Create custom_objects.py
Browse files- custom_objects.py +58 -0
custom_objects.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tensorflow.keras.models import load_model
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
from tensorflow.keras.saving import register_keras_serializable
|
| 4 |
+
from tensorflow.keras import layers, models, backend as K
|
| 5 |
+
|
| 6 |
+
@register_keras_serializable()
|
| 7 |
+
class SSTAmplifier(tf.keras.layers.Layer):
|
| 8 |
+
def __init__(self, threshold=28.0, scale=0.1, **kwargs):
|
| 9 |
+
super().__init__(**kwargs)
|
| 10 |
+
self.threshold = threshold
|
| 11 |
+
self.scale = scale
|
| 12 |
+
|
| 13 |
+
def call(self, inputs):
|
| 14 |
+
sst = inputs[:, 0]
|
| 15 |
+
factor = tf.sigmoid((sst - self.threshold) * self.scale)
|
| 16 |
+
mod = 1.0 + 0.3 * factor
|
| 17 |
+
return tf.expand_dims(mod, -1)
|
| 18 |
+
|
| 19 |
+
@register_keras_serializable()
|
| 20 |
+
class ShearSuppressor(tf.keras.layers.Layer):
|
| 21 |
+
def __init__(self, threshold=14.0, scale=0.2, **kwargs):
|
| 22 |
+
super().__init__(**kwargs)
|
| 23 |
+
self.threshold = threshold
|
| 24 |
+
self.scale = scale
|
| 25 |
+
|
| 26 |
+
def call(self, inputs):
|
| 27 |
+
shear = inputs[:, 3]
|
| 28 |
+
suppress = tf.sigmoid((self.threshold - shear) * self.scale)
|
| 29 |
+
mod = 1.0 - 0.25 * suppress
|
| 30 |
+
return tf.expand_dims(mod, -1)
|
| 31 |
+
|
| 32 |
+
@register_keras_serializable()
|
| 33 |
+
class VorticityActivator(tf.keras.layers.Layer):
|
| 34 |
+
def __init__(self, threshold=1.2, scale=1.0, **kwargs):
|
| 35 |
+
super().__init__(**kwargs)
|
| 36 |
+
self.threshold = threshold
|
| 37 |
+
self.scale = scale
|
| 38 |
+
|
| 39 |
+
def call(self, inputs):
|
| 40 |
+
vort = inputs[:, 4]
|
| 41 |
+
activate = tf.sigmoid((vort - self.threshold) * self.scale)
|
| 42 |
+
mod = 1.0 + 0.2 * activate
|
| 43 |
+
return tf.expand_dims(mod, -1)
|
| 44 |
+
|
| 45 |
+
@register_keras_serializable()
|
| 46 |
+
class ModulationMixer(tf.keras.layers.Layer):
|
| 47 |
+
def call(self, inputs):
|
| 48 |
+
sst_mod, shear_mod, vort_mod = inputs
|
| 49 |
+
product = sst_mod * shear_mod * vort_mod
|
| 50 |
+
smooth = 1.0 + 0.25 * tf.tanh(product - 1.0)
|
| 51 |
+
return smooth
|
| 52 |
+
|
| 53 |
+
CUSTOM_OBJECTS = {
|
| 54 |
+
'ModulationMixer': ModulationMixer,
|
| 55 |
+
'VorticityActivator': VorticityActivator,
|
| 56 |
+
'ShearSuppressor': ShearSuppressor,
|
| 57 |
+
'SSTAmplifier': SSTAmplifier
|
| 58 |
+
}
|