assisted reporting. While existing vision-language models (VLMs) show promise in specific tasks such as report generation or abnormality detection, they often lack support for interactive diagnostic capabilities. In this work we present RadVLM, a compact, multitask conversational foundation model designed for CXR interpretation. To this end, we curate a large-scale instruction dataset comprising over 1 million image-instruction pairs containing both single-turn tasks -- such as report generation, abnormality classification, and visual grounding -- and multi-turn, multi-task conversational interactions. After fine-tuning RadVLM on this instruction dataset, we evaluate it across different tasks along with re-implemented baseline VLMs. Our results show that RadVLM achieves state-of-the-art performance in conversational capabilities and visual grounding while remaining competitive in other radiology tasks. Ablation studies further highlight the benefit of joint training across multiple tasks, particularly for scenarios with limited annotated data. Together, these findings highlight the potential of RadVLM as a clinically relevant AI assistant, providing structured CXR interpretation and conversational capabilities to support more effective and accessible diagnostic workflows.
TokenHSI: Unified Synthesis of Physical Human-Scene Interactions through Task Tokenization
Synthesizing diverse and physically plausible Human-Scene Interactions (HSI) is pivotal for both computer animation and embodied AI. Despite encouraging progress, current methods mainly focus on developing separate controllers, each specialized for a specific interaction task. This significantly hinders the ability to tackle a wide variety of challenging HSI tasks that require the integration of multiple skills, e.g., sitting down while carrying an object. To address this issue, we present TokenHSI, a single, unified transformer-based policy capable of multi-skill unification and flexible adaptation. The key insight is to model the humanoid proprioception as a separate shared token and combine it with distinct task tokens via a masking mechanism. Such a unified policy enables effective knowledge sharing across skills, thereby facilitating the multi-task training. Moreover, our policy architecture supports variable length inputs, enabling flexible adaptation of learned skills to new scenarios. By training additional task tokenizers, we can not only modify the geometries of interaction targets but also coordinate multiple skills to address complex tasks. The experiments demonstrate that our approach can significantly improve versatility, adaptability, and extensibility in various HSI tasks. Website: https://liangpan99.github.io/TokenHSI/
Reconstructing Interacting Hands with Interaction Prior from Monocular Images
Reconstructing interacting hands from monocular images is indispensable in AR/VR applications. Most existing solutions rely on the accurate localization of each skeleton joint. However, these methods tend to be unreliable due to the severe occlusion and confusing similarity among adjacent hand parts. This also defies human perception because humans can quickly imitate an interaction pattern without localizing all joints. Our key idea is to first construct a two-hand interaction prior and recast the interaction reconstruction task as the conditional sampling from the prior. To expand more interaction states, a large-scale multimodal dataset with physical plausibility is proposed. Then a VAE is trained to further condense these interaction patterns as latent codes in a prior distribution. When looking for image cues that contribute to interaction prior sampling, we propose the interaction adjacency heatmap (IAH). Compared with a joint-wise heatmap for localization, IAH assigns denser visible features to those invisible joints. Compared with an all-in-one visible heatmap, it provides more fine-grained local interaction information in each interaction region. Finally, the correlations between the extracted features and corresponding interaction codes are linked by the ViT module. Comprehensive evaluations on benchmark datasets have verified the effectiveness of this framework. The code and dataset are publicly available at https://github.com/binghui-z/InterPrior_pytorch
MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning
Adapting models pre-trained on large-scale datasets to a variety of downstream tasks is a common strategy in deep learning. Consequently, parameter-efficient fine-tuning methods have emerged as a promising way to adapt pre-trained models to different tasks while training only a minimal number of parameters. While most of these methods are designed for single-task adaptation, parameter-efficient training in Multi-Task Learning (MTL) architectures is still unexplored. In this paper, we introduce MTLoRA, a novel framework for parameter-efficient training of MTL models. MTLoRA employs Task-Agnostic and Task-Specific Low-Rank Adaptation modules, which effectively disentangle the parameter space in MTL fine-tuning, thereby enabling the model to adeptly handle both task specialization and interaction within MTL contexts. We applied MTLoRA to hierarchical-transformer-based MTL architectures, adapting them to multiple downstream dense prediction tasks. Our extensive experiments on the PASCAL dataset show that MTLoRA achieves higher accuracy on downstream tasks compared to fully fine-tuning the MTL model while reducing the number of trainable parameters by 3.6x. Furthermore, MTLoRA establishes a Pareto-optimal trade-off between the number of trainable parameters and the accuracy of the downstream tasks, outperforming current state-of-the-art parameter-efficient training methods in both accuracy and efficiency. Our code is publicly available.
Robix: A Unified Model for Robot Interaction, Reasoning and Planning
We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.
Text2HOI: Text-guided 3D Motion Generation for Hand-Object Interaction
This paper introduces the first text-guided work for generating the sequence of hand-object interaction in 3D. The main challenge arises from the lack of labeled data where existing ground-truth datasets are nowhere near generalizable in interaction type and object category, which inhibits the modeling of diverse 3D hand-object interaction with the correct physical implication (e.g., contacts and semantics) from text prompts. To address this challenge, we propose to decompose the interaction generation task into two subtasks: hand-object contact generation; and hand-object motion generation. For contact generation, a VAE-based network takes as input a text and an object mesh, and generates the probability of contacts between the surfaces of hands and the object during the interaction. The network learns a variety of local geometry structure of diverse objects that is independent of the objects' category, and thus, it is applicable to general objects. For motion generation, a Transformer-based diffusion model utilizes this 3D contact map as a strong prior for generating physically plausible hand-object motion as a function of text prompts by learning from the augmented labeled dataset; where we annotate text labels from many existing 3D hand and object motion data. Finally, we further introduce a hand refiner module that minimizes the distance between the object surface and hand joints to improve the temporal stability of the object-hand contacts and to suppress the penetration artifacts. In the experiments, we demonstrate that our method can generate more realistic and diverse interactions compared to other baseline methods. We also show that our method is applicable to unseen objects. We will release our model and newly labeled data as a strong foundation for future research. Codes and data are available in: https://github.com/JunukCha/Text2HOI.
Adapting LLM Agents Through Communication
Recent advancements in large language models (LLMs) have shown potential for human-like agents. To help these agents adapt to new tasks without extensive human supervision, we propose the Learning through Communication (LTC) paradigm, a novel training approach enabling LLM agents to improve continuously through interactions with their environments and other agents. Recent advancements in large language models (LLMs) have shown potential for human-like agents. To help these agents adapt to new tasks without extensive human supervision, we propose the Learning through Communication (LTC) paradigm, a novel training approach enabling LLM agents to improve continuously through interactions with their environments and other agents. Through iterative exploration and PPO training, LTC empowers the agent to assimilate short-term experiences into long-term memory. To optimize agent interactions for task-specific learning, we introduce three structured communication patterns: Monologue, Dialogue, and Analogue-tailored for common tasks such as decision-making, knowledge-intensive reasoning, and numerical reasoning. We evaluated LTC on three datasets: ALFWorld (decision-making), HotpotQA (knowledge-intensive reasoning), and GSM8k (numerical reasoning). On ALFWorld, it exceeds the instruction tuning baseline by 12% in success rate. On HotpotQA, LTC surpasses the instruction-tuned LLaMA-7B agent by 5.1% in EM score, and it outperforms the instruction-tuned 9x larger PaLM-62B agent by 0.6%. On GSM8k, LTC outperforms the CoT-Tuning baseline by 3.6% in accuracy. The results showcase the versatility and efficiency of the LTC approach across diverse domains. We will open-source our code to promote further development of the community.
CHORUS: Learning Canonicalized 3D Human-Object Spatial Relations from Unbounded Synthesized Images
We present a method for teaching machines to understand and model the underlying spatial common sense of diverse human-object interactions in 3D in a self-supervised way. This is a challenging task, as there exist specific manifolds of the interactions that can be considered human-like and natural, but the human pose and the geometry of objects can vary even for similar interactions. Such diversity makes the annotating task of 3D interactions difficult and hard to scale, which limits the potential to reason about that in a supervised way. One way of learning the 3D spatial relationship between humans and objects during interaction is by showing multiple 2D images captured from different viewpoints when humans interact with the same type of objects. The core idea of our method is to leverage a generative model that produces high-quality 2D images from an arbitrary text prompt input as an "unbounded" data generator with effective controllability and view diversity. Despite its imperfection of the image quality over real images, we demonstrate that the synthesized images are sufficient to learn the 3D human-object spatial relations. We present multiple strategies to leverage the synthesized images, including (1) the first method to leverage a generative image model for 3D human-object spatial relation learning; (2) a framework to reason about the 3D spatial relations from inconsistent 2D cues in a self-supervised manner via 3D occupancy reasoning with pose canonicalization; (3) semantic clustering to disambiguate different types of interactions with the same object types; and (4) a novel metric to assess the quality of 3D spatial learning of interaction.
VisualLens: Personalization through Visual History
We hypothesize that a user's visual history with images reflecting their daily life, offers valuable insights into their interests and preferences, and can be leveraged for personalization. Among the many challenges to achieve this goal, the foremost is the diversity and noises in the visual history, containing images not necessarily related to a recommendation task, not necessarily reflecting the user's interest, or even not necessarily preference-relevant. Existing recommendation systems either rely on task-specific user interaction logs, such as online shopping history for shopping recommendations, or focus on text signals. We propose a novel approach, VisualLens, that extracts, filters, and refines image representations, and leverages these signals for personalization. We created two new benchmarks with task-agnostic visual histories, and show that our method improves over state-of-the-art recommendations by 5-10% on Hit@3, and improves over GPT-4o by 2-5%. Our approach paves the way for personalized recommendations in scenarios where traditional methods fail.
Architecture Decoupling Is Not All You Need For Unified Multimodal Model
Unified multimodal models for image generation and understanding represent a significant step toward AGI and have attracted widespread attention from researchers. The main challenge of this task lies in the difficulty in establishing an optimal training paradigm due to inherent conflicting targets in understanding and generation tasks. To alleviate these conflicts and pursue higher performance, many researchers adopt varying degrees of model decoupling (e.g., Double image encoders, MOE/MOT architecture, or frozen MLLM). However, excessive model decoupling can lead to the loss of interleave generation ability, undermining the original intent of unified models. In this work, we aim to explore how to mitigate task conflicts without resorting to model decoupling. Firstly, we analyze why decoupling alleviates conflicts by studying the cross-modal attention behavior of models. We observe that model decoupling essentially drives models toward task-specific multimodal interaction patterns, as seen in Qwen-VL and HunyuanImage, and that the more thorough the decoupling, the more consistent the behavior becomes. Motivated by this observation, we propose Attention Interaction Alignment (AIA) loss, which explicitly learns Task-Specific multimodal interaction patterns during training. To demonstrate the generalizability of our AIA loss, we apply it to Emu3 and Janus-Pro during SFT and post-training stage respectively. Without bells and whistles, AIA not only refines cross-modal attention patterns, but also boosts both generation and understanding performance.
VR-GPT: Visual Language Model for Intelligent Virtual Reality Applications
The advent of immersive Virtual Reality applications has transformed various domains, yet their integration with advanced artificial intelligence technologies like Visual Language Models remains underexplored. This study introduces a pioneering approach utilizing VLMs within VR environments to enhance user interaction and task efficiency. Leveraging the Unity engine and a custom-developed VLM, our system facilitates real-time, intuitive user interactions through natural language processing, without relying on visual text instructions. The incorporation of speech-to-text and text-to-speech technologies allows for seamless communication between the user and the VLM, enabling the system to guide users through complex tasks effectively. Preliminary experimental results indicate that utilizing VLMs not only reduces task completion times but also improves user comfort and task engagement compared to traditional VR interaction methods.
RLinf-VLA: A Unified and Efficient Framework for VLA+RL Training
Recent progress in vision and language foundation models has significantly advanced multimodal understanding, reasoning, and generation, inspiring a surge of interest in extending such capabilities to embodied settings through vision-language-action (VLA) models. Yet, most VLA models are still trained with supervised fine-tuning (SFT), which struggles to generalize under distribution shifts due to error accumulation. Reinforcement learning (RL) offers a promising alternative by directly optimizing task performance through interaction, but existing attempts remain fragmented and lack a unified platform for fair and systematic comparison across model architectures and algorithmic designs. To address this gap, we introduce RLinf-VLA, a unified and efficient framework for scalable RL training of VLA models. The system adopts a highly flexible resource allocation design that addresses the challenge of integrating rendering, training, and inference in RL+VLA training. In particular, for GPU-parallelized simulators, RLinf-VLA implements a novel hybrid fine-grained pipeline allocation mode, achieving a 1.61x-1.88x speedup in training. Through a unified interface, RLinf-VLA seamlessly supports diverse VLA architectures (e.g., OpenVLA, OpenVLA-OFT), multiple RL algorithms (e.g., PPO, GRPO), and various simulators (e.g., ManiSkill, LIBERO). In simulation, a unified model achieves 98.11\% across 130 LIBERO tasks and 97.66\% across 25 ManiSkill tasks. Beyond empirical performance, our study distills a set of best practices for applying RL to VLA training and sheds light on emerging patterns in this integration. Furthermore, we present preliminary deployment on a real-world Franka robot, where RL-trained policies exhibit stronger generalization than those trained with SFT. We envision RLinf-VLA as a foundation to accelerate and standardize research on embodied intelligence.
POMRL: No-Regret Learning-to-Plan with Increasing Horizons
We study the problem of planning under model uncertainty in an online meta-reinforcement learning (RL) setting where an agent is presented with a sequence of related tasks with limited interactions per task. The agent can use its experience in each task and across tasks to estimate both the transition model and the distribution over tasks. We propose an algorithm to meta-learn the underlying structure across tasks, utilize it to plan in each task, and upper-bound the regret of the planning loss. Our bound suggests that the average regret over tasks decreases as the number of tasks increases and as the tasks are more similar. In the classical single-task setting, it is known that the planning horizon should depend on the estimated model's accuracy, that is, on the number of samples within task. We generalize this finding to meta-RL and study this dependence of planning horizons on the number of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing discount factors, and we validate its significance empirically.
OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents
We present OmniJARVIS, a novel Vision-Language-Action (VLA) model for open-world instruction-following agents in open-world Minecraft. Compared to prior works that either emit textual goals to separate controllers or produce the control command directly, OmniJARVIS seeks a different path to ensure both strong reasoning and efficient decision-making capabilities via unified tokenization of multimodal interaction data. First, we introduce a self-supervised approach to learn a behavior encoder that produces discretized tokens for behavior trajectories tau = {o_0, a_0, dots} and an imitation learning (IL) policy decoder conditioned on these tokens. These additional behavior tokens will be augmented to the vocabulary of pretrained Multimodal Language Models (MLMs). With this encoder, we then pack long-term multimodal interactions involving task instructions, memories, thoughts, observations, textual responses, behavior trajectories, etc. into unified token sequences and model them with autoregressive transformers. Thanks to the semantically meaningful behavior tokens, the resulting VLA model, OmniJARVIS, can reason (by producing chain-of-thoughts), plan, answer questions, and act (by producing behavior tokens for the IL policy decoder). OmniJARVIS demonstrates excellent performances on a comprehensive collection of atomic, programmatic, and open-ended tasks in open-world Minecraft. Our analysis further unveils the crucial design principles in interaction data formation, unified tokenization, and its scaling potentials.
LLM-Powered Hierarchical Language Agent for Real-time Human-AI Coordination
AI agents powered by Large Language Models (LLMs) have made significant advances, enabling them to assist humans in diverse complex tasks and leading to a revolution in human-AI coordination. LLM-powered agents typically require invoking LLM APIs and employing artificially designed complex prompts, which results in high inference latency. While this paradigm works well in scenarios with minimal interactive demands, such as code generation, it is unsuitable for highly interactive and real-time applications, such as gaming. Traditional gaming AI often employs small models or reactive policies, enabling fast inference but offering limited task completion and interaction abilities. In this work, we consider Overcooked as our testbed where players could communicate with natural language and cooperate to serve orders. We propose a Hierarchical Language Agent (HLA) for human-AI coordination that provides both strong reasoning abilities while keeping real-time execution. In particular, HLA adopts a hierarchical framework and comprises three modules: a proficient LLM, referred to as Slow Mind, for intention reasoning and language interaction, a lightweight LLM, referred to as Fast Mind, for generating macro actions, and a reactive policy, referred to as Executor, for transforming macro actions into atomic actions. Human studies show that HLA outperforms other baseline agents, including slow-mind-only agents and fast-mind-only agents, with stronger cooperation abilities, faster responses, and more consistent language communications.
SHANKS: Simultaneous Hearing and Thinking for Spoken Language Models
Current large language models (LLMs) and spoken language models (SLMs) begin thinking and taking actions only after the user has finished their turn. This prevents the model from interacting during the user's turn and can lead to high response latency while it waits to think. Consequently, thinking after receiving the full input is not suitable for speech-to-speech interaction, where real-time, low-latency exchange is important. We address this by noting that humans naturally "think while listening." In this paper, we propose SHANKS, a general inference framework that enables SLMs to generate unspoken chain-of-thought reasoning while listening to the user input. SHANKS streams the input speech in fixed-duration chunks and, as soon as a chunk is received, generates unspoken reasoning based on all previous speech and reasoning, while the user continues speaking. SHANKS uses this unspoken reasoning to decide whether to interrupt the user and to make tool calls to complete the task. We demonstrate that SHANKS enhances real-time user-SLM interaction in two scenarios: (1) when the user is presenting a step-by-step solution to a math problem, SHANKS can listen, reason, and interrupt when the user makes a mistake, achieving 37.1% higher interruption accuracy than a baseline that interrupts without thinking; and (2) in a tool-augmented dialogue, SHANKS can complete 56.9% of the tool calls before the user finishes their turn. Overall, SHANKS moves toward models that keep thinking throughout the conversation, not only after a turn ends. Animated illustrations of Shanks can be found at https://d223302.github.io/SHANKS/
MM-ACT: Learn from Multimodal Parallel Generation to Act
A generalist robotic policy needs both semantic understanding for task planning and the ability to interact with the environment through predictive capabilities. To tackle this, we present MM-ACT, a unified Vision-Language-Action (VLA) model that integrates text, image, and action in shared token space and performs generation across all three modalities. MM-ACT adopts a re-mask parallel decoding strategy for text and image generation, and employs a one-step parallel decoding strategy for action generation to improve efficiency. We introduce Context-Shared Multimodal Learning, a unified training paradigm that supervises generation in all three modalities from a shared context, enhancing action generation through cross-modal learning. Experiments were conducted on the LIBERO simulation and Franka real-robot setups as well as RoboTwin2.0 to assess in-domain and out-of-domain performances respectively. Our approach achieves a success rate of 96.3% on LIBERO, 72.0% across three tasks of real Franka, and 52.38% across eight bimanual tasks of RoboTwin2.0 with an additional gain of 9.25% from cross-modal learning. We release our codes, models and data at https://github.com/HHYHRHY/MM-ACT.
FreeAskWorld: An Interactive and Closed-Loop Simulator for Human-Centric Embodied AI
As embodied intelligence emerges as a core frontier in artificial intelligence research, simulation platforms must evolve beyond low-level physical interactions to capture complex, human-centered social behaviors. We introduce FreeAskWorld, an interactive simulation framework that integrates large language models (LLMs) for high-level behavior planning and semantically grounded interaction, informed by theories of intention and social cognition. Our framework supports scalable, realistic human-agent simulations and includes a modular data generation pipeline tailored for diverse embodied tasks.To validate the framework, we extend the classic Vision-and-Language Navigation (VLN) task into a interaction enriched Direction Inquiry setting, wherein agents can actively seek and interpret navigational guidance. We present and publicly release FreeAskWorld, a large-scale benchmark dataset comprising reconstructed environments, six diverse task types, 16 core object categories, 63,429 annotated sample frames, and more than 17 hours of interaction data to support training and evaluation of embodied AI systems. We benchmark VLN models, and human participants under both open-loop and closed-loop settings. Experimental results demonstrate that models fine-tuned on FreeAskWorld outperform their original counterparts, achieving enhanced semantic understanding and interaction competency. These findings underscore the efficacy of socially grounded simulation frameworks in advancing embodied AI systems toward sophisticated high-level planning and more naturalistic human-agent interaction. Importantly, our work underscores that interaction itself serves as an additional information modality.
Simulating User Agents for Embodied Conversational-AI
Embodied agents designed to assist users with tasks must engage in natural language interactions, interpret instructions, execute actions, and communicate effectively to resolve issues. However, collecting large-scale, diverse datasets of situated human-robot dialogues to train and evaluate such agents is expensive, labor-intensive, and time-consuming. To address this challenge, we propose building a large language model (LLM)-based user agent that can simulate user behavior during interactions with an embodied agent in a virtual environment. Given a user goal (e.g., make breakfast), at each time step, the user agent may observe" the robot actions or speak" to either intervene with the robot or answer questions. Such a user agent assists in improving the scalability and efficiency of embodied dialogues dataset generation and is critical for enhancing and evaluating the robot's interaction and task completion ability, as well as for research in reinforcement learning using AI feedback. We evaluate our user agent's ability to generate human-like behaviors by comparing its simulated dialogues with the TEACh dataset. We perform three experiments: zero-shot prompting to predict dialogue acts, few-shot prompting, and fine-tuning on the TEACh training subset. Results show the LLM-based user agent achieves an F-measure of 42% with zero-shot prompting and 43.4% with few-shot prompting in mimicking human speaking behavior. Through fine-tuning, performance in deciding when to speak remained stable, while deciding what to say improved from 51.1% to 62.5%. These findings showcase the feasibility of the proposed approach for assessing and enhancing the effectiveness of robot task completion through natural language communication.
Self-Correcting Large Language Models: Generation vs. Multiple Choice
Large language models have recently demonstrated remarkable abilities to self-correct their responses through iterative refinement, often referred to as self-consistency or self-reflection. However, the dynamics of this self-correction mechanism may differ substantially depending on whether the model is tasked with open-ended text generation or with selecting the most appropriate response from multiple predefined options. In this paper, we conduct a systematic investigation of these two paradigms by comparing performance trends and error-correction behaviors across various natural language understanding and reasoning tasks, covering language models of different scales and families. Our experimental results reveal distinct patterns of improvement and failure modes: While open-ended generation often benefits from the flexibility of re-interpretation and compositional refinement, multiple-choice selection can leverage clearer solution boundaries but may be limited by the provided options. This contrast also reflects the dual demands faced by emerging agentic LLM applications: effective agents must not only generate and refine open-ended plans or explanations, but also make reliable discrete choices when operating within constrained action spaces. Our findings, therefore, highlight that the design of self-correction mechanisms should take into account the interaction between task structure and output space, with implications for both knowledge-intensive reasoning and decision-oriented applications of LLMs.
To Backtrack or Not to Backtrack: When Sequential Search Limits Model Reasoning
Recent advancements in large language models have significantly improved their reasoning abilities, particularly through techniques involving search and backtracking. Backtracking naturally scales test-time compute by enabling sequential, linearized exploration via long chain-of-thought (CoT) generation. However, this is not the only strategy for scaling test-time compute: parallel sampling with best-of-n selection provides an alternative that generates diverse solutions simultaneously. Despite the growing adoption of sequential search, its advantages over parallel sampling--especially under a fixed compute budget remain poorly understood. In this paper, we systematically compare these two approaches on two challenging reasoning tasks: CountDown and Sudoku. Surprisingly, we find that sequential search underperforms parallel sampling on CountDown but outperforms it on Sudoku, suggesting that backtracking is not universally beneficial. We identify two factors that can cause backtracking to degrade performance: (1) training on fixed search traces can lock models into suboptimal strategies, and (2) explicit CoT supervision can discourage "implicit" (non-verbalized) reasoning. Extending our analysis to reinforcement learning (RL), we show that models with backtracking capabilities benefit significantly from RL fine-tuning, while models without backtracking see limited, mixed gains. Together, these findings challenge the assumption that backtracking universally enhances LLM reasoning, instead revealing a complex interaction between task structure, training data, model scale, and learning paradigm.
CognitiveOS: Large Multimodal Model based System to Endow Any Type of Robot with Generative AI
This paper introduces CognitiveOS, a disruptive system based on multiple transformer-based models, endowing robots of various types with cognitive abilities not only for communication with humans but also for task resolution through physical interaction with the environment. The system operates smoothly on different robotic platforms without extra tuning. It autonomously makes decisions for task execution by analyzing the environment and using information from its long-term memory. The system underwent testing on various platforms, including quadruped robots and manipulator robots, showcasing its capability to formulate behavioral plans even for robots whose behavioral examples were absent in the training dataset. Experimental results revealed the system's high performance in advanced task comprehension and adaptability, emphasizing its potential for real-world applications. The chapters of this paper describe the key components of the system and the dataset structure. The dataset for fine-tuning step generation model is provided at the following link: link coming soon
UniMEEC: Towards Unified Multimodal Emotion Recognition and Emotion Cause
Multimodal emotion recognition in conversation (MERC) and multimodal emotion-cause pair extraction (MECPE) have recently garnered significant attention. Emotions are the expression of affect or feelings; responses to specific events, or situations -- known as emotion causes. Both collectively explain the causality between human emotion and intents. However, existing works treat emotion recognition and emotion cause extraction as two individual problems, ignoring their natural causality. In this paper, we propose a Unified Multimodal Emotion recognition and Emotion-Cause analysis framework (UniMEEC) to explore the causality between emotion and emotion cause. Concretely, UniMEEC reformulates the MERC and MECPE tasks as mask prediction problems and unifies them with a causal prompt template. To differentiate the modal effects, UniMEEC proposes a multimodal causal prompt to probe the pre-trained knowledge specified to modality and implements cross-task and cross-modality interactions under task-oriented settings. Experiment results on four public benchmark datasets verify the model performance on MERC and MECPE tasks and achieve consistent improvements compared with the previous state-of-the-art methods.
Mindalogue: LLM-Powered Nonlinear Interaction for Effective Learning and Task Exploration
Current generative AI models like ChatGPT, Claude, and Gemini are widely used for knowledge dissemination, task decomposition, and creative thinking. However, their linear interaction methods often force users to repeatedly compare and copy contextual information when handling complex tasks, increasing cognitive load and operational costs. Moreover, the ambiguity in model responses requires users to refine and simplify the information further. To address these issues, we developed "Mindalogue", a system using a non-linear interaction model based on "nodes + canvas" to enhance user efficiency and freedom while generating structured responses. A formative study with 11 users informed the design of Mindalogue, which was then evaluated through a study with 16 participants. The results showed that Mindalogue significantly reduced task steps and improved users' comprehension of complex information. This study highlights the potential of non-linear interaction in improving AI tool efficiency and user experience in the HCI field.
The Shifted and The Overlooked: A Task-oriented Investigation of User-GPT Interactions
Recent progress in Large Language Models (LLMs) has produced models that exhibit remarkable performance across a variety of NLP tasks. However, it remains unclear whether the existing focus of NLP research accurately captures the genuine requirements of human users. This paper provides a comprehensive analysis of the divergence between current NLP research and the needs of real-world NLP applications via a large-scale collection of user-GPT conversations. We analyze a large-scale collection of real user queries to GPT. We compare these queries against existing NLP benchmark tasks and identify a significant gap between the tasks that users frequently request from LLMs and the tasks that are commonly studied in academic research. For example, we find that tasks such as ``design'' and ``planning'' are prevalent in user interactions but are largely neglected or different from traditional NLP benchmarks. We investigate these overlooked tasks, dissect the practical challenges they pose, and provide insights toward a roadmap to make LLMs better aligned with user needs.
CIFLEX: Contextual Instruction Flow for Sub-task Execution in Multi-Turn Interactions with a Single On-Device LLM
We present CIFLEX (Contextual Instruction Flow for Sub-task Execution), which is a novel execution system for efficient sub-task handling in multi-turn interactions with a single on-device large language model (LLM). As LLMs become increasingly capable, a single model is expected to handle diverse sub-tasks that more effectively and comprehensively support answering user requests. Naive approach reprocesses the entire conversation context when switching between main and sub-tasks (e.g., query rewriting, summarization), incurring significant computational overhead. CIFLEX mitigates this overhead by reusing the key-value (KV) cache from the main task and injecting only task-specific instructions into isolated side paths. After sub-task execution, the model rolls back to the main path via cached context, thereby avoiding redundant prefill computation. To support sub-task selection, we also develop a hierarchical classification strategy tailored for small-scale models, decomposing multi-choice decisions into binary ones. Experiments show that CIFLEX significantly reduces computational costs without degrading task performance, enabling scalable and efficient multi-task dialogue on-device.
Task agnostic continual learning with Pairwise layer architecture
Most of the dominant approaches to continual learning are based on either memory replay, parameter isolation, or regularization techniques that require task boundaries to calculate task statistics. We propose a static architecture-based method that doesn't use any of these. We show that we can improve the continual learning performance by replacing the final layer of our networks with our pairwise interaction layer. The pairwise interaction layer uses sparse representations from a Winner-take-all style activation function to find the relevant correlations in the hidden layer representations. The networks using this architecture show competitive performance in MNIST and FashionMNIST-based continual image classification experiments. We demonstrate this in an online streaming continual learning setup where the learning system cannot access task labels or boundaries.
INFNet: A Task-aware Information Flow Network for Large-Scale Recommendation Systems
Feature interaction has long been a cornerstone of ranking models in large-scale recommender systems due to its proven effectiveness in capturing complex dependencies among features. However, existing feature interaction strategies face two critical challenges in industrial applications: (1) The vast number of categorical and sequential features makes exhaustive interaction computationally prohibitive, often resulting in optimization difficulties. (2) Real-world recommender systems typically involve multiple prediction objectives, yet most current approaches apply feature interaction modules prior to the multi-task learning layers. This late-fusion design overlooks task-specific feature dependencies and inherently limits the capacity of multi-task modeling. To address these limitations, we propose the Information Flow Network (INFNet), a task-aware architecture designed for large-scale recommendation scenarios. INFNet distinguishes features into three token types, categorical tokens, sequence tokens, and task tokens, and introduces a novel dual-flow design comprising heterogeneous and homogeneous alternating information blocks. For heterogeneous information flow, we employ a cross-attention mechanism with proxy that facilitates efficient cross-modal token interaction with balanced computational cost. For homogeneous flow, we design type-specific Proxy Gated Units (PGUs) to enable fine-grained intra-type feature processing. Extensive experiments on multiple offline benchmarks confirm that INFNet achieves state-of-the-art performance. Moreover, INFNet has been successfully deployed in a commercial online advertising system, yielding significant gains of +1.587% in Revenue (REV) and +1.155% in Click-Through Rate (CTR).
InterRVOS: Interaction-aware Referring Video Object Segmentation
Referring video object segmentation aims to segment the object in a video corresponding to a given natural language expression. While prior works have explored various referring scenarios, including motion-centric or multi-instance expressions, most approaches still focus on localizing a single target object in isolation. However, in comprehensive video understanding, an object's role is often defined by its interactions with other entities, which are largely overlooked in existing datasets and models. In this work, we introduce Interaction-aware referring video object sgementation (InterRVOS), a new task that requires segmenting both actor and target entities involved in an interaction. Each interactoin is described through a pair of complementary expressions from different semantic perspectives, enabling fine-grained modeling of inter-object relationships. To tackle this task, we propose InterRVOS-8K, the large-scale and automatically constructed dataset containing diverse interaction-aware expressions with corresponding masks, including challenging cases such as motion-only multi-instance expressions. We also present a baseline architecture, ReVIOSa, designed to handle actor-target segmentation from a single expression, achieving strong performance in both standard and interaction-focused settings. Furthermore, we introduce an actor-target-aware evalaution setting that enables a more targeted assessment of interaction understanding. Experimental results demonstrate that our approach outperforms prior methods in modeling complex object interactions for referring video object segmentation task, establishing a strong foundation for future research in interaction-centric video understanding. Our project page is available at https://cvlab-kaist.github.io/InterRVOS.
Task Mode: Dynamic Filtering for Task-Specific Web Navigation using LLMs
Modern web interfaces are unnecessarily complex to use as they overwhelm users with excessive text and visuals unrelated to their current goals. This problem particularly impacts screen reader users (SRUs), who navigate content sequentially and may spend minutes traversing irrelevant elements before reaching desired information compared to vision users (VUs) who visually skim in seconds. We present Task Mode, a system that dynamically filters web content based on user-specified goals using large language models to identify and prioritize relevant elements while minimizing distractions. Our approach preserves page structure while offering multiple viewing modes tailored to different access needs. Our user study with 12 participants (6 VUs, 6 SRUs) demonstrates that our approach reduced task completion time for SRUs while maintaining performance for VUs, decreasing the completion time gap between groups from 2x to 1.2x. 11 of 12 participants wanted to use Task Mode in the future, reporting that Task Mode supported completing tasks with less effort and fewer distractions. This work demonstrates how designing new interactions simultaneously for visual and non-visual access can reduce rather than reinforce accessibility disparities in future technology created by human-computer interaction researchers and practitioners.
Task Memory Engine: Spatial Memory for Robust Multi-Step LLM Agents
Large Language Models (LLMs) falter in multi-step interactions -- often hallucinating, repeating actions, or misinterpreting user corrections -- due to reliance on linear, unstructured context. This fragility stems from the lack of persistent memory to track evolving goals and task dependencies, undermining trust in autonomous agents. We introduce the Task Memory Engine (TME), a modular memory controller that transforms existing LLMs into robust, revision-aware agents without fine-tuning. TME implements a spatial memory framework that replaces flat context with graph-based structures to support consistent, multi-turn reasoning. Departing from linear concatenation and ReAct-style prompting, TME builds a dynamic task graph -- either a tree or directed acyclic graph (DAG) -- to map user inputs to subtasks, align them with prior context, and enable dependency-tracked revisions. Its Task Representation and Intent Management (TRIM) component models task semantics and user intent to ensure accurate interpretation. Across four multi-turn scenarios-trip planning, cooking, meeting scheduling, and shopping cart editing -- TME eliminates 100% of hallucinations and misinterpretations in three tasks, and reduces hallucinations by 66.7% and misinterpretations by 83.3% across 27 user turns, outperforming ReAct. TME's modular design supports plug-and-play deployment and domain-specific customization, adaptable to both personal assistants and enterprise automation. We release TME's codebase, benchmarks, and components as open-source resources, enabling researchers to develop reliable LLM agents. TME's scalable architecture addresses a critical gap in agent performance across complex, interactive settings.
Improving Agent Interactions in Virtual Environments with Language Models
Enhancing AI systems with efficient communication skills for effective human assistance necessitates proactive initiatives from the system side to discern specific circumstances and interact aptly. This research focuses on a collective building assignment in the Minecraft dataset, employing language modeling to enhance task understanding through state-of-the-art methods. These models focus on grounding multi-modal understanding and task-oriented dialogue comprehension tasks, providing insights into their interpretative and responsive capabilities. Our experimental results showcase a substantial improvement over existing methods, indicating a promising direction for future research in this domain.
InterDiff: Generating 3D Human-Object Interactions with Physics-Informed Diffusion
This paper addresses a novel task of anticipating 3D human-object interactions (HOIs). Most existing research on HOI synthesis lacks comprehensive whole-body interactions with dynamic objects, e.g., often limited to manipulating small or static objects. Our task is significantly more challenging, as it requires modeling dynamic objects with various shapes, capturing whole-body motion, and ensuring physically valid interactions. To this end, we propose InterDiff, a framework comprising two key steps: (i) interaction diffusion, where we leverage a diffusion model to encode the distribution of future human-object interactions; (ii) interaction correction, where we introduce a physics-informed predictor to correct denoised HOIs in a diffusion step. Our key insight is to inject prior knowledge that the interactions under reference with respect to contact points follow a simple pattern and are easily predictable. Experiments on multiple human-object interaction datasets demonstrate the effectiveness of our method for this task, capable of producing realistic, vivid, and remarkably long-term 3D HOI predictions.
Articulated 3D Human-Object Interactions from RGB Videos: An Empirical Analysis of Approaches and Challenges
Human-object interactions with articulated objects are common in everyday life. Despite much progress in single-view 3D reconstruction, it is still challenging to infer an articulated 3D object model from an RGB video showing a person manipulating the object. We canonicalize the task of articulated 3D human-object interaction reconstruction from RGB video, and carry out a systematic benchmark of five families of methods for this task: 3D plane estimation, 3D cuboid estimation, CAD model fitting, implicit field fitting, and free-form mesh fitting. Our experiments show that all methods struggle to obtain high accuracy results even when provided ground truth information about the observed objects. We identify key factors which make the task challenging and suggest directions for future work on this challenging 3D computer vision task. Short video summary at https://www.youtube.com/watch?v=5tAlKBojZwc
DualTalk: Dual-Speaker Interaction for 3D Talking Head Conversations
In face-to-face conversations, individuals need to switch between speaking and listening roles seamlessly. Existing 3D talking head generation models focus solely on speaking or listening, neglecting the natural dynamics of interactive conversation, which leads to unnatural interactions and awkward transitions. To address this issue, we propose a new task -- multi-round dual-speaker interaction for 3D talking head generation -- which requires models to handle and generate both speaking and listening behaviors in continuous conversation. To solve this task, we introduce DualTalk, a novel unified framework that integrates the dynamic behaviors of speakers and listeners to simulate realistic and coherent dialogue interactions. This framework not only synthesizes lifelike talking heads when speaking but also generates continuous and vivid non-verbal feedback when listening, effectively capturing the interplay between the roles. We also create a new dataset featuring 50 hours of multi-round conversations with over 1,000 characters, where participants continuously switch between speaking and listening roles. Extensive experiments demonstrate that our method significantly enhances the naturalness and expressiveness of 3D talking heads in dual-speaker conversations. We recommend watching the supplementary video: https://ziqiaopeng.github.io/dualtalk.
AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers
For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks described by natural language. Recent advances in large language models (LLMs) have shown promise for translating natural language into robot action sequences for complex tasks. However, existing approaches either translate the natural language directly into robot trajectories or factor the inference process by decomposing language into task sub-goals and relying on a motion planner to execute each sub-goal. When complex environmental and temporal constraints are involved, inference over planning tasks must be performed jointly with motion plans using traditional task-and-motion planning (TAMP) algorithms, making factorization into subgoals untenable. Rather than using LLMs to directly plan task sub-goals, we instead perform few-shot translation from natural language task descriptions to an intermediate task representation that can then be consumed by a TAMP algorithm to jointly solve the task and motion plan. To improve translation, we automatically detect and correct both syntactic and semantic errors via autoregressive re-prompting, resulting in significant improvements in task completion. We show that our approach outperforms several methods using LLMs as planners in complex task domains. See our project website https://yongchao98.github.io/MIT-REALM-AutoTAMP/ for prompts, videos, and code.
Engagement Detection with Multi-Task Training in E-Learning Environments
Recognition of user interaction, in particular engagement detection, became highly crucial for online working and learning environments, especially during the COVID-19 outbreak. Such recognition and detection systems significantly improve the user experience and efficiency by providing valuable feedback. In this paper, we propose a novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes mean squared error and triplet loss together to determine the engagement level of students in an e-learning environment. The performance of this system is evaluated and compared against the state-of-the-art on a publicly available dataset as well as videos collected from real-life scenarios. The results show that ED-MTT achieves 6% lower MSE than the best state-of-the-art performance with highly acceptable training time and lightweight feature extraction.
S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder for Text-to-SQL Parsers
The task of converting a natural language question into an executable SQL query, known as text-to-SQL, is an important branch of semantic parsing. The state-of-the-art graph-based encoder has been successfully used in this task but does not model the question syntax well. In this paper, we propose S^2SQL, injecting Syntax to question-Schema graph encoder for Text-to-SQL parsers, which effectively leverages the syntactic dependency information of questions in text-to-SQL to improve the performance. We also employ the decoupling constraint to induce diverse relational edge embedding, which further improves the network's performance. Experiments on the Spider and robustness setting Spider-Syn demonstrate that the proposed approach outperforms all existing methods when pre-training models are used, resulting in a performance ranks first on the Spider leaderboard.
HOTR: End-to-End Human-Object Interaction Detection with Transformers
Human-Object Interaction (HOI) detection is a task of identifying "a set of interactions" in an image, which involves the i) localization of the subject (i.e., humans) and target (i.e., objects) of interaction, and ii) the classification of the interaction labels. Most existing methods have indirectly addressed this task by detecting human and object instances and individually inferring every pair of the detected instances. In this paper, we present a novel framework, referred to by HOTR, which directly predicts a set of <human, object, interaction> triplets from an image based on a transformer encoder-decoder architecture. Through the set prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection.
Learning to Match Jobs with Resumes from Sparse Interaction Data using Multi-View Co-Teaching Network
With the ever-increasing growth of online recruitment data, job-resume matching has become an important task to automatically match jobs with suitable resumes. This task is typically casted as a supervised text matching problem. Supervised learning is powerful when the labeled data is sufficient. However, on online recruitment platforms, job-resume interaction data is sparse and noisy, which affects the performance of job-resume match algorithms. To alleviate these problems, in this paper, we propose a novel multi-view co-teaching network from sparse interaction data for job-resume matching. Our network consists of two major components, namely text-based matching model and relation-based matching model. The two parts capture semantic compatibility in two different views, and complement each other. In order to address the challenges from sparse and noisy data, we design two specific strategies to combine the two components. First, two components share the learned parameters or representations, so that the original representations of each component can be enhanced. More importantly, we adopt a co-teaching mechanism to reduce the influence of noise in training data. The core idea is to let the two components help each other by selecting more reliable training instances. The two strategies focus on representation enhancement and data enhancement, respectively. Compared with pure text-based matching models, the proposed approach is able to learn better data representations from limited or even sparse interaction data, which is more resistible to noise in training data. Experiment results have demonstrated that our model is able to outperform state-of-the-art methods for job-resume matching.
DreamHOI: Subject-Driven Generation of 3D Human-Object Interactions with Diffusion Priors
We present DreamHOI, a novel method for zero-shot synthesis of human-object interactions (HOIs), enabling a 3D human model to realistically interact with any given object based on a textual description. This task is complicated by the varying categories and geometries of real-world objects and the scarcity of datasets encompassing diverse HOIs. To circumvent the need for extensive data, we leverage text-to-image diffusion models trained on billions of image-caption pairs. We optimize the articulation of a skinned human mesh using Score Distillation Sampling (SDS) gradients obtained from these models, which predict image-space edits. However, directly backpropagating image-space gradients into complex articulation parameters is ineffective due to the local nature of such gradients. To overcome this, we introduce a dual implicit-explicit representation of a skinned mesh, combining (implicit) neural radiance fields (NeRFs) with (explicit) skeleton-driven mesh articulation. During optimization, we transition between implicit and explicit forms, grounding the NeRF generation while refining the mesh articulation. We validate our approach through extensive experiments, demonstrating its effectiveness in generating realistic HOIs.
Retrospective Learning from Interactions
Multi-turn interactions between large language models (LLMs) and users naturally include implicit feedback signals. If an LLM responds in an unexpected way to an instruction, the user is likely to signal it by rephrasing the request, expressing frustration, or pivoting to an alternative task. Such signals are task-independent and occupy a relatively constrained subspace of language, allowing the LLM to identify them even if it fails on the actual task. This creates an avenue for continually learning from interactions without additional annotations. We introduce ReSpect, a method to learn from such signals in past interactions via retrospection. We deploy ReSpect in a new multimodal interaction scenario, where humans instruct an LLM to solve an abstract reasoning task with a combinatorial solution space. Through thousands of interactions with humans, we show how ReSpect gradually improves task completion rate from 31% to 82%, all without any external annotation.
Task Oriented Dialogue as a Catalyst for Self-Supervised Automatic Speech Recognition
While word error rates of automatic speech recognition (ASR) systems have consistently fallen, natural language understanding (NLU) applications built on top of ASR systems still attribute significant numbers of failures to low-quality speech recognition results. Existing assistant systems collect large numbers of these unsuccessful interactions, but these systems usually fail to learn from these interactions, even in an offline fashion. In this work, we introduce CLC: Contrastive Learning for Conversations, a family of methods for contrastive fine-tuning of models in a self-supervised fashion, making use of easily detectable artifacts in unsuccessful conversations with assistants. We demonstrate that our CLC family of approaches can improve the performance of ASR models on OD3, a new public large-scale semi-synthetic meta-dataset of audio task-oriented dialogues, by up to 19.2%. These gains transfer to real-world systems as well, where we show that CLC can help to improve performance by up to 6.7% over baselines. We make OD3 publicly available at https://github.com/amazon-science/amazon-od3 .
Query-Response Interactions by Multi-tasks in Semantic Search for Chatbot Candidate Retrieval
Semantic search for candidate retrieval is an important yet neglected problem in retrieval-based Chatbots, which aims to select a bunch of candidate responses efficiently from a large pool. The existing bottleneck is to ensure the model architecture having two points: 1) rich interactions between a query and a response to produce query-relevant responses; 2) ability of separately projecting the query and the response into latent spaces to apply efficiently in semantic search during online inference. To tackle this problem, we propose a novel approach, called Multitask-based Semantic Search Neural Network (MSSNN) for candidate retrieval, which accomplishes query-response interactions through multi-tasks. The method employs a Seq2Seq modeling task to learn a good query encoder, and then performs a word prediction task to build response embeddings, finally conducts a simple matching model to form the dot-product scorer. Experimental studies have demonstrated the potential of the proposed approach.
Scalable Multi-Task Reinforcement Learning for Generalizable Spatial Intelligence in Visuomotor Agents
While Reinforcement Learning (RL) has achieved remarkable success in language modeling, its triumph hasn't yet fully translated to visuomotor agents. A primary challenge in RL models is their tendency to overfit specific tasks or environments, thereby hindering the acquisition of generalizable behaviors across diverse settings. This paper provides a preliminary answer to this challenge by demonstrating that RL-finetuned visuomotor agents in Minecraft can achieve zero-shot generalization to unseen worlds. Specifically, we explore RL's potential to enhance generalizable spatial reasoning and interaction capabilities in 3D worlds. To address challenges in multi-task RL representation, we analyze and establish cross-view goal specification as a unified multi-task goal space for visuomotor policies. Furthermore, to overcome the significant bottleneck of manual task design, we propose automated task synthesis within the highly customizable Minecraft environment for large-scale multi-task RL training, and we construct an efficient distributed RL framework to support this. Experimental results show RL significantly boosts interaction success rates by 4times and enables zero-shot generalization of spatial reasoning across diverse environments, including real-world settings. Our findings underscore the immense potential of RL training in 3D simulated environments, especially those amenable to large-scale task generation, for significantly advancing visuomotor agents' spatial reasoning.
Hand-Object Interaction Pretraining from Videos
We present an approach to learn general robot manipulation priors from 3D hand-object interaction trajectories. We build a framework to use in-the-wild videos to generate sensorimotor robot trajectories. We do so by lifting both the human hand and the manipulated object in a shared 3D space and retargeting human motions to robot actions. Generative modeling on this data gives us a task-agnostic base policy. This policy captures a general yet flexible manipulation prior. We empirically demonstrate that finetuning this policy, with both reinforcement learning (RL) and behavior cloning (BC), enables sample-efficient adaptation to downstream tasks and simultaneously improves robustness and generalizability compared to prior approaches. Qualitative experiments are available at: https://hgaurav2k.github.io/hop/.
ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction
Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby limiting real-world performance of agentic tasks. In this paper, we propose a novel Non-Autoregressive Iterative Generation framework, called ToolACE-MT, for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.
Reinforce Lifelong Interaction Value of User-Author Pairs for Large-Scale Recommendation Systems
Recommendation systems (RS) help users find interested content and connect authors with their target audience. Most research in RS tends to focus either on predicting users' immediate feedback (like click-through rate) accurately or improving users' long-term engagement. However, they ignore the influence for authors and the lifelong interaction value (LIV) of user-author pairs, which is particularly crucial for improving the prosperity of social community in short-video platforms. Currently, reinforcement learning (RL) can optimize long-term benefits and has been widely applied in RS. In this paper, we introduce RL to Reinforce Lifelong Interaction Value of User-Author pairs (RLIV-UA) based on each interaction of UA pairs. To address the long intervals between UA interactions and the large scale of the UA space, we propose a novel Sparse Cross-Request Interaction Markov Decision Process (SCRI-MDP) and introduce an Adjacent State Approximation (ASA) method to construct RL training samples. Additionally, we introduce Multi-Task Critic Learning (MTCL) to capture the progressive nature of UA interactions (click -> follow -> gift), where denser interaction signals are leveraged to compensate for the learning of sparse labels. Finally, an auxiliary supervised learning task is designed to enhance the convergence of the RLIV-UA model. In offline experiments and online A/B tests, the RLIV-UA model achieves both higher user satisfaction and higher platform profits than compared methods.
SwitchVLA: Execution-Aware Task Switching for Vision-Language-Action Models
Robots deployed in dynamic environments must be able to not only follow diverse language instructions but flexibly adapt when user intent changes mid-execution. While recent Vision-Language-Action (VLA) models have advanced multi-task learning and instruction following, they typically assume static task intent, failing to respond when new instructions arrive during ongoing execution. This limitation hinders natural and robust interaction in dynamic settings, such as retail or household environments, where real-time intent changes are common. We propose SwitchVLA, a unified, execution-aware framework that enables smooth and reactive task switching without external planners or additional switch-specific data. We model task switching as a behavior modulation problem conditioned on execution state and instruction context. Expert demonstrations are segmented into temporally grounded contact phases, allowing the policy to infer task progress and adjust its behavior accordingly. A multi-behavior conditional policy is then trained to generate flexible action chunks under varying behavior modes through conditioned trajectory modeling. Experiments in both simulation and real-world robotic manipulation demonstrate that SwitchVLA enables robust instruction adherence, fluid task switching, and strong generalization-outperforming prior VLA baselines in both task success rate and interaction naturalness.
InteractAnything: Zero-shot Human Object Interaction Synthesis via LLM Feedback and Object Affordance Parsing
Recent advances in 3D human-aware generation have made significant progress. However, existing methods still struggle with generating novel Human Object Interaction (HOI) from text, particularly for open-set objects. We identify three main challenges of this task: precise human-object relation reasoning, affordance parsing for any object, and detailed human interaction pose synthesis aligning description and object geometry. In this work, we propose a novel zero-shot 3D HOI generation framework without training on specific datasets, leveraging the knowledge from large-scale pre-trained models. Specifically, the human-object relations are inferred from large language models (LLMs) to initialize object properties and guide the optimization process. Then we utilize a pre-trained 2D image diffusion model to parse unseen objects and extract contact points, avoiding the limitations imposed by existing 3D asset knowledge. The initial human pose is generated by sampling multiple hypotheses through multi-view SDS based on the input text and object geometry. Finally, we introduce a detailed optimization to generate fine-grained, precise, and natural interaction, enforcing realistic 3D contact between the 3D object and the involved body parts, including hands in grasping. This is achieved by distilling human-level feedback from LLMs to capture detailed human-object relations from the text instruction. Extensive experiments validate the effectiveness of our approach compared to prior works, particularly in terms of the fine-grained nature of interactions and the ability to handle open-set 3D objects.
IDAT: A Multi-Modal Dataset and Toolkit for Building and Evaluating Interactive Task-Solving Agents
Seamless interaction between AI agents and humans using natural language remains a key goal in AI research. This paper addresses the challenges of developing interactive agents capable of understanding and executing grounded natural language instructions through the IGLU competition at NeurIPS. Despite advancements, challenges such as a scarcity of appropriate datasets and the need for effective evaluation platforms persist. We introduce a scalable data collection tool for gathering interactive grounded language instructions within a Minecraft-like environment, resulting in a Multi-Modal dataset with around 9,000 utterances and over 1,000 clarification questions. Additionally, we present a Human-in-the-Loop interactive evaluation platform for qualitative analysis and comparison of agent performance through multi-turn communication with human annotators. We offer to the community these assets referred to as IDAT (IGLU Dataset And Toolkit) which aim to advance the development of intelligent, interactive AI agents and provide essential resources for further research.
Nonverbal Interaction Detection
This work addresses a new challenge of understanding human nonverbal interaction in social contexts. Nonverbal signals pervade virtually every communicative act. Our gestures, facial expressions, postures, gaze, even physical appearance all convey messages, without anything being said. Despite their critical role in social life, nonverbal signals receive very limited attention as compared to the linguistic counterparts, and existing solutions typically examine nonverbal cues in isolation. Our study marks the first systematic effort to enhance the interpretation of multifaceted nonverbal signals. First, we contribute a novel large-scale dataset, called NVI, which is meticulously annotated to include bounding boxes for humans and corresponding social groups, along with 22 atomic-level nonverbal behaviors under five broad interaction types. Second, we establish a new task NVI-DET for nonverbal interaction detection, which is formalized as identifying triplets in the form <individual, group, interaction> from images. Third, we propose a nonverbal interaction detection hypergraph (NVI-DEHR), a new approach that explicitly models high-order nonverbal interactions using hypergraphs. Central to the model is a dual multi-scale hypergraph that adeptly addresses individual-to-individual and group-to-group correlations across varying scales, facilitating interactional feature learning and eventually improving interaction prediction. Extensive experiments on NVI show that NVI-DEHR improves various baselines significantly in NVI-DET. It also exhibits leading performance on HOI-DET, confirming its versatility in supporting related tasks and strong generalization ability. We hope that our study will offer the community new avenues to explore nonverbal signals in more depth.
SportsHHI: A Dataset for Human-Human Interaction Detection in Sports Videos
Video-based visual relation detection tasks, such as video scene graph generation, play important roles in fine-grained video understanding. However, current video visual relation detection datasets have two main limitations that hinder the progress of research in this area. First, they do not explore complex human-human interactions in multi-person scenarios. Second, the relation types of existing datasets have relatively low-level semantics and can be often recognized by appearance or simple prior information, without the need for detailed spatio-temporal context reasoning. Nevertheless, comprehending high-level interactions between humans is crucial for understanding complex multi-person videos, such as sports and surveillance videos. To address this issue, we propose a new video visual relation detection task: video human-human interaction detection, and build a dataset named SportsHHI for it. SportsHHI contains 34 high-level interaction classes from basketball and volleyball sports. 118,075 human bounding boxes and 50,649 interaction instances are annotated on 11,398 keyframes. To benchmark this, we propose a two-stage baseline method and conduct extensive experiments to reveal the key factors for a successful human-human interaction detector. We hope that SportsHHI can stimulate research on human interaction understanding in videos and promote the development of spatio-temporal context modeling techniques in video visual relation detection.
Diffusion-Guided Reconstruction of Everyday Hand-Object Interaction Clips
We tackle the task of reconstructing hand-object interactions from short video clips. Given an input video, our approach casts 3D inference as a per-video optimization and recovers a neural 3D representation of the object shape, as well as the time-varying motion and hand articulation. While the input video naturally provides some multi-view cues to guide 3D inference, these are insufficient on their own due to occlusions and limited viewpoint variations. To obtain accurate 3D, we augment the multi-view signals with generic data-driven priors to guide reconstruction. Specifically, we learn a diffusion network to model the conditional distribution of (geometric) renderings of objects conditioned on hand configuration and category label, and leverage it as a prior to guide the novel-view renderings of the reconstructed scene. We empirically evaluate our approach on egocentric videos across 6 object categories, and observe significant improvements over prior single-view and multi-view methods. Finally, we demonstrate our system's ability to reconstruct arbitrary clips from YouTube, showing both 1st and 3rd person interactions.
Consistency Learning via Decoding Path Augmentation for Transformers in Human Object Interaction Detection
Human-Object Interaction detection is a holistic visual recognition task that entails object detection as well as interaction classification. Previous works of HOI detection has been addressed by the various compositions of subset predictions, e.g., Image -> HO -> I, Image -> HI -> O. Recently, transformer based architecture for HOI has emerged, which directly predicts the HOI triplets in an end-to-end fashion (Image -> HOI). Motivated by various inference paths for HOI detection, we propose cross-path consistency learning (CPC), which is a novel end-to-end learning strategy to improve HOI detection for transformers by leveraging augmented decoding paths. CPC learning enforces all the possible predictions from permuted inference sequences to be consistent. This simple scheme makes the model learn consistent representations, thereby improving generalization without increasing model capacity. Our experiments demonstrate the effectiveness of our method, and we achieved significant improvement on V-COCO and HICO-DET compared to the baseline models. Our code is available at https://github.com/mlvlab/CPChoi.
Improving Human-Object Interaction Detection via Phrase Learning and Label Composition
Human-Object Interaction (HOI) detection is a fundamental task in high-level human-centric scene understanding. We propose PhraseHOI, containing a HOI branch and a novel phrase branch, to leverage language prior and improve relation expression. Specifically, the phrase branch is supervised by semantic embeddings, whose ground truths are automatically converted from the original HOI annotations without extra human efforts. Meanwhile, a novel label composition method is proposed to deal with the long-tailed problem in HOI, which composites novel phrase labels by semantic neighbors. Further, to optimize the phrase branch, a loss composed of a distilling loss and a balanced triplet loss is proposed. Extensive experiments are conducted to prove the effectiveness of the proposed PhraseHOI, which achieves significant improvement over the baseline and surpasses previous state-of-the-art methods on Full and NonRare on the challenging HICO-DET benchmark.
Language Semantics Interpretation with an Interaction-based Recurrent Neural Networks
Text classification is a fundamental language task in Natural Language Processing. A variety of sequential models is capable making good predictions yet there is lack of connection between language semantics and prediction results. This paper proposes a novel influence score (I-score), a greedy search algorithm called Backward Dropping Algorithm (BDA), and a novel feature engineering technique called the "dagger technique". First, the paper proposes a novel influence score (I-score) to detect and search for the important language semantics in text document that are useful for making good prediction in text classification tasks. Next, a greedy search algorithm called the Backward Dropping Algorithm is proposed to handle long-term dependencies in the dataset. Moreover, the paper proposes a novel engineering technique called the "dagger technique" that fully preserve the relationship between explanatory variable and response variable. The proposed techniques can be further generalized into any feed-forward Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs), and any neural network. A real-world application on the Internet Movie Database (IMDB) is used and the proposed methods are applied to improve prediction performance with an 81% error reduction comparing with other popular peers if I-score and "dagger technique" are not implemented.
End-to-End Human Object Interaction Detection with HOI Transformer
We propose HOI Transformer to tackle human object interaction (HOI) detection in an end-to-end manner. Current approaches either decouple HOI task into separated stages of object detection and interaction classification or introduce surrogate interaction problem. In contrast, our method, named HOI Transformer, streamlines the HOI pipeline by eliminating the need for many hand-designed components. HOI Transformer reasons about the relations of objects and humans from global image context and directly predicts HOI instances in parallel. A quintuple matching loss is introduced to force HOI predictions in a unified way. Our method is conceptually much simpler and demonstrates improved accuracy. Without bells and whistles, HOI Transformer achieves 26.61% AP on HICO-DET and 52.9% AP_{role} on V-COCO, surpassing previous methods with the advantage of being much simpler. We hope our approach will serve as a simple and effective alternative for HOI tasks. Code is available at https://github.com/bbepoch/HoiTransformer .
IGSQL: Database Schema Interaction Graph Based Neural Model for Context-Dependent Text-to-SQL Generation
Context-dependent text-to-SQL task has drawn much attention in recent years. Previous models on context-dependent text-to-SQL task only concentrate on utilizing historical user inputs. In this work, in addition to using encoders to capture historical information of user inputs, we propose a database schema interaction graph encoder to utilize historicalal information of database schema items. In decoding phase, we introduce a gate mechanism to weigh the importance of different vocabularies and then make the prediction of SQL tokens. We evaluate our model on the benchmark SParC and CoSQL datasets, which are two large complex context-dependent cross-domain text-to-SQL datasets. Our model outperforms previous state-of-the-art model by a large margin and achieves new state-of-the-art results on the two datasets. The comparison and ablation results demonstrate the efficacy of our model and the usefulness of the database schema interaction graph encoder.
BIRD-INTERACT: Re-imagining Text-to-SQL Evaluation for Large Language Models via Lens of Dynamic Interactions
Large language models (LLMs) have demonstrated remarkable performance on single-turn text-to-SQL tasks, but real-world database applications predominantly require multi-turn interactions to handle ambiguous queries, execution errors, and evolving user requirements. Existing multi-turn benchmarks fall short by treating conversation histories as static context or limiting evaluation to read-only operations, failing to reflect production-grade database assistant challenges. We introduce BIRD-INTERACT, a benchmark that restores this realism through: (1) a comprehensive interaction environment coupling each database with a hierarchical knowledge base, metadata files, and a function-driven user simulator, enabling models to solicit clarifications, retrieve knowledge, and recover from errors without human supervision; (2) two evaluation settings consisting of a pre-defined conversational protocol (c-Interact) and an open-ended agentic setting (a-Interact) where models autonomously decide when to query the user simulator or explore the environment; (3) a challenging task suite covering the full CRUD spectrum for business-intelligence and operational use cases, guarded by executable test cases. Each task features ambiguous and follow-up sub-tasks requiring dynamic interaction. The suite comprises BIRD-INTERACT-FULL (600 tasks, up to 11,796 interactions) for comprehensive performance assessment, and BIRD-INTERACT-LITE (300 tasks with simplified databases) for detailed behavioral analysis and rapid method development. Our empirical results highlight BIRD-INTERACT's difficulty: GPT-5 completes only 8.67% of tasks in c-Interact and 17.00% in a-Interact. Analysis via memory grafting and Interaction Test-time Scaling validates the importance of effective interaction for complex, dynamic text-to-SQL tasks.
Predicting Movie Success with Multi-Task Learning: A Hybrid Framework Combining GPT-Based Sentiment Analysis and SIR Propagation
This study presents a hybrid framework for predicting movie success. The framework integrates multi-task learning (MTL), GPT-based sentiment analysis, and Susceptible-Infected-Recovered (SIR) propagation modeling. The study examines limitations in existing approaches. It models static production attributes, information dissemination, and audience sentiment at the same time. The framework uses 5,840 films from 2004 to 2024 and approximate 300,000 user reviews. It shows predictive performance with classification accuracy of 0.964 and regression metrics of MAE 0.388. Ablation analysis indicates component interactions. Selective feature combinations perform better than the comprehensive model. This result questions assumptions about feature integration. The model shows virality patterns between successful and unsuccessful films. Innovations include epidemiological modeling for information diffusion, multidimensional sentiment features from GPT-based analysis, and a shared representation architecture that optimizes multiple success metrics. The framework provides applications in the film production lifecycle. It also contributes to understanding how audience engagement leads to commercial outcomes.
Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models
Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs.
UI-CUBE: Enterprise-Grade Computer Use Agent Benchmarking Beyond Task Accuracy to Operational Reliability
While current Computer Use Agent (CUA) benchmarks measure task completion effectively, they provide limited assessment of enterprise deployment readiness, emphasizing functional correctness over the operational reliability required for production systems. We present UI-CUBE (UiPath Computer Use BEnchmark), a systematic benchmark comprising 226 tasks across two difficulty tiers designed to expose fundamental architectural limitations in current CUAs. Our evaluation covers simple UI interactions (136 tasks) and complex workflows including copy-paste tasks (50 tasks) and enterprise application scenarios (40 tasks), with systematic interface variation coverage, multi-resolution testing and automated validation of task success through the application state. Evaluation of five state-of-the-art models reveals a sharp capability cliff rather than gradual performance degradation. Simple UI interactions achieve 67-85% success rates (compared to 97.9% human performance), but complex workflows drop precipitously to 9-19%. Human evaluators with no prior application experience achieve only 61.2% on complex tasks despite near-perfect performance on simple tasks, establishing realistic performance ceilings. This discontinuous performance pattern -- where agents achieve 68-87% of human performance on simple tasks but only 15-32% on complex workflows -- indicates fundamental architectural limitations in memory management, hierarchical planning, and state coordination rather than incremental capability gaps addressable through better training or prompting. UI-CUBE functions as an enterprise-readiness diagnostic, revealing that while current CUAs can manipulate individual interface elements, they cannot yet function as reliable workflow automation tools. These findings provide architectural insights essential for developing production-ready CUAs capable of managing complex, multi-step enterprise processes.
Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding
We introduce meta-prompting, an effective scaffolding technique designed to enhance the functionality of language models (LMs). This approach transforms a single LM into a multi-faceted conductor, adept at managing and integrating multiple independent LM queries. By employing high-level instructions, meta-prompting guides the LM to break down complex tasks into smaller, more manageable subtasks. These subtasks are then handled by distinct "expert" instances of the same LM, each operating under specific, tailored instructions. Central to this process is the LM itself, in its role as the conductor, which ensures seamless communication and effective integration of the outputs from these expert models. It additionally employs its inherent critical thinking and robust verification processes to refine and authenticate the end result. This collaborative prompting approach empowers a single LM to simultaneously act as a comprehensive orchestrator and a panel of diverse experts, significantly enhancing its performance across a wide array of tasks. The zero-shot, task-agnostic nature of meta-prompting greatly simplifies user interaction by obviating the need for detailed, task-specific instructions. Furthermore, our research demonstrates the seamless integration of external tools, such as a Python interpreter, into the meta-prompting framework, thereby broadening its applicability and utility. Through rigorous experimentation with GPT-4, we establish the superiority of meta-prompting over conventional scaffolding methods: When averaged across all tasks, including the Game of 24, Checkmate-in-One, and Python Programming Puzzles, meta-prompting, augmented with a Python interpreter functionality, surpasses standard prompting by 17.1%, expert (dynamic) prompting by 17.3%, and multipersona prompting by 15.2%.
UnityVideo: Unified Multi-Modal Multi-Task Learning for Enhancing World-Aware Video Generation
Recent video generation models demonstrate impressive synthesis capabilities but remain limited by single-modality conditioning, constraining their holistic world understanding. This stems from insufficient cross-modal interaction and limited modal diversity for comprehensive world knowledge representation. To address these limitations, we introduce UnityVideo, a unified framework for world-aware video generation that jointly learns across multiple modalities (segmentation masks, human skeletons, DensePose, optical flow, and depth maps) and training paradigms. Our approach features two core components: (1) dynamic noising to unify heterogeneous training paradigms, and (2) a modality switcher with an in-context learner that enables unified processing via modular parameters and contextual learning. We contribute a large-scale unified dataset with 1.3M samples. Through joint optimization, UnityVideo accelerates convergence and significantly enhances zero-shot generalization to unseen data. We demonstrate that UnityVideo achieves superior video quality, consistency, and improved alignment with physical world constraints. Code and data can be found at: https://github.com/dvlab-research/UnityVideo
IWR-Bench: Can LVLMs reconstruct interactive webpage from a user interaction video?
The webpage-to-code task requires models to understand visual representations of webpages and generate corresponding code. However, existing benchmarks primarily focus on static screenshot-to-code tasks, thereby overlooking the dynamic interactions fundamental to real-world web applications. To address this limitation, this paper introduces IWR-Bench, a novel benchmark for evaluating the capabilities of Large Vision-Language Models (LVLMs) in interactive webpage reconstruction from video. IWR-Bench comprises 113 meticulously curated tasks from 100 real-world websites, with 1,001 actions and featuring diverse interaction complexities (e.g., web games), visual styles, and domains. Aligning with standard web development practices, each task includes not only user interaction videos but also all crawled static assets (e.g., images, videos). This benchmark evaluates models on two fundamental challenges: comprehensive multi-modal reasoning to infer interaction logic from video and assets, and advanced code generation to translate this logic into functional code. An agent-as-a-judge framework with a comprehensive metric system automatically assesses the functional correctness and visual fidelity of generated webpages. Extensive experiments on 28 LVLMs reveal a significant challenge: the best model achieves an overall score of only 36.35%, as functional correctness (24.39% IFS) lags significantly behind visual fidelity (64.25% VFS). These results highlight critical limitations in current models' ability to reason about temporal dynamics and synthesize event-driven logic, establishing IWR-Bench as a challenging frontier for vision-language research. The benchmark and evaluation code will be made publicly available. Code is available at https://github.com/L-O-I/IWR-Bench.
InteractVLM: 3D Interaction Reasoning from 2D Foundational Models
We introduce InteractVLM, a novel method to estimate 3D contact points on human bodies and objects from single in-the-wild images, enabling accurate human-object joint reconstruction in 3D. This is challenging due to occlusions, depth ambiguities, and widely varying object shapes. Existing methods rely on 3D contact annotations collected via expensive motion-capture systems or tedious manual labeling, limiting scalability and generalization. To overcome this, InteractVLM harnesses the broad visual knowledge of large Vision-Language Models (VLMs), fine-tuned with limited 3D contact data. However, directly applying these models is non-trivial, as they reason only in 2D, while human-object contact is inherently 3D. Thus we introduce a novel Render-Localize-Lift module that: (1) embeds 3D body and object surfaces in 2D space via multi-view rendering, (2) trains a novel multi-view localization model (MV-Loc) to infer contacts in 2D, and (3) lifts these to 3D. Additionally, we propose a new task called Semantic Human Contact estimation, where human contact predictions are conditioned explicitly on object semantics, enabling richer interaction modeling. InteractVLM outperforms existing work on contact estimation and also facilitates 3D reconstruction from an in-the wild image. Code and models are available at https://interactvlm.is.tue.mpg.de.
WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents
Existing benchmarks for grounding language in interactive environments either lack real-world linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. To bridge this gap, we develop WebShop -- a simulated e-commerce website environment with 1.18 million real-world products and 12,087 crowd-sourced text instructions. Given a text instruction specifying a product requirement, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase an item. WebShop provides several challenges for language grounding including understanding compositional instructions, query (re-)formulation, comprehending and acting on noisy text in webpages, and performing strategic exploration. We collect over 1,600 human demonstrations for the task, and train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of 29%, which outperforms rule-based heuristics (9.6%) but is far lower than human expert performance (59%). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show that agents trained on WebShop exhibit non-trivial sim-to-real transfer when evaluated on amazon.com and ebay.com, indicating the potential value of WebShop in developing practical web-based agents that can operate in the wild.
Adaptive Domain Modeling with Language Models: A Multi-Agent Approach to Task Planning
We introduce TAPAS (Task-based Adaptation and Planning using AgentS), a multi-agent framework that integrates Large Language Models (LLMs) with symbolic planning to solve complex tasks without the need for manually defined environment models. TAPAS employs specialized LLM-based agents that collaboratively generate and adapt domain models, initial states, and goal specifications as needed using structured tool-calling mechanisms. Through this tool-based interaction, downstream agents can request modifications from upstream agents, enabling adaptation to novel attributes and constraints without manual domain redefinition. A ReAct (Reason+Act)-style execution agent, coupled with natural language plan translation, bridges the gap between dynamically generated plans and real-world robot capabilities. TAPAS demonstrates strong performance in benchmark planning domains and in the VirtualHome simulated real-world environment.
Defining and Extracting generalizable interaction primitives from DNNs
Faithfully summarizing the knowledge encoded by a deep neural network (DNN) into a few symbolic primitive patterns without losing much information represents a core challenge in explainable AI. To this end, Ren et al. (2023c) have derived a series of theorems to prove that the inference score of a DNN can be explained as a small set of interactions between input variables. However, the lack of generalization power makes it still hard to consider such interactions as faithful primitive patterns encoded by the DNN. Therefore, given different DNNs trained for the same task, we develop a new method to extract interactions that are shared by these DNNs. Experiments show that the extracted interactions can better reflect common knowledge shared by different DNNs.
Unified Human-Scene Interaction via Prompted Chain-of-Contacts
Human-Scene Interaction (HSI) is a vital component of fields like embodied AI and virtual reality. Despite advancements in motion quality and physical plausibility, two pivotal factors, versatile interaction control and the development of a user-friendly interface, require further exploration before the practical application of HSI. This paper presents a unified HSI framework, UniHSI, which supports unified control of diverse interactions through language commands. This framework is built upon the definition of interaction as Chain of Contacts (CoC): steps of human joint-object part pairs, which is inspired by the strong correlation between interaction types and human-object contact regions. Based on the definition, UniHSI constitutes a Large Language Model (LLM) Planner to translate language prompts into task plans in the form of CoC, and a Unified Controller that turns CoC into uniform task execution. To facilitate training and evaluation, we collect a new dataset named ScenePlan that encompasses thousands of task plans generated by LLMs based on diverse scenarios. Comprehensive experiments demonstrate the effectiveness of our framework in versatile task execution and generalizability to real scanned scenes. The project page is at https://github.com/OpenRobotLab/UniHSI .
Interact-Custom: Customized Human Object Interaction Image Generation
Compositional Customized Image Generation aims to customize multiple target concepts within generation content, which has gained attention for its wild application. Existing approaches mainly concentrate on the target entity's appearance preservation, while neglecting the fine-grained interaction control among target entities. To enable the model of such interaction control capability, we focus on human object interaction scenario and propose the task of Customized Human Object Interaction Image Generation(CHOI), which simultaneously requires identity preservation for target human object and the interaction semantic control between them. Two primary challenges exist for CHOI:(1)simultaneous identity preservation and interaction control demands require the model to decompose the human object into self-contained identity features and pose-oriented interaction features, while the current HOI image datasets fail to provide ideal samples for such feature-decomposed learning.(2)inappropriate spatial configuration between human and object may lead to the lack of desired interaction semantics. To tackle it, we first process a large-scale dataset, where each sample encompasses the same pair of human object involving different interactive poses. Then we design a two-stage model Interact-Custom, which firstly explicitly models the spatial configuration by generating a foreground mask depicting the interaction behavior, then under the guidance of this mask, we generate the target human object interacting while preserving their identities features. Furthermore, if the background image and the union location of where the target human object should appear are provided by users, Interact-Custom also provides the optional functionality to specify them, offering high content controllability. Extensive experiments on our tailored metrics for CHOI task demonstrate the effectiveness of our approach.
Next Edit Prediction: Learning to Predict Code Edits from Context and Interaction History
The rapid advancement of large language models (LLMs) has led to the widespread adoption of AI-powered coding assistants integrated into a development environment. On one hand, low-latency code completion offers completion suggestions but is fundamentally constrained to the cursor's current position. On the other hand, chat-based editing can perform complex modifications, yet forces developers to stop their work, describe the intent in natural language, which causes a context-switch away from the code. This creates a suboptimal user experience, as neither paradigm proactively predicts the developer's next edit in a sequence of related edits. To bridge this gap and provide the seamless code edit suggestion, we introduce the task of Next Edit Prediction, a novel task designed to infer developer intent from recent interaction history to predict both the location and content of the subsequent edit. Specifically, we curate a high-quality supervised fine-tuning dataset and an evaluation benchmark for the Next Edit Prediction task. Then, we conduct supervised fine-tuning on a series of models and performed a comprehensive evaluation of both the fine-tuned models and other baseline models, yielding several novel findings. This work lays the foundation for a new interaction paradigm that proactively collaborate with developers by anticipating their following action, rather than merely reacting to explicit instructions.
An Image-like Diffusion Method for Human-Object Interaction Detection
Human-object interaction (HOI) detection often faces high levels of ambiguity and indeterminacy, as the same interaction can appear vastly different across different human-object pairs. Additionally, the indeterminacy can be further exacerbated by issues such as occlusions and cluttered backgrounds. To handle such a challenging task, in this work, we begin with a key observation: the output of HOI detection for each human-object pair can be recast as an image. Thus, inspired by the strong image generation capabilities of image diffusion models, we propose a new framework, HOI-IDiff. In HOI-IDiff, we tackle HOI detection from a novel perspective, using an Image-like Diffusion process to generate HOI detection outputs as images. Furthermore, recognizing that our recast images differ in certain properties from natural images, we enhance our framework with a customized HOI diffusion process and a slice patchification model architecture, which are specifically tailored to generate our recast ``HOI images''. Extensive experiments demonstrate the efficacy of our framework.
HandsOnVLM: Vision-Language Models for Hand-Object Interaction Prediction
How can we predict future interaction trajectories of human hands in a scene given high-level colloquial task specifications in the form of natural language? In this paper, we extend the classic hand trajectory prediction task to two tasks involving explicit or implicit language queries. Our proposed tasks require extensive understanding of human daily activities and reasoning abilities about what should be happening next given cues from the current scene. We also develop new benchmarks to evaluate the proposed two tasks, Vanilla Hand Prediction (VHP) and Reasoning-Based Hand Prediction (RBHP). We enable solving these tasks by integrating high-level world knowledge and reasoning capabilities of Vision-Language Models (VLMs) with the auto-regressive nature of low-level ego-centric hand trajectories. Our model, HandsOnVLM is a novel VLM that can generate textual responses and produce future hand trajectories through natural-language conversations. Our experiments show that HandsOnVLM outperforms existing task-specific methods and other VLM baselines on proposed tasks, and demonstrates its ability to effectively utilize world knowledge for reasoning about low-level human hand trajectories based on the provided context. Our website contains code and detailed video results https://www.chenbao.tech/handsonvlm/
RECIPE4U: Student-ChatGPT Interaction Dataset in EFL Writing Education
The integration of generative AI in education is expanding, yet empirical analyses of large-scale and real-world interactions between students and AI systems still remain limited. Addressing this gap, we present RECIPE4U (RECIPE for University), a dataset sourced from a semester-long experiment with 212 college students in English as Foreign Language (EFL) writing courses. During the study, students engaged in dialogues with ChatGPT to revise their essays. RECIPE4U includes comprehensive records of these interactions, including conversation logs, students' intent, students' self-rated satisfaction, and students' essay edit histories. In particular, we annotate the students' utterances in RECIPE4U with 13 intention labels based on our coding schemes. We establish baseline results for two subtasks in task-oriented dialogue systems within educational contexts: intent detection and satisfaction estimation. As a foundational step, we explore student-ChatGPT interaction patterns through RECIPE4U and analyze them by focusing on students' dialogue, essay data statistics, and students' essay edits. We further illustrate potential applications of RECIPE4U dataset for enhancing the incorporation of LLMs in educational frameworks. RECIPE4U is publicly available at https://zeunie.github.io/RECIPE4U/.
Automatic Macro Mining from Interaction Traces at Scale
Macros are building block tasks of our everyday smartphone activity (e.g., "login", or "booking a flight"). Effectively extracting macros is important for understanding mobile interaction and enabling task automation. These macros are however difficult to extract at scale as they can be comprised of multiple steps yet hidden within programmatic components of mobile apps. In this paper, we introduce a novel approach based on Large Language Models (LLMs) to automatically extract semantically meaningful macros from both random and user-curated mobile interaction traces. The macros produced by our approach are automatically tagged with natural language descriptions and are fully executable. We conduct multiple studies to validate the quality of extracted macros, including user evaluation, comparative analysis against human-curated tasks, and automatic execution of these macros. These experiments and analyses show the effectiveness of our approach and the usefulness of extracted macros in various downstream applications.
ChatABL: Abductive Learning via Natural Language Interaction with ChatGPT
Large language models (LLMs) such as ChatGPT have recently demonstrated significant potential in mathematical abilities, providing valuable reasoning paradigm consistent with human natural language. However, LLMs currently have difficulty in bridging perception, language understanding and reasoning capabilities due to incompatibility of the underlying information flow among them, making it challenging to accomplish tasks autonomously. On the other hand, abductive learning (ABL) frameworks for integrating the two abilities of perception and reasoning has seen significant success in inverse decipherment of incomplete facts, but it is limited by the lack of semantic understanding of logical reasoning rules and the dependence on complicated domain knowledge representation. This paper presents a novel method (ChatABL) for integrating LLMs into the ABL framework, aiming at unifying the three abilities in a more user-friendly and understandable manner. The proposed method uses the strengths of LLMs' understanding and logical reasoning to correct the incomplete logical facts for optimizing the performance of perceptual module, by summarizing and reorganizing reasoning rules represented in natural language format. Similarly, perceptual module provides necessary reasoning examples for LLMs in natural language format. The variable-length handwritten equation deciphering task, an abstract expression of the Mayan calendar decoding, is used as a testbed to demonstrate that ChatABL has reasoning ability beyond most existing state-of-the-art methods, which has been well supported by comparative studies. To our best knowledge, the proposed ChatABL is the first attempt to explore a new pattern for further approaching human-level cognitive ability via natural language interaction with ChatGPT.
AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts
Although large language models (LLMs) have demonstrated impressive potential on simple tasks, their breadth of scope, lack of transparency, and insufficient controllability can make them less effective when assisting humans on more complex tasks. In response, we introduce the concept of Chaining LLM steps together, where the output of one step becomes the input for the next, thus aggregating the gains per step. We first define a set of LLM primitive operations useful for Chain construction, then present an interactive system where users can modify these Chains, along with their intermediate results, in a modular way. In a 20-person user study, we found that Chaining not only improved the quality of task outcomes, but also significantly enhanced system transparency, controllability, and sense of collaboration. Additionally, we saw that users developed new ways of interacting with LLMs through Chains: they leveraged sub-tasks to calibrate model expectations, compared and contrasted alternative strategies by observing parallel downstream effects, and debugged unexpected model outputs by "unit-testing" sub-components of a Chain. In two case studies, we further explore how LLM Chains may be used in future applications
TEACh: Task-driven Embodied Agents that Chat
Robots operating in human spaces must be able to engage in natural language interaction with people, both understanding and executing instructions, and using conversation to resolve ambiguity and recover from mistakes. To study this, we introduce TEACh, a dataset of over 3,000 human--human, interactive dialogues to complete household tasks in simulation. A Commander with access to oracle information about a task communicates in natural language with a Follower. The Follower navigates through and interacts with the environment to complete tasks varying in complexity from "Make Coffee" to "Prepare Breakfast", asking questions and getting additional information from the Commander. We propose three benchmarks using TEACh to study embodied intelligence challenges, and we evaluate initial models' abilities in dialogue understanding, language grounding, and task execution.
Adaptive Pattern Extraction Multi-Task Learning for Multi-Step Conversion Estimations
Multi-task learning (MTL) has been successfully used in many real-world applications, which aims to simultaneously solve multiple tasks with a single model. The general idea of multi-task learning is designing kinds of global parameter sharing mechanism and task-specific feature extractor to improve the performance of all tasks. However, challenge still remains in balancing the trade-off of various tasks since model performance is sensitive to the relationships between them. Less correlated or even conflict tasks will deteriorate the performance by introducing unhelpful or negative information. Therefore, it is important to efficiently exploit and learn fine-grained feature representation corresponding to each task. In this paper, we propose an Adaptive Pattern Extraction Multi-task (APEM) framework, which is adaptive and flexible for large-scale industrial application. APEM is able to fully utilize the feature information by learning the interactions between the input feature fields and extracted corresponding tasks-specific information. We first introduce a DeepAuto Group Transformer module to automatically and efficiently enhance the feature expressivity with a modified set attention mechanism and a Squeeze-and-Excitation operation. Second, explicit Pattern Selector is introduced to further enable selectively feature representation learning by adaptive task-indicator vectors. Empirical evaluations show that APEM outperforms the state-of-the-art MTL methods on public and real-world financial services datasets. More importantly, we explore the online performance of APEM in a real industrial-level recommendation scenario.
TOUCH: Text-guided Controllable Generation of Free-Form Hand-Object Interactions
Hand-object interaction (HOI) is fundamental for humans to express intent. Existing HOI generation research is predominantly confined to fixed grasping patterns, where control is tied to physical priors such as force closure or generic intent instructions, even when expressed through elaborate language. Such an overly general conditioning imposes a strong inductive bias for stable grasps, thus failing to capture the diversity of daily HOI. To address these limitations, we introduce Free-Form HOI Generation, which aims to generate controllable, diverse, and physically plausible HOI conditioned on fine-grained intent, extending HOI from grasping to free-form interactions, like pushing, poking, and rotating. To support this task, we construct WildO2, an in-the-wild diverse 3D HOI dataset, which includes diverse HOI derived from internet videos. Specifically, it contains 4.4k unique interactions across 92 intents and 610 object categories, each with detailed semantic annotations. Building on this dataset, we propose TOUCH, a three-stage framework centered on a multi-level diffusion model that facilitates fine-grained semantic control to generate versatile hand poses beyond grasping priors. This process leverages explicit contact modeling for conditioning and is subsequently refined with contact consistency and physical constraints to ensure realism. Comprehensive experiments demonstrate our method's ability to generate controllable, diverse, and physically plausible hand interactions representative of daily activities. The project page is https://guangyid.github.io/hoi123touch{here}.
Emotionally Intelligent Task-oriented Dialogue Systems: Architecture, Representation, and Optimisation
Task-oriented dialogue (ToD) systems are designed to help users achieve specific goals through natural language interaction. While recent advances in large language models (LLMs) have significantly improved linguistic fluency and contextual understanding, building effective and emotionally intelligent ToD systems remains a complex challenge. Effective ToD systems must optimise for task success, emotional understanding and responsiveness, and precise information conveyance, all within inherently noisy and ambiguous conversational environments. In this work, we investigate architectural, representational, optimisational as well as emotional considerations of ToD systems. We set up systems covering these design considerations with a challenging evaluation environment composed of a natural-language user simulator coupled with an imperfect natural language understanding module. We propose LUSTER, an LLM-based Unified System for Task-oriented dialogue with End-to-end Reinforcement learning with both short-term (user sentiment) and long-term (task success) rewards. Our findings demonstrate that combining LLM capability with structured reward modelling leads to more resilient and emotionally responsive ToD systems, offering a practical path forward for next-generation conversational agents.
EdgeWisePersona: A Dataset for On-Device User Profiling from Natural Language Interactions
This paper introduces a novel dataset and evaluation benchmark designed to assess and improve small language models deployable on edge devices, with a focus on user profiling from multi-session natural language interactions in smart home environments. At the core of the dataset are structured user profiles, each defined by a set of routines - context-triggered, repeatable patterns of behavior that govern how users interact with their home systems. Using these profiles as input, a large language model (LLM) generates corresponding interaction sessions that simulate realistic, diverse, and context-aware dialogues between users and their devices. The primary task supported by this dataset is profile reconstruction: inferring user routines and preferences solely from interactions history. To assess how well current models can perform this task under realistic conditions, we benchmarked several state-of-the-art compact language models and compared their performance against large foundation models. Our results show that while small models demonstrate some capability in reconstructing profiles, they still fall significantly short of large models in accurately capturing user behavior. This performance gap poses a major challenge - particularly because on-device processing offers critical advantages, such as preserving user privacy, minimizing latency, and enabling personalized experiences without reliance on the cloud. By providing a realistic, structured testbed for developing and evaluating behavioral modeling under these constraints, our dataset represents a key step toward enabling intelligent, privacy-respecting AI systems that learn and adapt directly on user-owned devices.
M3Net: Multimodal Multi-task Learning for 3D Detection, Segmentation, and Occupancy Prediction in Autonomous Driving
The perception system for autonomous driving generally requires to handle multiple diverse sub-tasks. However, current algorithms typically tackle individual sub-tasks separately, which leads to low efficiency when aiming at obtaining full-perception results. Some multi-task learning methods try to unify multiple tasks with one model, but do not solve the conflicts in multi-task learning. In this paper, we introduce M3Net, a novel multimodal and multi-task network that simultaneously tackles detection, segmentation, and 3D occupancy prediction for autonomous driving and achieves superior performance than single task model. M3Net takes multimodal data as input and multiple tasks via query-token interactions. To enhance the integration of multi-modal features for multi-task learning, we first propose the Modality-Adaptive Feature Integration (MAFI) module, which enables single-modality features to predict channel-wise attention weights for their high-performing tasks, respectively. Based on integrated features, we then develop task-specific query initialization strategies to accommodate the needs of detection/segmentation and 3D occupancy prediction. Leveraging the properly initialized queries, a shared decoder transforms queries and BEV features layer-wise, facilitating multi-task learning. Furthermore, we propose a Task-oriented Channel Scaling (TCS) module in the decoder to mitigate conflicts between optimizing for different tasks. Additionally, our proposed multi-task querying and TCS module support both Transformer-based decoder and Mamba-based decoder, demonstrating its flexibility to different architectures. M3Net achieves state-of-the-art multi-task learning performance on the nuScenes benchmarks.
LeTI: Learning to Generate from Textual Interactions
Finetuning pre-trained language models (LMs) enhances the models' capabilities. Prior techniques fine-tune a pre-trained LM on input-output pairs (e.g., instruction fine-tuning), or with numerical rewards that gauge the quality of its outputs (e.g., reinforcement learning from human feedback). We explore LMs' potential to learn from textual interactions (LeTI) that not only check their correctness with binary labels, but also pinpoint and explain errors in their outputs through textual feedback. Our investigation focuses on the code generation task, where the model produces code pieces in response to natural language instructions. This setting invites a natural and scalable way to acquire the textual feedback: the error messages and stack traces from code execution using a Python interpreter. LeTI iteratively fine-tunes the model, using the LM objective, on a concatenation of natural language instructions, LM-generated programs, and textual feedback, which is only provided when the generated program fails to solve the task. Prepended to this fine-tuning text, a binary reward token is used to differentiate correct and buggy solutions. On MBPP, a code generation dataset, LeTI substantially improves the performance of two base LMs of different scales. LeTI requires no ground-truth outputs for training and even outperforms a fine-tuned baseline that does. LeTI's strong performance generalizes to other datasets. Trained on MBPP, it achieves comparable or better performance than the base LMs on unseen problems in HumanEval. Furthermore, compared to binary feedback, we observe that textual feedback leads to improved generation quality and sample efficiency, achieving the same performance with fewer than half of the gradient steps. LeTI is equally applicable in natural language tasks when they can be formulated as code generation, which we empirically verified on event argument extraction.
Learning Human-Human Interactions in Images from Weak Textual Supervision
Interactions between humans are diverse and context-dependent, but previous works have treated them as categorical, disregarding the heavy tail of possible interactions. We propose a new paradigm of learning human-human interactions as free text from a single still image, allowing for flexibility in modeling the unlimited space of situations and relationships between people. To overcome the absence of data labelled specifically for this task, we use knowledge distillation applied to synthetic caption data produced by a large language model without explicit supervision. We show that the pseudo-labels produced by this procedure can be used to train a captioning model to effectively understand human-human interactions in images, as measured by a variety of metrics that measure textual and semantic faithfulness and factual groundedness of our predictions. We further show that our approach outperforms SOTA image captioning and situation recognition models on this task. We will release our code and pseudo-labels along with Waldo and Wenda, a manually-curated test set for still image human-human interaction understanding.
ENACT: Evaluating Embodied Cognition with World Modeling of Egocentric Interaction
Embodied cognition argues that intelligence arises from sensorimotor interaction rather than passive observation. It raises an intriguing question: do modern vision-language models (VLMs), trained largely in a disembodied manner, exhibit signs of embodied cognition? We introduce ENACT, a benchmark that casts evaluation of embodied cognition as world modeling from egocentric interaction in a visual question answering (VQA) format. Framed as a partially observable Markov decision process (POMDP) whose actions are scene graph changes, ENACT comprises two complementary sequence reordering tasks: forward world modeling (reorder shuffled observations given actions) and inverse world modeling (reorder shuffled actions given observations). While conceptually simple, solving these tasks implicitly demands capabilities central to embodied cognition-affordance recognition, action-effect reasoning, embodied awareness, and interactive, long-horizon memory from partially observable egocentric input, while avoiding low-level image synthesis that could confound the evaluation. We provide a scalable pipeline that synthesizes QA pairs from robotics simulation (BEHAVIOR) and evaluates models on 8,972 QA pairs spanning long-horizon home-scale activities. Experiments reveal a performance gap between frontier VLMs and humans that widens with interaction horizon. Models consistently perform better on the inverse task than the forward one and exhibit anthropocentric biases, including a preference for right-handed actions and degradation when camera intrinsics or viewpoints deviate from human vision. Website at https://enact-embodied-cognition.github.io/.
HOComp: Interaction-Aware Human-Object Composition
While existing image-guided composition methods may help insert a foreground object onto a user-specified region of a background image, achieving natural blending inside the region with the rest of the image unchanged, we observe that these existing methods often struggle in synthesizing seamless interaction-aware compositions when the task involves human-object interactions. In this paper, we first propose HOComp, a novel approach for compositing a foreground object onto a human-centric background image, while ensuring harmonious interactions between the foreground object and the background person and their consistent appearances. Our approach includes two key designs: (1) MLLMs-driven Region-based Pose Guidance (MRPG), which utilizes MLLMs to identify the interaction region as well as the interaction type (e.g., holding and lefting) to provide coarse-to-fine constraints to the generated pose for the interaction while incorporating human pose landmarks to track action variations and enforcing fine-grained pose constraints; and (2) Detail-Consistent Appearance Preservation (DCAP), which unifies a shape-aware attention modulation mechanism, a multi-view appearance loss, and a background consistency loss to ensure consistent shapes/textures of the foreground and faithful reproduction of the background human. We then propose the first dataset, named Interaction-aware Human-Object Composition (IHOC), for the task. Experimental results on our dataset show that HOComp effectively generates harmonious human-object interactions with consistent appearances, and outperforms relevant methods qualitatively and quantitatively.
GLIMMER: generalized late-interaction memory reranker
Memory-augmentation is a powerful approach for efficiently incorporating external information into language models, but leads to reduced performance relative to retrieving text. Recent work introduced LUMEN, a memory-retrieval hybrid that partially pre-computes memory and updates memory representations on the fly with a smaller live encoder. We propose GLIMMER, which improves on this approach through 1) exploiting free access to the powerful memory representations by applying a shallow reranker on top of memory to drastically improve retrieval quality at low cost, and 2) incorporating multi-task training to learn a general and higher quality memory and live encoder. GLIMMER achieves strong gains in performance at faster speeds compared to LUMEN and FiD on the KILT benchmark of knowledge-intensive tasks.
Empowering LLM to use Smartphone for Intelligent Task Automation
Mobile task automation is an attractive technique that aims to enable voice-based hands-free user interaction with smartphones. However, existing approaches suffer from poor scalability due to the limited language understanding ability and the non-trivial manual efforts required from developers or end-users. The recent advance of large language models (LLMs) in language understanding and reasoning inspires us to rethink the problem from a model-centric perspective, where task preparation, comprehension, and execution are handled by a unified language model. In this work, we introduce AutoDroid, a mobile task automation system that can handle arbitrary tasks on any Android application without manual efforts. The key insight is to combine the commonsense knowledge of LLMs and domain-specific knowledge of apps through automated dynamic analysis. The main components include a functionality-aware UI representation method that bridges the UI with the LLM, exploration-based memory injection techniques that augment the app-specific domain knowledge of LLM, and a multi-granularity query optimization module that reduces the cost of model inference. We integrate AutoDroid with off-the-shelf LLMs including online GPT-4/GPT-3.5 and on-device Vicuna, and evaluate its performance on a new benchmark for memory-augmented Android task automation with 158 common tasks. The results demonstrated that AutoDroid is able to precisely generate actions with an accuracy of 90.9%, and complete tasks with a success rate of 71.3%, outperforming the GPT-4-powered baselines by 36.4% and 39.7%. The demo, benchmark suites, and source code of AutoDroid will be released at url{https://autodroid-sys.github.io/}.
Exploring Personality-Aware Interactions in Salesperson Dialogue Agents
The integration of dialogue agents into the sales domain requires a deep understanding of how these systems interact with users possessing diverse personas. This study explores the influence of user personas, defined using the Myers-Briggs Type Indicator (MBTI), on the interaction quality and performance of sales-oriented dialogue agents. Through large-scale testing and analysis, we assess the pre-trained agent's effectiveness, adaptability, and personalization capabilities across a wide range of MBTI-defined user types. Our findings reveal significant patterns in interaction dynamics, task completion rates, and dialogue naturalness, underscoring the future potential for dialogue agents to refine their strategies to better align with varying personality traits. This work not only provides actionable insights for building more adaptive and user-centric conversational systems in the sales domain but also contributes broadly to the field by releasing persona-defined user simulators. These simulators, unconstrained by domain, offer valuable tools for future research and demonstrate the potential for scaling personalized dialogue systems across diverse applications.
DexH2R: Task-oriented Dexterous Manipulation from Human to Robots
Dexterous manipulation is a critical aspect of human capability, enabling interaction with a wide variety of objects. Recent advancements in learning from human demonstrations and teleoperation have enabled progress for robots in such ability. However, these approaches either require complex data collection such as costly human effort for eye-robot contact, or suffer from poor generalization when faced with novel scenarios. To solve both challenges, we propose a framework, DexH2R, that combines human hand motion retargeting with a task-oriented residual action policy, improving task performance by bridging the embodiment gap between human and robotic dexterous hands. Specifically, DexH2R learns the residual policy directly from retargeted primitive actions and task-oriented rewards, eliminating the need for labor-intensive teleoperation systems. Moreover, we incorporate test-time guidance for novel scenarios by taking in desired trajectories of human hands and objects, allowing the dexterous hand to acquire new skills with high generalizability. Extensive experiments in both simulation and real-world environments demonstrate the effectiveness of our work, outperforming prior state-of-the-arts by 40% across various settings.
CycleHOI: Improving Human-Object Interaction Detection with Cycle Consistency of Detection and Generation
Recognition and generation are two fundamental tasks in computer vision, which are often investigated separately in the exiting literature. However, these two tasks are highly correlated in essence as they both require understanding the underline semantics of visual concepts. In this paper, we propose a new learning framework, coined as CycleHOI, to boost the performance of human-object interaction (HOI) detection by bridging the DETR-based detection pipeline and the pre-trained text-to-image diffusion model. Our key design is to introduce a novel cycle consistency loss for the training of HOI detector, which is able to explicitly leverage the knowledge captured in the powerful diffusion model to guide the HOI detector training. Specifically, we build an extra generation task on top of the decoded instance representations from HOI detector to enforce a detection-generation cycle consistency. Moreover, we perform feature distillation from diffusion model to detector encoder to enhance its representation power. In addition, we further utilize the generation power of diffusion model to augment the training set in both aspects of label correction and sample generation. We perform extensive experiments to verify the effectiveness and generalization power of our CycleHOI with three HOI detection frameworks on two public datasets: HICO-DET and V-COCO. The experimental results demonstrate our CycleHOI can significantly improve the performance of the state-of-the-art HOI detectors.
OAKINK2: A Dataset of Bimanual Hands-Object Manipulation in Complex Task Completion
We present OAKINK2, a dataset of bimanual object manipulation tasks for complex daily activities. In pursuit of constructing the complex tasks into a structured representation, OAKINK2 introduces three level of abstraction to organize the manipulation tasks: Affordance, Primitive Task, and Complex Task. OAKINK2 features on an object-centric perspective for decoding the complex tasks, treating them as a sequence of object affordance fulfillment. The first level, Affordance, outlines the functionalities that objects in the scene can afford, the second level, Primitive Task, describes the minimal interaction units that humans interact with the object to achieve its affordance, and the third level, Complex Task, illustrates how Primitive Tasks are composed and interdependent. OAKINK2 dataset provides multi-view image streams and precise pose annotations for the human body, hands and various interacting objects. This extensive collection supports applications such as interaction reconstruction and motion synthesis. Based on the 3-level abstraction of OAKINK2, we explore a task-oriented framework for Complex Task Completion (CTC). CTC aims to generate a sequence of bimanual manipulation to achieve task objectives. Within the CTC framework, we employ Large Language Models (LLMs) to decompose the complex task objectives into sequences of Primitive Tasks and have developed a Motion Fulfillment Model that generates bimanual hand motion for each Primitive Task. OAKINK2 datasets and models are available at https://oakink.net/v2.
LLM Agents in Interaction: Measuring Personality Consistency and Linguistic Alignment in Interacting Populations of Large Language Models
While both agent interaction and personalisation are vibrant topics in research on large language models (LLMs), there has been limited focus on the effect of language interaction on the behaviour of persona-conditioned LLM agents. Such an endeavour is important to ensure that agents remain consistent to their assigned traits yet are able to engage in open, naturalistic dialogues. In our experiments, we condition GPT-3.5 on personality profiles through prompting and create a two-group population of LLM agents using a simple variability-inducing sampling algorithm. We then administer personality tests and submit the agents to a collaborative writing task, finding that different profiles exhibit different degrees of personality consistency and linguistic alignment to their conversational partners. Our study seeks to lay the groundwork for better understanding of dialogue-based interaction between LLMs and highlights the need for new approaches to crafting robust, more human-like LLM personas for interactive environments.
Drag-A-Video: Non-rigid Video Editing with Point-based Interaction
Video editing is a challenging task that requires manipulating videos on both the spatial and temporal dimensions. Existing methods for video editing mainly focus on changing the appearance or style of the objects in the video, while keeping their structures unchanged. However, there is no existing method that allows users to interactively ``drag'' any points of instances on the first frame to precisely reach the target points with other frames consistently deformed. In this paper, we propose a new diffusion-based method for interactive point-based video manipulation, called Drag-A-Video. Our method allows users to click pairs of handle points and target points as well as masks on the first frame of an input video. Then, our method transforms the inputs into point sets and propagates these sets across frames. To precisely modify the contents of the video, we employ a new video-level motion supervision to update the features of the video and introduce the latent offsets to achieve this update at multiple denoising timesteps. We propose a temporal-consistent point tracking module to coordinate the movement of the points in the handle point sets. We demonstrate the effectiveness and flexibility of our method on various videos. The website of our work is available here: https://drag-a-video.github.io/.
Efficient Adaptive Human-Object Interaction Detection with Concept-guided Memory
Human Object Interaction (HOI) detection aims to localize and infer the relationships between a human and an object. Arguably, training supervised models for this task from scratch presents challenges due to the performance drop over rare classes and the high computational cost and time required to handle long-tailed distributions of HOIs in complex HOI scenes in realistic settings. This observation motivates us to design an HOI detector that can be trained even with long-tailed labeled data and can leverage existing knowledge from pre-trained models. Inspired by the powerful generalization ability of the large Vision-Language Models (VLM) on classification and retrieval tasks, we propose an efficient Adaptive HOI Detector with Concept-guided Memory (ADA-CM). ADA-CM has two operating modes. The first mode makes it tunable without learning new parameters in a training-free paradigm. Its second mode incorporates an instance-aware adapter mechanism that can further efficiently boost performance if updating a lightweight set of parameters can be afforded. Our proposed method achieves competitive results with state-of-the-art on the HICO-DET and V-COCO datasets with much less training time. Code can be found at https://github.com/ltttpku/ADA-CM.
Learning Language Games through Interaction
We introduce a new language learning setting relevant to building adaptive natural language interfaces. It is inspired by Wittgenstein's language games: a human wishes to accomplish some task (e.g., achieving a certain configuration of blocks), but can only communicate with a computer, who performs the actual actions (e.g., removing all red blocks). The computer initially knows nothing about language and therefore must learn it from scratch through interaction, while the human adapts to the computer's capabilities. We created a game in a blocks world and collected interactions from 100 people playing it. First, we analyze the humans' strategies, showing that using compositionality and avoiding synonyms correlates positively with task performance. Second, we compare computer strategies, showing how to quickly learn a semantic parsing model from scratch, and that modeling pragmatics further accelerates learning for successful players.
