File size: 15,860 Bytes
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""Streamlit demo interface for the Korean Q&A evaluation system."""

import streamlit as st
import json
import sys
from pathlib import Path
import logging
import pandas as pd
from typing import Dict, Any
import plotly.graph_objects as go

# Add src to path
sys.path.append(str(Path(__file__).parent / "src"))

from src.logger import setup_logging
from src.config import Config
from src.dataset_loader import DatasetLoader
from src.evaluator import KoreanQAEvaluator
from src.visualization import EvaluationVisualizer

# Page config
st.set_page_config(
    page_title="Korean Q&A Evaluation System",
    page_icon="๐Ÿ‡ฐ๐Ÿ‡ท",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS
st.markdown("""
<style>
    .main-header {
        font-size: 2.5rem;
        color: #1f77b4;
        text-align: center;
        margin-bottom: 2rem;
    }
    .metric-card {
        background-color: #f0f2f6;
        padding: 1rem;
        border-radius: 0.5rem;
        border-left: 4px solid #1f77b4;
    }
    .success-metric {
        border-left-color: #28a745;
    }
    .warning-metric {
        border-left-color: #ffc107;
    }
    .error-metric {
        border-left-color: #dc3545;
    }
</style>
""", unsafe_allow_html=True)

class StreamlitDemo:
    """Streamlit demo interface for Korean Q&A evaluation."""
    
    def __init__(self):
        self.visualizer = EvaluationVisualizer()
        
        # Initialize session state
        if 'config' not in st.session_state:
            st.session_state.config = self._load_config()
        if 'evaluator' not in st.session_state:
            st.session_state.evaluator = None
        if 'current_results' not in st.session_state:
            st.session_state.current_results = None
    
    def _load_config(self):
        """Load configuration."""
        try:
            script_dir = Path(__file__).parent
            config_path = script_dir / "src" / "config.yaml"
            if config_path.exists():
                return Config(str(config_path))
        except Exception as e:
            st.error(f"Failed to load configuration: {e}")
        return None
    
    def _initialize_evaluator(self, api_key: str, threshold: float = 0.8):
        """Initialize the evaluator."""
        try:
            if not api_key and st.session_state.config:
                api_key = st.session_state.config.google_api_key
            
            if not api_key:
                st.error("Please provide Google API key")
                return False
            
            model_name = st.session_state.config.gemini_model if st.session_state.config else "gemini-2.0-flash"
            st.session_state.evaluator = KoreanQAEvaluator(
                model_name=model_name,
                api_key=api_key,
                threshold=threshold,
                verbose_mode=True
            )
            return True
            
        except Exception as e:
            st.error(f"Failed to initialize evaluator: {e}")
            return False
    
    def render_header(self):
        """Render the main header."""
        st.markdown('<h1 class="main-header">๐Ÿ‡ฐ๐Ÿ‡ท Korean Q&A Evaluation System</h1>', unsafe_allow_html=True)
        st.markdown("---")
        
        # Info section
        with st.expander("โ„น๏ธ About this system"):
            st.markdown("""
            This system evaluates Korean language question-answering models using:
            
            - **DeepEval Framework**: Advanced evaluation metrics
            - **Google Gemini Model**: State-of-the-art language model for evaluation
            - **Interactive Visualizations**: Real-time charts and analysis
            
            **Supported Metrics:**
            - Answer Relevancy: How relevant is the answer to the question?
            - Contextual Precision: How precise is the answer given the context?
            """)
    
    def render_sidebar(self):
        """Render the sidebar with configuration."""
        st.sidebar.header("โš™๏ธ Configuration")
        
        # API Key input
        api_key = st.sidebar.text_input(
            "Google API Key",
            type="password",
            help="Enter your Google API key for Gemini model access"
        )
        
        # Threshold slider
        threshold = st.sidebar.slider(
            "Evaluation Threshold",
            min_value=0.0,
            max_value=1.0,
            value=0.8,
            step=0.1,
            help="Minimum score required to pass evaluation"
        )
        
        # Model info
        if st.session_state.config:
            st.sidebar.info(f"Model: {st.session_state.config.gemini_model}")
        
        return api_key, threshold
    
    def render_single_evaluation(self, api_key: str, threshold: float):
        """Render single evaluation interface."""
        st.header("๐Ÿ” Single Question Evaluation")
        
        col1, col2 = st.columns([1, 1])
        
        with col1:
            input_text = st.text_area(
                "Input Question (Korean)",
                placeholder="์ด๋ฒˆ ๋‹ฌ ์šฐ๋ฆฌ ํšŒ์‚ฌ ์ „์ฒด ๋งค์ถœ์€ ์–ผ๋งˆ์•ผ?",
                height=100
            )
            
            actual_output = st.text_area(
                "Actual Output (Korean)",
                placeholder="2025๋…„ 1์›” ์‚ผ๊ด‘ Global ์ „์ฒด ๋งค์ถœ์€ 335.4์–ต์›์ž…๋‹ˆ๋‹ค...",
                height=150
            )
            
            if st.button("๐Ÿ” Evaluate Single Question", type="primary"):
                if not input_text.strip() or not actual_output.strip():
                    st.error("Please provide both input and output text")
                    return
                
                if not self._initialize_evaluator(api_key, threshold):
                    return
                
                with st.spinner("Evaluating..."):
                    try:
                        results = st.session_state.evaluator.evaluate_single_case(
                            input_text=input_text,
                            actual_output=actual_output
                        )
                        
                        # Display results
                        self._display_single_results(results)
                        
                    except Exception as e:
                        st.error(f"Evaluation failed: {e}")
        
        with col2:
            st.info("๐Ÿ’ก **Tips:**\n\n- Enter Korean text for best results\n- Longer, more detailed answers typically score higher\n- The system evaluates relevance, not correctness")
    
    def render_dataset_evaluation(self, api_key: str, threshold: float):
        """Render dataset evaluation interface."""
        st.header("๐Ÿ“Š Dataset Evaluation")
        
        # File upload
        uploaded_file = st.file_uploader(
            "Upload Dataset CSV",
            type=['csv'],
            help="CSV file should have 'input' and 'expected_output' columns"
        )
        
        if uploaded_file is not None:
            # Show preview
            try:
                df = pd.read_csv(uploaded_file)
                st.subheader("๐Ÿ“‹ Dataset Preview")
                st.dataframe(df.head(), use_container_width=True)
                
                col1, col2, col3 = st.columns([1, 1, 2])
                with col1:
                    st.metric("Total Rows", len(df))
                with col2:
                    st.metric("Columns", len(df.columns))
                with col3:
                    st.write("**Columns:**", ", ".join(df.columns.tolist()))
                
            except Exception as e:
                st.error(f"Error reading CSV file: {e}")
                return
            
            # Evaluation button
            if st.button("๐Ÿ“Š Evaluate Dataset", type="primary"):
                if not self._initialize_evaluator(api_key, threshold):
                    return
                
                with st.spinner("Evaluating dataset... This may take a while."):
                    try:
                        # Save uploaded file temporarily
                        temp_path = "temp_dataset.csv"
                        df.to_csv(temp_path, index=False)
                        
                        # Load and evaluate
                        dataset_loader = DatasetLoader()
                        dataset = dataset_loader.load_from_csv(temp_path)
                        
                        results = st.session_state.evaluator.evaluate_dataset(dataset)
                        st.session_state.current_results = results
                        
                        # Display results
                        self._display_dataset_results(results)
                        
                        # Clean up
                        Path(temp_path).unlink(missing_ok=True)
                        
                    except Exception as e:
                        st.error(f"Dataset evaluation failed: {e}")
    
    def _display_single_results(self, results: Dict[str, Any]):
        """Display single evaluation results."""
        st.subheader("๐Ÿ“ˆ Evaluation Results")
        
        if results.get('detailed_results'):
            result = results['detailed_results'][0]
            
            # Metrics display
            metrics = result.get('metrics', {})
            if metrics:
                cols = st.columns(len(metrics))
                for i, (metric_name, metric_data) in enumerate(metrics.items()):
                    with cols[i]:
                        score = metric_data.get('score', 0)
                        passed = metric_data.get('passed', False)
                        
                        # Color based on pass/fail
                        if passed:
                            st.markdown(f'<div class="metric-card success-metric">', unsafe_allow_html=True)
                            st.metric(metric_name, f"{score:.4f}", "โœ… PASS")
                        else:
                            st.markdown(f'<div class="metric-card error-metric">', unsafe_allow_html=True)
                            st.metric(metric_name, f"{score:.4f}", "โŒ FAIL")
                        st.markdown('</div>', unsafe_allow_html=True)
            
            # Visualizations
            col1, col2 = st.columns(2)
            with col1:
                fig = self.visualizer.create_score_histogram(results)
                st.plotly_chart(fig, use_container_width=True)
            
            with col2:
                fig = self.visualizer.create_pass_fail_pie_chart(results)
                st.plotly_chart(fig, use_container_width=True)
    
    def _display_dataset_results(self, results: Dict[str, Any]):
        """Display dataset evaluation results."""
        st.subheader("๐Ÿ“Š Dataset Evaluation Results")
        
        # Summary metrics
        col1, col2, col3, col4 = st.columns(4)
        
        with col1:
            st.markdown('<div class="metric-card">', unsafe_allow_html=True)
            st.metric("Total Cases", results.get('total_cases', 0))
            st.markdown('</div>', unsafe_allow_html=True)
        
        with col2:
            passed = results.get('passed_cases', 0)
            st.markdown('<div class="metric-card success-metric">', unsafe_allow_html=True)
            st.metric("Passed", passed)
            st.markdown('</div>', unsafe_allow_html=True)
        
        with col3:
            failed = results.get('failed_cases', 0)
            st.markdown('<div class="metric-card error-metric">', unsafe_allow_html=True)
            st.metric("Failed", failed)
            st.markdown('</div>', unsafe_allow_html=True)
        
        with col4:
            pass_rate = results.get('pass_rate', 0)
            color_class = "success-metric" if pass_rate >= 80 else "warning-metric" if pass_rate >= 60 else "error-metric"
            st.markdown(f'<div class="metric-card {color_class}">', unsafe_allow_html=True)
            st.metric("Pass Rate", f"{pass_rate:.1f}%")
            st.markdown('</div>', unsafe_allow_html=True)
        
        # Additional metrics
        col1, col2, col3 = st.columns(3)
        with col1:
            st.metric("Average Score", f"{results.get('average_score', 0):.4f}")
        with col2:
            st.metric("Threshold", results.get('threshold', 0.8))
        with col3:
            st.metric("Model", results.get('model_name', 'N/A'))
        
        # Visualizations
        st.subheader("๐Ÿ“ˆ Detailed Analysis")
        
        # First row of charts
        col1, col2 = st.columns(2)
        with col1:
            fig = self.visualizer.create_score_histogram(results)
            st.plotly_chart(fig, use_container_width=True)
        
        with col2:
            fig = self.visualizer.create_pass_fail_pie_chart(results)
            st.plotly_chart(fig, use_container_width=True)
        
        # Second row of charts
        fig = self.visualizer.create_metrics_comparison(results)
        st.plotly_chart(fig, use_container_width=True)
        
        # Third row
        fig = self.visualizer.create_score_vs_length_scatter(results)
        st.plotly_chart(fig, use_container_width=True)
        
        # Summary table
        fig = self.visualizer.create_summary_stats_table(results)
        st.plotly_chart(fig, use_container_width=True)
        
        # Download results
        if st.button("๐Ÿ“ฅ Download Results JSON"):
            json_str = json.dumps(results, ensure_ascii=False, indent=2)
            st.download_button(
                label="Download JSON",
                data=json_str,
                file_name="evaluation_results.json",
                mime="application/json"
            )
    
    def render_sample_data_tab(self):
        """Render sample data information."""
        st.header("๐Ÿ“‹ Sample Data Format")
        
        st.markdown("""
        ### CSV Format Requirements
        
        Your dataset CSV file should have the following columns:
        - `input`: The question or input text (Korean)
        - `expected_output`: The expected answer or output text (Korean)
        """)
        
        # Sample data
        sample_data = {
            'input': [
                '์ด๋ฒˆ ๋‹ฌ ์šฐ๋ฆฌ ํšŒ์‚ฌ ์ „์ฒด ๋งค์ถœ์€ ์–ผ๋งˆ์•ผ?',
                '์‚ฌ์—…๋ถ€๋ณ„ ๋งค์ถœ ๋น„์ค‘์ด ์–ด๋–ป๊ฒŒ ๋˜๋‚˜์š”?',
                '์ตœ๊ทผ ์ˆ˜์œจ์ด ๋‚ฎ์€ ๊ณต์ •์ด ์žˆ๋‚˜์š”?'
            ],
            'expected_output': [
                '2025๋…„ 1์›” ์‚ผ๊ด‘ Global ์ „์ฒด ๋งค์ถœ์€ 335.4์–ต์›์ž…๋‹ˆ๋‹ค.',
                'ํ•œ๊ตญ ์‚ฌ์—…๋ถ€: 213.0์–ต์› (39.7%), ๋ฒ ํŠธ๋‚จ ์‚ฌ์—…๋ถ€: 38.6์–ต์› (44.1%)',
                'R47 ENCLOSURE ์‚ฌ์ถœ: 59%, R47 ARM ์‚ฌ์ถœ: 80% ๋“ฑ์ด 90% ๋ฏธ๋งŒ์ž…๋‹ˆ๋‹ค.'
            ]
        }
        
        sample_df = pd.DataFrame(sample_data)
        st.subheader("Sample Data")
        st.dataframe(sample_df, use_container_width=True)
        
        # Download sample
        csv = sample_df.to_csv(index=False)
        st.download_button(
            label="๐Ÿ“ฅ Download Sample CSV",
            data=csv,
            file_name="sample_korean_qa.csv",
            mime="text/csv"
        )
    
    def run(self):
        """Run the Streamlit app."""
        self.render_header()
        
        # Sidebar
        api_key, threshold = self.render_sidebar()
        
        # Main tabs
        tab1, tab2, tab3 = st.tabs(["๐Ÿ” Single Evaluation", "๐Ÿ“Š Dataset Evaluation", "๐Ÿ“‹ Sample Data"])
        
        with tab1:
            self.render_single_evaluation(api_key, threshold)
        
        with tab2:
            self.render_dataset_evaluation(api_key, threshold)
        
        with tab3:
            self.render_sample_data_tab()

def main():
    """Main function to run the Streamlit app."""
    demo = StreamlitDemo()
    demo.run()

if __name__ == "__main__":
    main()