0xZohar's picture
Add code/cube3d/training/trainer.py
d6a9e66 verified
"""
Simple training loop; Boilerplate that could apply to any arbitrary neural network,
so nothing in this file really has anything to do with GPT specifically.
"""
from typing import Optional, Tuple, List
import time
import os
from collections import defaultdict
from accelerate import Accelerator
import torch
from torch.nn import functional as F
from torch.utils.data.dataloader import DataLoader
from mingpt.utils import CfgNode as CN
from cube3d.training.utils import save_model_weights, mask_cross_entropy, normalize_bboxs, top_k_prob_mask
from cube3d.training.process_single_ldr import logits2ldr, logits2ldrot, logits2ldrp, logits2flatldrp, logits2flatldrpr
from cube3d.inference.utils import load_model_weights
from tqdm import tqdm
def generate_tokens(
engine,
prompt,
inputs_ids,
latent,
resolution_base=8.0,
disable_postprocess=False,
top_p=None,
bounding_box_xyz=None,
strategy=None
):
output_ids = engine.t2t(
#[prompt],
prompt,
#use_kv_cache=True,
inputs_ids=inputs_ids,
latent=latent,
use_kv_cache=False,
resolution_base=resolution_base,
top_p=top_p,
bounding_box_xyz=bounding_box_xyz,
strategy=strategy
)
return output_ids
class Trainer:
@staticmethod
def get_default_config():
C = CN()
# device to train on
C.device = 'auto'
# dataloder parameters
C.num_workers = 4
# optimizer parameters
C.max_iters = None
C.batch_size = 4
C.learning_rate = 3e-4
C.betas = (0.9, 0.95)
C.weight_decay = 0.1 # only applied on matmul weights
C.grad_norm_clip = 1.0
C.save_interval = None
return C
def __init__(
self,
config,
engine,
train_dataset,
accelerator,
tb,
prompt: str,
indices: Optional[List[int]] = None,
resolution_base: float = 8.0,
disable_postprocessing: bool = False,
top_p: float = None,
bounding_box_xyz: Optional[Tuple[float]] = None,
save_gpt_ckpt_path: str = None,
mode: str = 'train'
):
self.config = config
self.engine = engine
self.model = engine.gpt_model
self.optimizer = None
self.callbacks = defaultdict(list)
self.train_dataset = train_dataset
self.accelerator = accelerator
# Training parameters
self.prompt = prompt
self.targets = indices
self.resolution_base = resolution_base
self.disable_postprocessing = disable_postprocessing
self.top_p = top_p
self.bounding_box_xyz = bounding_box_xyz
self.save_gpt_ckpt_path = save_gpt_ckpt_path
# determine the device we'll train on
if config.device == 'auto':
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
else:
self.device = config.device
self.model = self.model.to(self.device)
print("running on device", self.device)
# variables that will be assigned to trainer class later for logging and etc
self.iter_num = 0
self.iter_time = 0.0
self.iter_dt = 0.0
self.tb_writer = tb
self.mode = mode
def add_callback(self, onevent: str, callback):
self.callbacks[onevent].append(callback)
def set_callback(self, onevent: str, callback):
self.callbacks[onevent] = [callback]
def trigger_callbacks(self, onevent: str):
for callback in self.callbacks.get(onevent, []):
callback(self)
def run(self):
model, config = self.model, self.config
# setup the optimizer
#self.optimizer = self.engine.configure_optimizers(config)
self.optimizer, self.scheduler = self.engine.configure_optimizers_scratch_linear(config) #self.engine.configure_optimizers_lora_linear(config)
# setup the dataloader
train_loader = DataLoader(
self.train_dataset,
shuffle=False if self.mode!='train' else True,
batch_size=config.batch_size,
)
model.train()
model, self.optimizer, train_loader = self.accelerator.prepare(model, self.optimizer, train_loader)
self.iter_num = 0
self.iter_time = time.time()
data_iter = iter(train_loader)
ema_loss_for_log = 0.0
ema_ploss_for_log = 0.0
ema_rloss_for_log = 0.0
ema_dloss_for_log = 0.0
ema_floss_for_log = 0.0
#loss
dat_num = 1217 #286
x_num = 251
y_num = 215
z_num = 525
rot_num = 24
shift = 0
stride = 5
attr_shift = stride-3 #with dat and rot,+1 for bert
bert_shift = 1
x = x_num
xy = x_num + y_num + rot_num
xyz = x_num + y_num + z_num + rot_num
progress_bar = tqdm(range(0, config.max_iters), desc="Training progress")
#while True:
for self.iter_num in range(0, config.max_iters+1):
# fetch the next batch (x, y) and re-init iterator if needed
try:
batch = next(data_iter)
except StopIteration:
data_iter = iter(train_loader)
batch = next(data_iter)
#batch = [t['latent'].to(self.device) for t in batch]
self.prompt, self.targets, self.box = batch['prompt'], batch['target'].to(self.device), batch['bbox']
#self.targets = batch['latent'].to(self.device)
targets = self.targets.clone()
logits, inputs_ids, strategy, mask, cut_idx = generate_tokens(
self.engine,
self.prompt,
targets,
None,
self.resolution_base,
self.disable_postprocessing,
self.top_p,
#self.bounding_box_xyz,
normalize_bboxs(self.box.float(), [x_num-1, y_num-1, z_num-1]), #batch_normalization(self.box)
None
)
# rotation_loss = F.cross_entropy(
# logits[:,:-1,:rot_num].permute(0, 2, 1),
# inputs_ids[:,shift:,:rot_num].argmax(-1),
# )
# px_loss = mask_cross_entropy(rot_num, x+rot_num, self.box[:, 0], logits, inputs_ids, shift)
# py_loss = mask_cross_entropy(x+rot_num, xy, self.box[:, 1], logits, inputs_ids, shift)
# pz_loss = mask_cross_entropy(xy, xyz, self.box[:, 2], logits, inputs_ids, shift)
px_loss = F.cross_entropy(
logits[:,1+attr_shift+bert_shift:-1:stride,rot_num+1:x+rot_num+1+1].permute(0, 2, 1),
inputs_ids[:,shift:,-5],
ignore_index=-1 #+1 for padding
)
py_loss = F.cross_entropy(
logits[:,0+attr_shift+bert_shift:-2:stride,x+rot_num+2:xy+3].permute(0, 2, 1),
inputs_ids[:,shift:,-4],
ignore_index=-1
)
pz_loss = F.cross_entropy(
logits[:,2+attr_shift+bert_shift::stride,xy+3:xyz+4].permute(0, 2, 1),
inputs_ids[:,shift:,-3],
ignore_index=-1
)
position_loss = px_loss + py_loss + pz_loss
# dat_loss = F.cross_entropy(
# logits[:,0:-4:stride,:dat_num+1].permute(0, 2, 1),
# inputs_ids[:,shift:,-6],
# ignore_index=-1
# )
rotation_loss = F.cross_entropy(
logits[:,1+bert_shift:-3:stride,:rot_num+1].permute(0, 2, 1),
inputs_ids[:,shift:,-7],
ignore_index=-1
)
# flag_loss = F.cross_entropy(
# logits[:,:-1,xyz+dat_num:xyz+dat_num+2].permute(0, 2, 1),
# inputs_ids[:,shift:,xyz+dat_num:xyz+dat_num+2].argmax(-1),
# )
# flag_loss = F.cross_entropy(
# logits[:,:-1,-2:].permute(0, 2, 1),
# inputs_ids[:,shift:,-2:].argmax(-1),
# )
lambda_posiition = 1.0
lambda_rotation = 1.0
lambda_dat = 1.0
lambda_flag = 50.0
self.loss = lambda_posiition * position_loss #+ \
#lambda_rotation * rotation_loss #+ \
#lambda_flag * flag_loss
#lambda_dat * dat_loss + \
if strategy==1 or strategy==2:
self.loss+=lambda_rotation * rotation_loss
# targets = self.targets.clone()
# # mask_topk, mask_inv = top_k_prob_mask(F.softmax(logits[:, 1:-3:stride, :rot_num+1], dim=2), cut_idx, top_percent=0.5)
# # targets[:,shift:,-7][mask_topk] = logits[:,1:-3:stride,:rot_num+1].permute(0, 2, 1).argmax(dim=1)[mask_topk]
# # targets[:,shift:,-7][mask_inv] = self.engine.gpt_model.rot_num+1
# targets[:,shift:,-7] = logits[:,1:-3:stride,:rot_num+1].permute(0, 2, 1).argmax(dim=1)
# #targets[:,shift:,-4] = logits_y[:,0+attr_shift:-2:stride,x+rot_num+2:xy+3].permute(0, 2, 1).argmax(dim=1)
# logits_x, inputs_ids, strategy, mask, cut_idx = generate_tokens(
# self.engine,
# self.prompt,
# targets,
# None,
# self.resolution_base,
# self.disable_postprocessing,
# self.top_p,
# #self.bounding_box_xyz,
# normalize_bboxs(self.box.float(), [x_num-1, y_num-1, z_num-1]), #batch_normalization(self.box)
# 0
# )
# targets = self.targets.clone()
# targets[:,shift:,-7] = logits_x[:,1+bert_shift:-3:stride,:rot_num+1].permute(0, 2, 1).argmax(dim=1)
# mask_x, mask_x_inv = top_k_prob_mask(F.softmax(logits[:,1+attr_shift+bert_shift:-1:stride,rot_num+1:x+rot_num+1+1], dim=2), cut_idx, top_percent=0.5)
# mask_y, mask_y_inv = top_k_prob_mask(F.softmax(logits[:,0+attr_shift+bert_shift:-2:stride,x+rot_num+2:xy+3], dim=2), cut_idx, top_percent=0.5)
# mask_z, mask_z_inv = top_k_prob_mask(F.softmax(logits[:,2+attr_shift+bert_shift::stride,xy+3:xyz+4], dim=2), cut_idx, top_percent=0.5)
# targets[:,shift:,-5][mask_x] = logits_x[:,1+attr_shift+bert_shift:-1:stride,rot_num+1:x+rot_num+1+1].permute(0, 2, 1).argmax(dim=1)[mask_x]
# targets[:,shift:,-5][mask_x_inv] = self.engine.gpt_model.x_num+1
# targets[:,shift:,-4][mask_y] = logits_x[:,0+attr_shift+bert_shift:-2:stride,x+rot_num+2:xy+3].permute(0, 2, 1).argmax(dim=1)[mask_y]
# targets[:,shift:,-4][mask_y_inv] = self.engine.gpt_model.y_num+1
# targets[:,shift:,-3][mask_z] = logits_x[:,2+attr_shift+bert_shift::stride,xy+3:xyz+4].permute(0, 2, 1).argmax(dim=1)[mask_z]
# targets[:,shift:,-3][mask_z_inv] = self.engine.gpt_model.z_num+1
# logits_p, inputs_ids, strategy, mask, cut_idx = generate_tokens(
# self.engine,
# self.prompt,
# targets,
# None,
# self.resolution_base,
# self.disable_postprocessing,
# self.top_p,
# #self.bounding_box_xyz,
# normalize_bboxs(self.box.float(), [x_num-1, y_num-1, z_num-1]), #batch_normalization(self.box)
# None
# )
# logits_p[:,1+bert_shift:-3:stride,:rot_num+1] = logits[:,1+bert_shift:-3:stride,:rot_num+1]
# logits2flatldrpr(logits_p[0].cpu().detach().numpy(), inputs_ids[0].cpu().detach().numpy(), stride, 0, output_file=f"test_rightd2r2p2p_{self.iter_num}_scratch_0p5_bert.ldr")
# targets = self.targets.clone()
# targets[:,shift:,-7] = logits[:,1:-3:stride,:rot_num+1].permute(0, 2, 1).argmax(dim=1)
# targets[:,shift:,-4] = logits_y[:,0+attr_shift:-2:stride,x+rot_num+2:xy+3].permute(0, 2, 1).argmax(dim=1)
# targets[:,shift:,-5] = logits_x[:,1+attr_shift:-1:stride,rot_num+1:x+rot_num+1+1].permute(0, 2, 1).argmax(dim=1)
# logits_z, inputs_ids, strategy = generate_tokens(
# self.engine,
# self.prompt,
# targets,
# None,
# self.resolution_base,
# self.disable_postprocessing,
# self.top_p,
# #self.bounding_box_xyz,
# normalize_bboxs(self.box.float(), [x_num-1, y_num-1, z_num-1]), #batch_normalization(self.box)
# 3
# )
# backprop and update the parameters
model.zero_grad(set_to_none=True)
# #if self.mode!='train':
# logits_z[:,1:-3:stride,:rot_num+1] = logits[:,1:-3:stride,:rot_num+1]
# logits_z[:,0+attr_shift:-2:stride,x+rot_num+2:xy+3] = logits_y[:,0+attr_shift:-2:stride,x+rot_num+2:xy+3]
# logits_z[:,1+attr_shift:-1:stride,rot_num+1:x+rot_num+1+1] = logits_x[:,1+attr_shift:-1:stride,rot_num+1:x+rot_num+1+1]
# if self.iter_num>4:
# break
self.accelerator.backward(self.loss)
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_norm_clip)
self.optimizer.step()
self.scheduler.step()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * self.loss.item() + 0.6 * ema_loss_for_log
ema_ploss_for_log = 0.4 * position_loss.item() + 0.6 * ema_ploss_for_log
ema_rloss_for_log = 0.4 * rotation_loss.item() + 0.6 * ema_rloss_for_log
#ema_dloss_for_log = 0.4 * dat_loss.item() + 0.6 * ema_dloss_for_log
#ema_floss_for_log = 0.4 * flag_loss.item() + 0.6 * ema_floss_for_log
if self.iter_num % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}",
"Positon_Loss": f"{ema_ploss_for_log:.{7}f}",
"Rotation_Loss": f"{ema_rloss_for_log:.{7}f}",
#"Dat_Loss": f"{ema_dloss_for_log:.{7}f}",
#"Flag_Loss": f"{ema_floss_for_log:.{7}f}",
})
progress_bar.update(10)
#logits2ldr(logits[0].cpu().detach().numpy())
if (self.iter_num % config.save_interval == 0 and self.iter_num != 0):
if self.accelerator.is_main_process:
save_model_weights(
self.engine.gpt_model,
self.save_gpt_ckpt_path,
)
# self.engine.gpt_model.save_pretrained(self.save_gpt_ckpt_path)
# torch.save({
# "ldr_proj": self.engine.gpt_model.ldr_proj.state_dict(),
# "ldr_head": self.engine.gpt_model.ldr_head.state_dict(),
# "rte": self.engine.gpt_model.rte.state_dict(),
# "dte": self.engine.gpt_model.dte.state_dict(),
# "xte": self.engine.gpt_model.xte.state_dict(),
# "yte": self.engine.gpt_model.yte.state_dict(),
# "zte": self.engine.gpt_model.zte.state_dict(),
# }, f"{self.save_gpt_ckpt_path}/unfrozen_weights.pth")
if self.tb_writer: #and self.accelerator.is_main_process:
self.tb_writer.add_scalar(f'train_loss/position_loss', position_loss.item(), self.iter_num)
self.tb_writer.add_scalar(f'train_loss/rotation_loss', rotation_loss.item(), self.iter_num)
#self.tb_writer.add_scalar(f'train_loss/dat_loss', dat_loss.item(), self.iter_num)
#self.tb_writer.add_scalar(f'train_loss/flag_loss', flag_loss.item(), self.iter_num)
self.tb_writer.add_scalar(f'train_loss/total_loss', self.loss.item(), self.iter_num)
if self.iter_num == config.max_iters:
progress_bar.close()