Spaces:
Sleeping
Sleeping
File size: 12,150 Bytes
7dfe46c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Any, Union
from enum import Enum
import hashlib
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__))) # Ensure current directory is in
try:
from logger.custom_logger import CustomLoggerTracker
custom_log = CustomLoggerTracker()
logger = custom_log.get_logger("documents_processor")
except ImportError:
# Fallback to standard logging if custom logger not available
logger = logging.getLogger("documents_processor")
class DocumentType(Enum):
"""Supported document types."""
PDF = "pdf"
EXCEL = "excel"
IMAGE = "image"
UNKNOWN = "unknown"
class ProcessingStatus(Enum):
"""Document processing status."""
PENDING = "pending"
PROCESSING = "processing"
COMPLETED = "completed"
FAILED = "failed"
PARTIAL = "partial"
@dataclass
class ExtractedImage:
"""Represents an image extracted from a document."""
image_id: str
filename: str
content: bytes
format: str # PNG, JPEG, etc.
width: Optional[int] = None
height: Optional[int] = None
ocr_text: Optional[str] = None
ocr_confidence: Optional[float] = None
extraction_method: str = "unknown"
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class ExtractedTable:
"""Represents a table extracted from a document."""
table_id: str
headers: List[str]
rows: List[List[str]]
page_number: Optional[int] = None
worksheet_name: Optional[str] = None
cell_range: Optional[str] = None
extraction_confidence: Optional[float] = None
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class ChunkMetadata:
"""Metadata for a document chunk."""
chunk_id: str
document_id: str
chunk_index: int
page_number: Optional[int] = None
worksheet_name: Optional[str] = None
cell_range: Optional[str] = None
section_title: Optional[str] = None
image_references: List[str] = field(default_factory=list)
table_references: List[str] = field(default_factory=list)
extraction_timestamp: datetime = field(default_factory=datetime.now)
confidence_score: Optional[float] = None
@dataclass
class DocumentChunk:
content: str
metadata: ChunkMetadata
embedding: Optional[List[float]] = None
def __post_init__(self):
"""Validate chunk content after initialization."""
if not self.content.strip():
logger.warning(f"Empty content in chunk {self.metadata.chunk_id}")
if len(self.content) > 10000: # Warn for very large chunks
logger.warning(f"Large chunk detected ({len(self.content)} chars): {self.metadata.chunk_id}")
@dataclass
class ProcessedDocument:
"""Represents a fully processed document with all extracted content."""
document_id: str
filename: str
file_path: str
document_type: DocumentType
content: str
metadata: Dict[str, Any]
images: List[ExtractedImage] = field(default_factory=list)
tables: List[ExtractedTable] = field(default_factory=list)
processing_status: ProcessingStatus = ProcessingStatus.PENDING
processing_timestamp: datetime = field(default_factory=datetime.now)
file_size: int = 0
checksum: str = ""
error_message: Optional[str] = None
def __post_init__(self):
"""Generate checksum and validate document after initialization."""
if not self.checksum and Path(self.file_path).exists():
self.checksum = self._generate_checksum()
self.file_size = Path(self.file_path).stat().st_size
def _generate_checksum(self) -> str:
try:
hash_md5 = hashlib.md5()
with open(self.file_path, "rb") as f:
for chunk in iter(lambda: f.read(1024), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
except Exception as e:
logger.error(f"Failed to generate checksum for {self.file_path}: {e}")
return ""
class DocumentProcessingError(Exception):
"""Base exception for document processing errors."""
def __init__(self, file_path: str, error_type: str, details: str):
self.file_path = file_path
self.error_type = error_type
self.details = details
super().__init__(f"Document processing error in {file_path}: {error_type} - {details}")
class UnsupportedDocumentTypeError(DocumentProcessingError):
def __init__(self, file_path: str, detected_type: str):
super().__init__(
file_path,
"UnsupportedDocumentType",
f"Document type '{detected_type}' is not supported"
)
class DocumentProcessor(ABC):
def __init__(self, config: Dict[str, Any]):
self.config = config
self.supported_extensions = self._get_supported_extensions()
logger.info(f"Initialized {self.__class__.__name__} with config: {config}")
@abstractmethod
def _get_supported_extensions(self) -> List[str]:
pass
@abstractmethod
def process_document(self, file_path: str) -> ProcessedDocument:
pass
def can_process(self, file_path: str) -> bool:
file_extension = Path(file_path).suffix.lower()
return file_extension in self.supported_extensions
def extract_chunks(self, document: ProcessedDocument, chunk_size: int = 512,
chunk_overlap: int = 50) -> List[DocumentChunk]:
if not document.content.strip():
logger.warning(f"No content to chunk in document {document.document_id}")
return []
chunks = []
content = document.content
start = 0
chunk_index = 0
while start < len(content):
# Calculate end position
end = min(start + chunk_size, len(content))
# Try to break at word boundary if not at end of content
if end < len(content):
# Look for the last space within the chunk
last_space = content.rfind(' ', start, end)
if last_space > start:
end = last_space
# Extract chunk content
chunk_content = content[start:end].strip()
if chunk_content: # Only create chunk if it has content
# Create chunk metadata
metadata = ChunkMetadata(
chunk_id=f"{document.document_id}_chunk_{chunk_index}",
document_id=document.document_id,
chunk_index=chunk_index
)
# Create chunk
chunk = DocumentChunk(
content=chunk_content,
metadata=metadata
)
chunks.append(chunk)
chunk_index += 1
# Move start position with overlap
start = max(end - chunk_overlap, start + 1)
# Prevent infinite loop
if start >= end:
break
logger.info(f"Created {len(chunks)} chunks from document {document.document_id}")
return chunks
def _detect_document_type(self, file_path: str) -> DocumentType:
extension = Path(file_path).suffix.lower()
if extension == '.pdf':
return DocumentType.PDF
elif extension in ['.xlsx', '.xls', '.xlsm']:
return DocumentType.EXCEL
elif extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff']:
return DocumentType.IMAGE
else:
return DocumentType.UNKNOWN
def _generate_document_id(self, file_path: str) -> str:
"""
Generate a unique document ID based on file path and timestamp.
Args:
file_path: Path to the document file
Returns:
Unique document ID string
"""
file_name = Path(file_path).name
timestamp = datetime.now().isoformat()
content = f"{file_name}_{timestamp}"
return hashlib.md5(content.encode()).hexdigest()
def validate_file(self, file_path: str) -> None:
"""
Validate that a file exists and can be processed.
Args:
file_path: Path to the file to validate
Raises:
DocumentProcessingError: If file validation fails
"""
file_path_obj = Path(file_path)
if not file_path_obj.exists():
raise DocumentProcessingError(
file_path,
"FileNotFound",
f"File does not exist: {file_path}"
)
if not file_path_obj.is_file():
raise DocumentProcessingError(
file_path,
"NotAFile",
f"Path is not a file: {file_path}"
)
# Check file size
max_size = self.config.get('max_file_size_mb', 100) * 1024 * 1024 # Convert to bytes
file_size = file_path_obj.stat().st_size
if file_size > max_size:
raise DocumentProcessingError(
file_path,
"FileTooLarge",
f"File size ({file_size} bytes) exceeds maximum allowed size ({max_size} bytes)"
)
if not self.can_process(file_path):
detected_type = self._detect_document_type(file_path)
raise UnsupportedDocumentTypeError(file_path, detected_type.value)
logger.debug(f"File validation passed for: {file_path}")
class DocumentProcessorFactory:
"""Factory class for creating appropriate document processors."""
_processors = {}
@classmethod
def register_processor(cls, document_type: DocumentType, processor_class):
"""Register a processor class for a document type."""
cls._processors[document_type] = processor_class
logger.info(f"Registered processor {processor_class.__name__} for type {document_type.value}")
@classmethod
def create_processor(cls, file_path: str, config: Dict[str, Any]) -> DocumentProcessor:
"""
Create appropriate processor for the given file.
Args:
file_path: Path to the file to process
config: Configuration dictionary
Returns:
DocumentProcessor instance
Raises:
UnsupportedDocumentTypeError: If no processor is available for the file type
"""
# Detect document type
extension = Path(file_path).suffix.lower()
if extension == '.pdf':
document_type = DocumentType.PDF
elif extension in ['.xlsx', '.xls', '.xlsm']:
document_type = DocumentType.EXCEL
elif extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff']:
document_type = DocumentType.IMAGE
else:
document_type = DocumentType.UNKNOWN
# Get processor class
processor_class = cls._processors.get(document_type)
if not processor_class:
raise UnsupportedDocumentTypeError(file_path, document_type.value)
# Create and return processor instance
return processor_class(config)
@classmethod
def get_supported_types(cls) -> List[DocumentType]:
"""Get list of supported document types."""
return list(cls._processors.keys())
if __name__=="__main__":
logger.info(f"Docs processor init ..")
# Example usage (for testing purposes)
config = {'max_file_size_mb': 50}
processor = DocumentProcessorFactory.create_processor("example.pdf", config)
processed_doc = processor.process_document("example.pdf")
chunks = processor.extract_chunks(processed_doc)
for chunk in chunks:
print(chunk)
|