Upload Get_Correct_Batch_Img.py
Browse files- Get_Correct_Batch_Img.py +330 -0
Get_Correct_Batch_Img.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class Get_Correct_Batch_Img:
|
| 5 |
+
"""
|
| 6 |
+
Given a batch of RGBA images, scan a given Y row across a (sub)batch and
|
| 7 |
+
treat the visible span width on that row as a 1D curve over time (batch index).
|
| 8 |
+
|
| 9 |
+
This node:
|
| 10 |
+
- Measures the visible width for EVERY image in the selected sub-batch.
|
| 11 |
+
- Detects a "big wave" pattern and extracts 5 checkpoints:
|
| 12 |
+
cp0: first major high (start-side high)
|
| 13 |
+
cp1: first major low (first valley)
|
| 14 |
+
cp2: next major high (peak after first valley)
|
| 15 |
+
cp3: second major low (second valley)
|
| 16 |
+
cp4: final major high (peak after second valley, then shifted 5% back towards cp3)
|
| 17 |
+
- For each consecutive checkpoint pair, also finds an "in-between" frame:
|
| 18 |
+
mid_0_1: width closest to midpoint between cp0 and cp1
|
| 19 |
+
mid_1_2: width closest to midpoint between cp1 and cp2
|
| 20 |
+
mid_2_3: width closest to midpoint between cp2 and cp3
|
| 21 |
+
mid_3_4: width closest to midpoint between cp3 and cp4
|
| 22 |
+
|
| 23 |
+
Outputs (all RGBA, B=1):
|
| 24 |
+
cp0_start_high
|
| 25 |
+
cp1_low_1
|
| 26 |
+
cp2_high_2
|
| 27 |
+
cp3_low_2
|
| 28 |
+
cp4_high_3
|
| 29 |
+
mid_0_1
|
| 30 |
+
mid_1_2
|
| 31 |
+
mid_2_3
|
| 32 |
+
mid_3_4
|
| 33 |
+
|
| 34 |
+
Visibility is determined from the alpha channel (A > 0). Images with no
|
| 35 |
+
visible pixels on that row are treated as width = 0 (completely thin).
|
| 36 |
+
Only images within [start_index, end_index] (inclusive) are considered.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
CATEGORY = "image/batch"
|
| 40 |
+
|
| 41 |
+
@classmethod
|
| 42 |
+
def INPUT_TYPES(cls):
|
| 43 |
+
return {
|
| 44 |
+
"required": {
|
| 45 |
+
# RGBA image batch: torch.Tensor [B, H, W, 4]
|
| 46 |
+
"images": ("IMAGE",),
|
| 47 |
+
|
| 48 |
+
# Sub-batch start index (inclusive, 0-based)
|
| 49 |
+
"start_index": (
|
| 50 |
+
"INT",
|
| 51 |
+
{
|
| 52 |
+
"default": 0,
|
| 53 |
+
"min": 0,
|
| 54 |
+
"max": 2_147_483_647,
|
| 55 |
+
"step": 1,
|
| 56 |
+
},
|
| 57 |
+
),
|
| 58 |
+
|
| 59 |
+
# Sub-batch end index (inclusive, 0-based)
|
| 60 |
+
"end_index": (
|
| 61 |
+
"INT",
|
| 62 |
+
{
|
| 63 |
+
"default": 0,
|
| 64 |
+
"min": 0,
|
| 65 |
+
"max": 2_147_483_647,
|
| 66 |
+
"step": 1,
|
| 67 |
+
},
|
| 68 |
+
),
|
| 69 |
+
|
| 70 |
+
# Y coordinate (row) used for the horizontal scan
|
| 71 |
+
"y_coord": (
|
| 72 |
+
"INT",
|
| 73 |
+
{
|
| 74 |
+
"default": 0,
|
| 75 |
+
"min": 0,
|
| 76 |
+
"max": 2_147_483_647,
|
| 77 |
+
"step": 1,
|
| 78 |
+
},
|
| 79 |
+
),
|
| 80 |
+
}
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
# 5 checkpoints + 4 inbetweens = 9 outputs
|
| 84 |
+
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "IMAGE", "IMAGE",
|
| 85 |
+
"IMAGE", "IMAGE", "IMAGE", "IMAGE")
|
| 86 |
+
RETURN_NAMES = (
|
| 87 |
+
"cp0_start_high",
|
| 88 |
+
"cp1_low_1",
|
| 89 |
+
"cp2_high_2",
|
| 90 |
+
"cp3_low_2",
|
| 91 |
+
"cp4_high_3",
|
| 92 |
+
"mid_0_1",
|
| 93 |
+
"mid_1_2",
|
| 94 |
+
"mid_2_3",
|
| 95 |
+
"mid_3_4",
|
| 96 |
+
)
|
| 97 |
+
FUNCTION = "select"
|
| 98 |
+
|
| 99 |
+
def _compute_widths(self, images, start, end, y, alpha_threshold=0.0):
|
| 100 |
+
"""
|
| 101 |
+
For each image in [start, end], compute the visible width on row y.
|
| 102 |
+
Visibility is alpha > alpha_threshold. If no visible pixels, width = 0.
|
| 103 |
+
Returns a Python list of widths (len = end-start+1).
|
| 104 |
+
"""
|
| 105 |
+
widths = []
|
| 106 |
+
for i in range(start, end + 1):
|
| 107 |
+
row_alpha = images[i, y, :, 3]
|
| 108 |
+
visible = row_alpha > alpha_threshold
|
| 109 |
+
|
| 110 |
+
if torch.any(visible):
|
| 111 |
+
# Indices of visible pixels along X
|
| 112 |
+
visible_indices = torch.nonzero(visible, as_tuple=False).squeeze(1)
|
| 113 |
+
left_x = int(visible_indices[0])
|
| 114 |
+
right_x = int(visible_indices[-1])
|
| 115 |
+
width_px = right_x - left_x + 1 # inclusive distance
|
| 116 |
+
else:
|
| 117 |
+
# No visible pixels -> treat as width 0
|
| 118 |
+
width_px = 0
|
| 119 |
+
|
| 120 |
+
widths.append(float(width_px))
|
| 121 |
+
|
| 122 |
+
return widths
|
| 123 |
+
|
| 124 |
+
def _compute_checkpoints(self, widths):
|
| 125 |
+
"""
|
| 126 |
+
From a list of widths (one per frame in sub-batch), compute 5 checkpoints:
|
| 127 |
+
cp0, cp1, cp2, cp3, cp4 (indices into `widths` list).
|
| 128 |
+
|
| 129 |
+
Strategy (global-ish, not just tiny local wiggles):
|
| 130 |
+
- Split sequence into two halves.
|
| 131 |
+
- cp1 = minimum in first half (first big valley)
|
| 132 |
+
- cp3 = minimum in second half (second big valley)
|
| 133 |
+
- cp0 = maximum from start .. cp1
|
| 134 |
+
- cp2 = maximum from cp1 .. cp3
|
| 135 |
+
- cp4 = maximum from cp3 .. end
|
| 136 |
+
- Then nudge cp4 5% of the distance back towards cp3.
|
| 137 |
+
"""
|
| 138 |
+
n = len(widths)
|
| 139 |
+
if n == 0:
|
| 140 |
+
return [0, 0, 0, 0, 0]
|
| 141 |
+
|
| 142 |
+
# Very small sequences: just spread indices out linearly.
|
| 143 |
+
if n < 4:
|
| 144 |
+
cp0 = 0
|
| 145 |
+
cp4 = n - 1
|
| 146 |
+
cp1 = max(0, min(n - 1, n // 4))
|
| 147 |
+
cp3 = max(0, min(n - 1, (3 * n) // 4))
|
| 148 |
+
cp2 = max(cp1, min(cp3, (cp1 + cp3) // 2))
|
| 149 |
+
return [cp0, cp1, cp2, cp3, cp4]
|
| 150 |
+
|
| 151 |
+
# Normal case: n >= 4
|
| 152 |
+
mid = n // 2
|
| 153 |
+
|
| 154 |
+
# cp1: global min in the FIRST half [0 .. mid]
|
| 155 |
+
first_half_end = mid
|
| 156 |
+
cp1_rel = min(range(0, first_half_end + 1), key=lambda i: widths[i])
|
| 157 |
+
cp1 = cp1_rel
|
| 158 |
+
|
| 159 |
+
# cp3: global min in the SECOND half [mid .. n-1]
|
| 160 |
+
second_half_start = mid
|
| 161 |
+
cp3_rel = min(range(second_half_start, n), key=lambda i: widths[i])
|
| 162 |
+
cp3 = cp3_rel
|
| 163 |
+
|
| 164 |
+
# Ensure cp3 is strictly after cp1 where possible, so we genuinely get a second valley.
|
| 165 |
+
if cp3 <= cp1 and cp1 + 1 < n:
|
| 166 |
+
cp3 = min(range(cp1 + 1, n), key=lambda i: widths[i])
|
| 167 |
+
|
| 168 |
+
# cp0: highest point before (and including) cp1
|
| 169 |
+
cp0 = max(range(0, cp1 + 1), key=lambda i: widths[i])
|
| 170 |
+
|
| 171 |
+
# cp2: highest point between cp1 and cp3 (inclusive)
|
| 172 |
+
cp2 = cp1 + max(range(0, (cp3 - cp1) + 1), key=lambda k: widths[cp1 + k])
|
| 173 |
+
|
| 174 |
+
# cp4: highest point from cp3 to end
|
| 175 |
+
cp4 = cp3 + max(range(0, n - cp3), key=lambda k: widths[cp3 + k])
|
| 176 |
+
|
| 177 |
+
# Nudge cp4 5% towards cp3 along the index axis
|
| 178 |
+
if cp4 > cp3:
|
| 179 |
+
dist = cp4 - cp3
|
| 180 |
+
new_cp4_float = cp4 - 0.05 * dist
|
| 181 |
+
new_cp4 = int(round(new_cp4_float))
|
| 182 |
+
# Clamp to stay between cp3 and cp4
|
| 183 |
+
new_cp4 = max(cp3, min(cp4, new_cp4))
|
| 184 |
+
cp4 = new_cp4
|
| 185 |
+
|
| 186 |
+
return [cp0, cp1, cp2, cp3, cp4]
|
| 187 |
+
|
| 188 |
+
def _find_mid_index(self, idx_a, idx_b, widths):
|
| 189 |
+
"""
|
| 190 |
+
Given two checkpoint indices and the width list, find the index whose
|
| 191 |
+
width is closest to the midpoint (average) of those two widths.
|
| 192 |
+
|
| 193 |
+
Prefer a TRUE in-between frame if possible (strictly between the two
|
| 194 |
+
indices). If there's no index in-between (they're adjacent or equal),
|
| 195 |
+
fall back to one of the endpoints.
|
| 196 |
+
"""
|
| 197 |
+
if idx_a == idx_b:
|
| 198 |
+
return idx_a
|
| 199 |
+
|
| 200 |
+
if idx_a < idx_b:
|
| 201 |
+
lo, hi = idx_a, idx_b
|
| 202 |
+
else:
|
| 203 |
+
lo, hi = idx_b, idx_a
|
| 204 |
+
|
| 205 |
+
target = (widths[idx_a] + widths[idx_b]) / 2.0
|
| 206 |
+
|
| 207 |
+
# Strictly between indices, if any
|
| 208 |
+
candidates = list(range(lo + 1, hi))
|
| 209 |
+
if not candidates:
|
| 210 |
+
# No in-between frames; allow endpoints
|
| 211 |
+
candidates = [lo, hi]
|
| 212 |
+
|
| 213 |
+
best_idx = candidates[0]
|
| 214 |
+
best_diff = abs(widths[best_idx] - target)
|
| 215 |
+
|
| 216 |
+
for j in candidates[1:]:
|
| 217 |
+
diff = abs(widths[j] - target)
|
| 218 |
+
if diff < best_diff:
|
| 219 |
+
best_diff = diff
|
| 220 |
+
best_idx = j
|
| 221 |
+
|
| 222 |
+
return best_idx
|
| 223 |
+
|
| 224 |
+
def select(self, images, start_index, end_index, y_coord):
|
| 225 |
+
# --- Basic sanity checks on the input tensor ---
|
| 226 |
+
if not isinstance(images, torch.Tensor):
|
| 227 |
+
raise TypeError(f"Expected IMAGE tensor, got {type(images)}")
|
| 228 |
+
|
| 229 |
+
if images.ndim != 4:
|
| 230 |
+
raise ValueError(
|
| 231 |
+
f"Expected IMAGE of shape [B,H,W,C], got {tuple(images.shape)}"
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
batch_size, height, width, channels = images.shape
|
| 235 |
+
|
| 236 |
+
if channels != 4:
|
| 237 |
+
raise ValueError(
|
| 238 |
+
f"Expected RGBA image with 4 channels, got {channels}. "
|
| 239 |
+
"Make sure your input batch is RGBA (not RGB)."
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
if batch_size == 0:
|
| 243 |
+
raise ValueError("Empty image batch passed to Get_Correct_Batch_Img.")
|
| 244 |
+
|
| 245 |
+
# --- Clamp and normalize indices ---
|
| 246 |
+
start = max(0, min(int(start_index), batch_size - 1))
|
| 247 |
+
end = max(0, min(int(end_index), batch_size - 1))
|
| 248 |
+
if start > end:
|
| 249 |
+
start, end = end, start # swap so start <= end
|
| 250 |
+
|
| 251 |
+
# Clamp Y coordinate into image bounds
|
| 252 |
+
y = max(0, min(int(y_coord), height - 1))
|
| 253 |
+
|
| 254 |
+
# --- 1) Measure width for every image in the sub-batch ---
|
| 255 |
+
widths = self._compute_widths(images, start, end, y)
|
| 256 |
+
n = len(widths)
|
| 257 |
+
|
| 258 |
+
# Safety: if for some reason we got no widths (shouldn't happen), just
|
| 259 |
+
# use start as everything.
|
| 260 |
+
if n == 0:
|
| 261 |
+
base_img = images[start].unsqueeze(0)
|
| 262 |
+
return (
|
| 263 |
+
base_img, base_img, base_img, base_img, base_img,
|
| 264 |
+
base_img, base_img, base_img, base_img,
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
# --- 2) Find the 5 checkpoints on this "wave" ---
|
| 268 |
+
cp0, cp1, cp2, cp3, cp4 = self._compute_checkpoints(widths)
|
| 269 |
+
|
| 270 |
+
# Clamp checkpoints to valid local indices, just in case
|
| 271 |
+
cp0 = max(0, min(n - 1, int(cp0)))
|
| 272 |
+
cp1 = max(0, min(n - 1, int(cp1)))
|
| 273 |
+
cp2 = max(0, min(n - 1, int(cp2)))
|
| 274 |
+
cp3 = max(0, min(n - 1, int(cp3)))
|
| 275 |
+
cp4 = max(0, min(n - 1, int(cp4)))
|
| 276 |
+
|
| 277 |
+
# --- 3) Compute in-betweens between each consecutive pair ---
|
| 278 |
+
mid_0_1 = self._find_mid_index(cp0, cp1, widths)
|
| 279 |
+
mid_1_2 = self._find_mid_index(cp1, cp2, widths)
|
| 280 |
+
mid_2_3 = self._find_mid_index(cp2, cp3, widths)
|
| 281 |
+
mid_3_4 = self._find_mid_index(cp3, cp4, widths)
|
| 282 |
+
|
| 283 |
+
# Map local indices [0..n-1] back to global batch indices [0..batch_size-1]
|
| 284 |
+
def local_to_global(local_idx):
|
| 285 |
+
return start + local_idx
|
| 286 |
+
|
| 287 |
+
idx_cp0 = local_to_global(cp0)
|
| 288 |
+
idx_cp1 = local_to_global(cp1)
|
| 289 |
+
idx_cp2 = local_to_global(cp2)
|
| 290 |
+
idx_cp3 = local_to_global(cp3)
|
| 291 |
+
idx_cp4 = local_to_global(cp4)
|
| 292 |
+
|
| 293 |
+
idx_mid_0_1 = local_to_global(mid_0_1)
|
| 294 |
+
idx_mid_1_2 = local_to_global(mid_1_2)
|
| 295 |
+
idx_mid_2_3 = local_to_global(mid_2_3)
|
| 296 |
+
idx_mid_3_4 = local_to_global(mid_3_4)
|
| 297 |
+
|
| 298 |
+
# --- 4) Extract the corresponding images as individual 1-image batches ---
|
| 299 |
+
cp0_img = images[idx_cp0].unsqueeze(0)
|
| 300 |
+
cp1_img = images[idx_cp1].unsqueeze(0)
|
| 301 |
+
cp2_img = images[idx_cp2].unsqueeze(0)
|
| 302 |
+
cp3_img = images[idx_cp3].unsqueeze(0)
|
| 303 |
+
cp4_img = images[idx_cp4].unsqueeze(0)
|
| 304 |
+
|
| 305 |
+
mid_0_1_img = images[idx_mid_0_1].unsqueeze(0)
|
| 306 |
+
mid_1_2_img = images[idx_mid_1_2].unsqueeze(0)
|
| 307 |
+
mid_2_3_img = images[idx_mid_2_3].unsqueeze(0)
|
| 308 |
+
mid_3_4_img = images[idx_mid_3_4].unsqueeze(0)
|
| 309 |
+
|
| 310 |
+
return (
|
| 311 |
+
cp0_img,
|
| 312 |
+
cp1_img,
|
| 313 |
+
cp2_img,
|
| 314 |
+
cp3_img,
|
| 315 |
+
cp4_img,
|
| 316 |
+
mid_0_1_img,
|
| 317 |
+
mid_1_2_img,
|
| 318 |
+
mid_2_3_img,
|
| 319 |
+
mid_3_4_img,
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# Register node with ComfyUI
|
| 324 |
+
NODE_CLASS_MAPPINGS = {
|
| 325 |
+
"Get_Correct_Batch_Img": Get_Correct_Batch_Img,
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
| 329 |
+
"Get_Correct_Batch_Img": "Get_Correct_Batch_Img (Salia Wave)",
|
| 330 |
+
}
|