object-assembler / code /cube3d /training /batch_dat_mapping.py
0xZohar's picture
Add code/cube3d/training/batch_dat_mapping.py
d153774 verified
import os
import json
# 检查文件编码
def checkEncoding(filepath):
with open(filepath, "rb") as encode_check:
encoding = encode_check.readline(3)
if encoding == b"\xfe\xff\x00":
return "utf_16_be"
elif encoding == b"\xff\xfe0":
return "utf_16_le"
else:
return "utf_8"
# 读取文本文件
def readTextFile(filepath):
if os.path.exists(filepath):
file_encoding = checkEncoding(filepath)
try:
with open(filepath, "rt", encoding=file_encoding) as f_in:
return f_in.readlines()
except:
with open(filepath, "rt", encoding="latin_1") as f_in:
return f_in.readlines()
return None
# 处理单个LDR文件数据
def process_ldr_data(lines, label_mapping, label_inverse_mapping, label_frequency, label_counter):
# 定位main_section范围
startLine = 0
endLine = 0
lineCount = 0
foundEnd = False
main_section_lines = []
for line in lines:
parameters = line.strip().split()
if len(parameters) > 2:
if parameters[0] == "0" and parameters[1] == "FILE":
if not foundEnd:
endLine = lineCount
if endLine > startLine:
main_section_lines.extend(lines[startLine:endLine])
foundEnd = True
break
startLine = lineCount
foundEnd = False
if parameters[0] == "0" and parameters[1] == "NOFILE":
endLine = lineCount
foundEnd = True
main_section_lines.extend(lines[startLine:endLine])
break
lineCount += 1
if not foundEnd:
endLine = len(lines)
if endLine > startLine:
main_section_lines.extend(lines[startLine:endLine])
# 处理main_section中1开头的行
for line in main_section_lines:
if line.startswith('1'):
parts = line.split()
if len(parts) >= 15:
part_filename = parts[14]
if ".DAT" in part_filename:
part_filename = part_filename.replace(".DAT", ".dat")
if part_filename not in label_mapping:
label_mapping[part_filename] = label_counter
label_inverse_mapping[label_counter] = part_filename
label_counter += 1
current_label = label_mapping[part_filename]
label_frequency[current_label] = label_frequency.get(current_label, 0) + 1
return label_mapping, label_inverse_mapping, label_frequency, label_counter
# 处理文件夹中所有LDR文件
def process_all_ldr_in_folder(folder_path):
overall_label_mapping = {}
overall_label_inverse_mapping = {}
overall_label_frequency = {}
label_counter = 0
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.lower().endswith('.ldr'):
file_path = os.path.join(root, file)
print(f"正在处理: {file_path}")
lines = readTextFile(file_path)
if lines is None:
print(f"⚠️ 无法读取文件 {file_path},已跳过")
continue
overall_label_mapping, overall_label_inverse_mapping, overall_label_frequency, label_counter = process_ldr_data(
lines, overall_label_mapping, overall_label_inverse_mapping, overall_label_frequency, label_counter)
return overall_label_mapping, overall_label_inverse_mapping, overall_label_frequency
# 保存映射表和按频率排序的频率表
def save_results(label_mapping, label_inverse_mapping, label_frequency, output_dir):
os.makedirs(output_dir, exist_ok=True)
# 保存标签映射表
with open(os.path.join(output_dir, 'label_mapping.json'), 'w', encoding='utf-8') as f:
json.dump(label_mapping, f, indent=4, ensure_ascii=False)
# 保存反向标签映射表
with open(os.path.join(output_dir, 'label_inverse_mapping.json'), 'w', encoding='utf-8') as f:
json.dump(label_inverse_mapping, f, indent=4, ensure_ascii=False)
# 准备频率数据并按使用次数排序(从高到低)
frequency_list = []
for label_id, count in label_frequency.items():
frequency_list.append({
"label_id": label_id,
"part_name": label_inverse_mapping.get(label_id, "未知零件"),
"usage_count": count
})
# 按使用次数降序排序
frequency_list.sort(key=lambda x: x["usage_count"], reverse=True)
# 保存排序后的频率表
with open(os.path.join(output_dir, 'label_frequency.json'), 'w', encoding='utf-8') as f:
json.dump(frequency_list, f, indent=4, ensure_ascii=False)
# 主程序
if __name__ == "__main__":
INPUT_FOLDER = '/public/home/wangshuo/gap/assembly/data/car_1k/subset_self/ldr_l30_rotrans_expand_wom'
OUTPUT_FOLDER = '/public/home/wangshuo/gap/assembly/data/car_1k/subset_self'
label_mapping, label_inverse_mapping, label_frequency = process_all_ldr_in_folder(INPUT_FOLDER)
save_results(label_mapping, label_inverse_mapping, label_frequency, OUTPUT_FOLDER)
print(f"\n✅ 处理完成!结果已保存到: {OUTPUT_FOLDER}")
print(f"📊 统计摘要:")
print(f" - 总唯一标签数: {len(label_mapping)}")
print(f" - 总使用次数: {sum(label_frequency.values())}")
print(f" - label_frequency.json已按使用频率从高到低排序")