from tensorflow.keras.models import load_model import tensorflow as tf from tensorflow.keras.saving import register_keras_serializable from tensorflow.keras import layers, models, backend as K @register_keras_serializable() class SSTAmplifier(tf.keras.layers.Layer): def __init__(self, threshold=28.0, scale=0.1, **kwargs): super().__init__(**kwargs) self.threshold = threshold self.scale = scale def call(self, inputs): sst = inputs[:, 0] factor = tf.sigmoid((sst - self.threshold) * self.scale) mod = 1.0 + 0.3 * factor return tf.expand_dims(mod, -1) @register_keras_serializable() class ShearSuppressor(tf.keras.layers.Layer): def __init__(self, threshold=14.0, scale=0.2, **kwargs): super().__init__(**kwargs) self.threshold = threshold self.scale = scale def call(self, inputs): shear = inputs[:, 3] suppress = tf.sigmoid((self.threshold - shear) * self.scale) mod = 1.0 - 0.25 * suppress return tf.expand_dims(mod, -1) @register_keras_serializable() class VorticityActivator(tf.keras.layers.Layer): def __init__(self, threshold=1.2, scale=1.0, **kwargs): super().__init__(**kwargs) self.threshold = threshold self.scale = scale def call(self, inputs): vort = inputs[:, 4] activate = tf.sigmoid((vort - self.threshold) * self.scale) mod = 1.0 + 0.2 * activate return tf.expand_dims(mod, -1) @register_keras_serializable() class ModulationMixer(tf.keras.layers.Layer): def call(self, inputs): sst_mod, shear_mod, vort_mod = inputs product = sst_mod * shear_mod * vort_mod smooth = 1.0 + 0.25 * tf.tanh(product - 1.0) return smooth CUSTOM_OBJECTS = { 'ModulationMixer': ModulationMixer, 'VorticityActivator': VorticityActivator, 'ShearSuppressor': ShearSuppressor, 'SSTAmplifier': SSTAmplifier }