Upload test_split_by_images_folder.py with huggingface_hub
Browse files- test_split_by_images_folder.py +295 -0
test_split_by_images_folder.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Visualize predictions from trained model on local images folder
|
| 3 |
+
"""
|
| 4 |
+
import torch
|
| 5 |
+
from torch.utils.data import Dataset
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
from split_model import SplitModel
|
| 8 |
+
from PIL import Image, ImageDraw
|
| 9 |
+
import numpy as np
|
| 10 |
+
import glob
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
class LocalImageDataset(Dataset):
|
| 14 |
+
"""Dataset for loading images from a local folder"""
|
| 15 |
+
def __init__(self, image_folder):
|
| 16 |
+
self.image_paths = sorted(glob.glob(os.path.join(image_folder, "*.png")) +
|
| 17 |
+
glob.glob(os.path.join(image_folder, "*.jpg")) +
|
| 18 |
+
glob.glob(os.path.join(image_folder, "*.jpeg")))
|
| 19 |
+
|
| 20 |
+
if len(self.image_paths) == 0:
|
| 21 |
+
raise ValueError(f"No images found in {image_folder}")
|
| 22 |
+
|
| 23 |
+
self.transform = transforms.Compose([
|
| 24 |
+
transforms.Resize((960, 960)),
|
| 25 |
+
transforms.ToTensor(),
|
| 26 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 27 |
+
])
|
| 28 |
+
|
| 29 |
+
print(f"Found {len(self.image_paths)} images in {image_folder}")
|
| 30 |
+
|
| 31 |
+
def __len__(self):
|
| 32 |
+
return len(self.image_paths)
|
| 33 |
+
|
| 34 |
+
def __getitem__(self, idx):
|
| 35 |
+
image_path = self.image_paths[idx]
|
| 36 |
+
image = Image.open(image_path).convert('RGB')
|
| 37 |
+
image_transformed = self.transform(image)
|
| 38 |
+
return image_transformed, image, image_path
|
| 39 |
+
|
| 40 |
+
def get_middle_of_groups(binary_array):
|
| 41 |
+
"""
|
| 42 |
+
Find groups of consecutive 1's and return only the middle index of each group.
|
| 43 |
+
Example: [0,0,1,1,1,1,1,0,0,1,1,0] -> [0,0,0,0,1,0,0,0,1,0,0]
|
| 44 |
+
"""
|
| 45 |
+
result = np.zeros_like(binary_array)
|
| 46 |
+
i = 0
|
| 47 |
+
n = len(binary_array)
|
| 48 |
+
|
| 49 |
+
while i < n:
|
| 50 |
+
if binary_array[i] == 1:
|
| 51 |
+
# Found start of a group
|
| 52 |
+
start = i
|
| 53 |
+
while i < n and binary_array[i] == 1:
|
| 54 |
+
i += 1
|
| 55 |
+
end = i - 1
|
| 56 |
+
|
| 57 |
+
# Get middle index
|
| 58 |
+
middle = (start + end) // 2
|
| 59 |
+
result[middle] = 1
|
| 60 |
+
else:
|
| 61 |
+
i += 1
|
| 62 |
+
|
| 63 |
+
return result
|
| 64 |
+
|
| 65 |
+
def visualize_prediction(model, dataset, idx, device, output_folder, threshold=0.5):
|
| 66 |
+
"""Visualize prediction for a single image (no ground truth)"""
|
| 67 |
+
model.eval()
|
| 68 |
+
|
| 69 |
+
# Get sample
|
| 70 |
+
image_tensor, original_image, image_path = dataset[idx]
|
| 71 |
+
|
| 72 |
+
# Predict
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
image_batch = image_tensor.unsqueeze(0).to(device)
|
| 75 |
+
h_pred, v_pred = model(image_batch) # [1, 480]
|
| 76 |
+
|
| 77 |
+
# Upsample to 960 for visualization
|
| 78 |
+
h_pred = h_pred.repeat_interleave(2, dim=1) # [1, 960]
|
| 79 |
+
v_pred = v_pred.repeat_interleave(2, dim=1) # [1, 960]
|
| 80 |
+
|
| 81 |
+
h_pred = h_pred.squeeze(0).cpu()
|
| 82 |
+
v_pred = v_pred.squeeze(0).cpu()
|
| 83 |
+
|
| 84 |
+
# Apply threshold
|
| 85 |
+
h_binary = (h_pred > threshold).float().numpy()
|
| 86 |
+
v_binary = (v_pred > threshold).float().numpy()
|
| 87 |
+
|
| 88 |
+
# Get only middle of grouped 1's for cleaner visualization
|
| 89 |
+
h_binary_clean = get_middle_of_groups(h_binary)
|
| 90 |
+
v_binary_clean = get_middle_of_groups(v_binary)
|
| 91 |
+
|
| 92 |
+
# Count predictions (use cleaned version)
|
| 93 |
+
h_splits = h_binary_clean.sum()
|
| 94 |
+
v_splits = v_binary_clean.sum()
|
| 95 |
+
pred_rows = int(h_splits) + 1
|
| 96 |
+
pred_cols = int(v_splits) + 1
|
| 97 |
+
|
| 98 |
+
print(f"\nImage {idx}: {os.path.basename(image_path)}")
|
| 99 |
+
print(f" H Splits: {h_splits:.0f} | Pred Rows: {pred_rows}")
|
| 100 |
+
print(f" V Splits: {v_splits:.0f} | Pred Cols: {pred_cols}")
|
| 101 |
+
print(f" Total Cells: {pred_rows * pred_cols}")
|
| 102 |
+
print(f" H pred range: [{h_pred.min():.3f}, {h_pred.max():.3f}]")
|
| 103 |
+
print(f" V pred range: [{v_pred.min():.3f}, {v_pred.max():.3f}]")
|
| 104 |
+
|
| 105 |
+
# Visualize
|
| 106 |
+
W, H = original_image.size
|
| 107 |
+
|
| 108 |
+
# Zoom factor for larger images
|
| 109 |
+
zoom_factor = 1.5
|
| 110 |
+
W_zoomed = int(W * zoom_factor)
|
| 111 |
+
H_zoomed = int(H * zoom_factor)
|
| 112 |
+
|
| 113 |
+
# Resize images for better visibility
|
| 114 |
+
original_zoomed = original_image.resize((W_zoomed, H_zoomed), Image.LANCZOS)
|
| 115 |
+
|
| 116 |
+
# Info panel dimensions
|
| 117 |
+
info_height = 150
|
| 118 |
+
label_height = 60
|
| 119 |
+
padding = 40
|
| 120 |
+
|
| 121 |
+
try:
|
| 122 |
+
from PIL import ImageFont
|
| 123 |
+
font_title = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 32)
|
| 124 |
+
font_text = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)
|
| 125 |
+
font_label = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 28)
|
| 126 |
+
except:
|
| 127 |
+
font_title = None
|
| 128 |
+
font_text = None
|
| 129 |
+
font_label = None
|
| 130 |
+
|
| 131 |
+
# Create visualization with 3 images stacked vertically
|
| 132 |
+
total_width = W_zoomed + padding * 2
|
| 133 |
+
total_height = info_height + (label_height + H_zoomed) * 3 + padding * 5
|
| 134 |
+
vis_image = Image.new('RGB', (total_width, total_height), 'white')
|
| 135 |
+
draw = ImageDraw.Draw(vis_image)
|
| 136 |
+
|
| 137 |
+
# Info Panel at top
|
| 138 |
+
info_x = padding
|
| 139 |
+
info_y = padding
|
| 140 |
+
|
| 141 |
+
draw.rectangle([info_x, info_y, total_width - padding, info_y + info_height],
|
| 142 |
+
fill='#e3f2fd', outline='#1565c0', width=4)
|
| 143 |
+
|
| 144 |
+
draw.text((info_x + 20, info_y + 20), "PREDICTED SPLITS", fill='#0d47a1', font=font_title)
|
| 145 |
+
draw.text((info_x + 20, info_y + 70), f"Rows: {pred_rows}", fill='black', font=font_text)
|
| 146 |
+
draw.text((info_x + 20, info_y + 105), f"Columns: {pred_cols}", fill='black', font=font_text)
|
| 147 |
+
draw.text((info_x + 300, info_y + 70), f"H Splits: {int(h_splits)}", fill='#c62828', font=font_text)
|
| 148 |
+
draw.text((info_x + 300, info_y + 105), f"V Splits: {int(v_splits)}", fill='#1565c0', font=font_text)
|
| 149 |
+
|
| 150 |
+
# 1. Original image (top)
|
| 151 |
+
y_pos = info_height + padding * 2
|
| 152 |
+
draw.rectangle([padding, y_pos, total_width - padding, y_pos + label_height],
|
| 153 |
+
fill='#f5f5f5', outline='#666666', width=2)
|
| 154 |
+
draw.text((padding + 20, y_pos + 15), "Original Image", fill='#333333', font=font_label)
|
| 155 |
+
|
| 156 |
+
vis_image.paste(original_zoomed, (padding, y_pos + label_height))
|
| 157 |
+
|
| 158 |
+
# 2. Raw predictions (middle) - with all thick lines
|
| 159 |
+
y_pos = info_height + padding * 3 + label_height + H_zoomed
|
| 160 |
+
draw.rectangle([padding, y_pos, total_width - padding, y_pos + label_height],
|
| 161 |
+
fill='#fff3e0', outline='#ff9800', width=2)
|
| 162 |
+
draw.text((padding + 20, y_pos + 15), "Raw Model Predictions (All 1's)", fill='#e65100', font=font_label)
|
| 163 |
+
|
| 164 |
+
# Create raw prediction image with all 1's (before cleaning)
|
| 165 |
+
raw_pred_image = original_image.copy()
|
| 166 |
+
draw_raw = ImageDraw.Draw(raw_pred_image)
|
| 167 |
+
|
| 168 |
+
# Draw ALL predicted horizontal lines (red) - raw, not cleaned
|
| 169 |
+
for y in range(960):
|
| 170 |
+
if h_binary[y] == 1:
|
| 171 |
+
y_scaled = int(y * H / 960)
|
| 172 |
+
draw_raw.line([(0, y_scaled), (W, y_scaled)], fill='#ff0000', width=2)
|
| 173 |
+
|
| 174 |
+
# Draw ALL predicted vertical lines (blue) - raw, not cleaned
|
| 175 |
+
for x in range(960):
|
| 176 |
+
if v_binary[x] == 1:
|
| 177 |
+
x_scaled = int(x * W / 960)
|
| 178 |
+
draw_raw.line([(x_scaled, 0), (x_scaled, H)], fill='#0000ff', width=2)
|
| 179 |
+
|
| 180 |
+
# Zoom raw prediction image
|
| 181 |
+
raw_pred_zoomed = raw_pred_image.resize((W_zoomed, H_zoomed), Image.LANCZOS)
|
| 182 |
+
vis_image.paste(raw_pred_zoomed, (padding, y_pos + label_height))
|
| 183 |
+
|
| 184 |
+
# 3. Cleaned predictions (bottom) - only middle lines
|
| 185 |
+
y_pos = info_height + padding * 4 + (label_height + H_zoomed) * 2
|
| 186 |
+
draw.rectangle([padding, y_pos, total_width - padding, y_pos + label_height],
|
| 187 |
+
fill='#e3f2fd', outline='#1565c0', width=2)
|
| 188 |
+
draw.text((padding + 20, y_pos + 15), "Cleaned Predictions (Middle Only)", fill='#0d47a1', font=font_label)
|
| 189 |
+
|
| 190 |
+
# Create cleaned prediction image
|
| 191 |
+
pred_image = original_image.copy()
|
| 192 |
+
draw_pred = ImageDraw.Draw(pred_image)
|
| 193 |
+
|
| 194 |
+
# Draw predicted horizontal lines (red) - using cleaned version
|
| 195 |
+
for y in range(960):
|
| 196 |
+
if h_binary_clean[y] == 1:
|
| 197 |
+
y_scaled = int(y * H / 960)
|
| 198 |
+
draw_pred.line([(0, y_scaled), (W, y_scaled)], fill='#ff0000', width=3)
|
| 199 |
+
|
| 200 |
+
# Draw predicted vertical lines (blue) - using cleaned version
|
| 201 |
+
for x in range(960):
|
| 202 |
+
if v_binary_clean[x] == 1:
|
| 203 |
+
x_scaled = int(x * W / 960)
|
| 204 |
+
draw_pred.line([(x_scaled, 0), (x_scaled, H)], fill='#0000ff', width=3)
|
| 205 |
+
|
| 206 |
+
# Zoom prediction image
|
| 207 |
+
pred_zoomed = pred_image.resize((W_zoomed, H_zoomed), Image.LANCZOS)
|
| 208 |
+
vis_image.paste(pred_zoomed, (padding, y_pos + label_height))
|
| 209 |
+
|
| 210 |
+
# Save to output folder
|
| 211 |
+
base_name = os.path.splitext(os.path.basename(image_path))[0]
|
| 212 |
+
output_path = os.path.join(output_folder, f'prediction_{base_name}.png')
|
| 213 |
+
vis_image.save(output_path)
|
| 214 |
+
print(f" Saved: {output_path}")
|
| 215 |
+
|
| 216 |
+
return pred_rows, pred_cols
|
| 217 |
+
|
| 218 |
+
def main():
|
| 219 |
+
import argparse
|
| 220 |
+
parser = argparse.ArgumentParser(description='Visualize table split predictions on local images')
|
| 221 |
+
parser.add_argument('--image-folder', type=str, required=True,
|
| 222 |
+
help='Path to folder containing images')
|
| 223 |
+
parser.add_argument('--output-folder', type=str, default='predictions_output',
|
| 224 |
+
help='Path to folder for saving predictions (default: predictions_output)')
|
| 225 |
+
parser.add_argument('--model-path', type=str, default=None,
|
| 226 |
+
help='Path to trained model checkpoint (if not specified, will search common locations)')
|
| 227 |
+
parser.add_argument('--threshold', type=float, default=0.5,
|
| 228 |
+
help='Threshold for binary predictions (default: 0.5)')
|
| 229 |
+
parser.add_argument('--num-images', type=int, default=-1,
|
| 230 |
+
help='Number of images to process (-1 for all)')
|
| 231 |
+
args = parser.parse_args()
|
| 232 |
+
|
| 233 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 234 |
+
print(f"Device: {device}")
|
| 235 |
+
|
| 236 |
+
# Create output folder
|
| 237 |
+
os.makedirs(args.output_folder, exist_ok=True)
|
| 238 |
+
print(f"Output folder: {args.output_folder}")
|
| 239 |
+
|
| 240 |
+
# Load dataset from local folder
|
| 241 |
+
print(f"\nLoading images from: {args.image_folder}")
|
| 242 |
+
dataset = LocalImageDataset(args.image_folder)
|
| 243 |
+
|
| 244 |
+
# Load model
|
| 245 |
+
print("\nLoading model...")
|
| 246 |
+
model = SplitModel().to(device)
|
| 247 |
+
|
| 248 |
+
# Try to find the best model
|
| 249 |
+
if args.model_path:
|
| 250 |
+
checkpoint_path = args.model_path
|
| 251 |
+
else:
|
| 252 |
+
possible_paths = [
|
| 253 |
+
'best_split_model.pth',
|
| 254 |
+
'/home/ng6309/datascience/santhosh/experiments/tablet/best_split_model.pth',
|
| 255 |
+
'/home/ng6309/datascience/santhosh/experiments/tablet/runs/tablet_split_20251006_214335/best_split_model.pth',
|
| 256 |
+
]
|
| 257 |
+
|
| 258 |
+
checkpoint_path = None
|
| 259 |
+
for path in possible_paths:
|
| 260 |
+
if os.path.exists(path):
|
| 261 |
+
checkpoint_path = path
|
| 262 |
+
break
|
| 263 |
+
|
| 264 |
+
if checkpoint_path is None or not os.path.exists(checkpoint_path):
|
| 265 |
+
print("ERROR: No trained model found! Please specify --model-path or ensure model exists in default locations")
|
| 266 |
+
return
|
| 267 |
+
|
| 268 |
+
print(f"Loading checkpoint from: {checkpoint_path}")
|
| 269 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 270 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 271 |
+
|
| 272 |
+
print(f"\nModel trained for {checkpoint['epoch']} epochs")
|
| 273 |
+
print(f"Val loss: {checkpoint['val_loss']:.4f}")
|
| 274 |
+
if 'val_h_f1' in checkpoint:
|
| 275 |
+
print(f"Val H F1: {checkpoint['val_h_f1']:.3f}")
|
| 276 |
+
print(f"Val V F1: {checkpoint['val_v_f1']:.3f}")
|
| 277 |
+
|
| 278 |
+
# Determine number of images to process
|
| 279 |
+
num_samples = len(dataset) if args.num_images == -1 else min(args.num_images, len(dataset))
|
| 280 |
+
|
| 281 |
+
# Visualize images
|
| 282 |
+
print("\n" + "="*60)
|
| 283 |
+
print(f"Visualizing predictions for {num_samples} images")
|
| 284 |
+
print("="*60)
|
| 285 |
+
|
| 286 |
+
for idx in range(num_samples):
|
| 287 |
+
pred_rows, pred_cols = visualize_prediction(model, dataset, idx, device, args.output_folder, threshold=args.threshold)
|
| 288 |
+
|
| 289 |
+
print("\n" + "="*60)
|
| 290 |
+
print(f"Completed processing {num_samples} images")
|
| 291 |
+
print(f"All predictions saved to: {args.output_folder}")
|
| 292 |
+
print("="*60)
|
| 293 |
+
|
| 294 |
+
if __name__ == "__main__":
|
| 295 |
+
main()
|