File size: 13,070 Bytes
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
"""Visualization utilities for the Korean Q&A evaluation system."""

import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
import numpy as np
from typing import Dict, List, Any
import logging

logger = logging.getLogger(__name__)

class EvaluationVisualizer:
    """Create visualizations for evaluation results."""
    
    def __init__(self):
        # Set style for matplotlib
        plt.style.use('seaborn-v0_8')
        sns.set_palette("husl")
        
    def create_score_histogram(self, results: Dict[str, Any], metric_name: str = "Answer Relevancy") -> go.Figure:
        """
        Create histogram of evaluation scores.
        
        Args:
            results: Evaluation results dictionary
            metric_name: Name of the metric to visualize
            
        Returns:
            Plotly figure object
        """
        try:
            # Extract scores from detailed results
            scores = []
            for result in results.get('detailed_results', []):
                metrics = result.get('metrics', {})
                for metric, data in metrics.items():
                    # Handle both display names and class names
                    if (metric_name.lower() in metric.lower() or 
                        metric_name.replace(" ", "").lower() in metric.lower() or
                        "answerrelevancy" in metric.lower()):
                        scores.append(data.get('score', 0))
            
            if not scores:
                logger.warning(f"No scores found for metric: {metric_name}")
                return self._create_empty_figure("No data available")
            
            # Create histogram
            fig = go.Figure()
            
            fig.add_trace(go.Histogram(
                x=scores,
                nbinsx=20,
                name=metric_name,
                marker_color='skyblue',
                opacity=0.7,
                hovertemplate='Score Range: %{x}<br>Count: %{y}<extra></extra>'
            ))
            
            # Add threshold line
            threshold = results.get('threshold', 0.8)
            fig.add_vline(
                x=threshold,
                line_dash="dash",
                line_color="red",
                annotation_text=f"Threshold: {threshold}",
                annotation_position="top right"
            )
            
            # Update layout
            fig.update_layout(
                title=f'{metric_name} Score Distribution',
                xaxis_title='Score',
                yaxis_title='Frequency',
                showlegend=False,
                template='plotly_white',
                height=400)
            
            return fig
            
        except Exception as e:
            logger.error(f"Error creating score histogram: {e}")
            return self._create_empty_figure("Error creating histogram")
    
    def create_pass_fail_pie_chart(self, results: Dict[str, Any]) -> go.Figure:
        """Create pie chart showing pass/fail distribution."""
        try:
            passed = results.get('passed_cases', 0)
            failed = results.get('failed_cases', 0)
            
            if passed == 0 and failed == 0:
                return self._create_empty_figure("No evaluation data available")
            
            fig = go.Figure(data=[go.Pie(
                labels=['Passed', 'Failed'],
                values=[passed, failed],
                hole=0.3,
                marker_colors=['#2E8B57', '#DC143C'],
                hovertemplate='%{label}: %{value} cases<br>%{percent}<extra></extra>'
            )])
            
            fig.update_layout(
                title='Pass/Fail Distribution',
                template='plotly_white',
                height=400
            )
            
            return fig
            
        except Exception as e:
            logger.error(f"Error creating pie chart: {e}")
            return self._create_empty_figure("Error creating pie chart")
    
    def create_metrics_comparison(self, results: Dict[str, Any]) -> go.Figure:
        """Create comparison chart for different metrics."""
        try:
            # Extract metrics data
            metrics_data = {}
            
            for result in results.get('detailed_results', []):
                metrics = result.get('metrics', {})
                for metric_name, data in metrics.items():
                    if metric_name not in metrics_data:
                        metrics_data[metric_name] = []
                    metrics_data[metric_name].append(data.get('score', 0))
            
            if not metrics_data:
                return self._create_empty_figure("No metrics data available")
            
            # Create subplots
            fig = make_subplots(
                rows=len(metrics_data),
                cols=1,
                subplot_titles=list(metrics_data.keys()),
                vertical_spacing=0.1
            )
            
            colors = px.colors.qualitative.Set3
            
            for i, (metric_name, scores) in enumerate(metrics_data.items()):
                fig.add_trace(
                    go.Histogram(
                        x=scores,
                        name=metric_name,
                        marker_color=colors[i % len(colors)],
                        opacity=0.7,
                        nbinsx=15
                    ),
                    row=i+1, col=1
                )
            
            fig.update_layout(
                title='Metrics Comparison',
                template='plotly_white',
                height=300 * len(metrics_data),
                showlegend=False
            )
            
            return fig
            
        except Exception as e:
            logger.error(f"Error creating metrics comparison: {e}")
            return self._create_empty_figure("Error creating metrics comparison")
    
    
    
    
    def create_score_vs_length_scatter(self, results: Dict[str, Any]) -> go.Figure:
        try:
            scores = []
            input_lengths = []
            output_lengths = []
            for result in results.get('detailed_results', []):
                input_text = result.get('input', '')
                output_text = result.get('actual_output', '')
                input_lengths.append(len(input_text))
                output_lengths.append(len(output_text))
                # Get the first available score
                metrics = result.get('metrics', {})
                score = 0
                for metric_data in metrics.values():
                    score = metric_data.get('score', 0)
                    break
                scores.append(score)
            if not scores:
                return self._create_empty_figure("No data available for scatter plot")
            fig = make_subplots(
                rows=2, cols=1,
                subplot_titles=['Score vs Input Length', 'Score vs Output Length']
            )
            
            # Input length scatter
            fig.add_trace(
                go.Scatter(
                    x=input_lengths,
                    y=scores,
                    mode='markers',
                    name='Input Length',
                    marker=dict(color='blue', opacity=0.6),
                    hovertemplate='Input Length: %{x}<br>Score: %{y:.3f}<extra></extra>'
                ),
                row=1, col=1
            )
            
            # Output length scatter
            fig.add_trace(
                go.Scatter(
                    x=output_lengths,
                    y=scores,
                    mode='markers',
                    name='Output Length',
                    marker=dict(color='red', opacity=0.6),
                    hovertemplate='Output Length: %{x}<br>Score: %{y:.3f}<extra></extra>'
                ),
                row=2, col=1
            )
            
            fig.update_layout(
                title='Score vs Text Length Analysis',
                template='plotly_white',
                height=400,
                showlegend=False
            )
            
            fig.update_xaxes(title_text="Input Length (characters)", row=1, col=1)
            fig.update_xaxes(title_text="Output Length (characters)", row=1, col=2)
            fig.update_yaxes(title_text="Score", row=1, col=1)
            fig.update_yaxes(title_text="Score", row=1, col=2)
            
            return fig
            
        except Exception as e:
            logger.error(f"Error creating scatter plot: {e}")
            return self._create_empty_figure("Error creating scatter plot")
    
    def create_summary_stats_table(self, results: Dict[str, Any]) -> go.Figure:
        """Create summary statistics table."""
        try:
            stats = [
                ['Total Cases', results.get('total_cases', 0)],
                ['Passed Cases', results.get('passed_cases', 0)],
                ['Failed Cases', results.get('failed_cases', 0)],
                ['Pass Rate', f"{results.get('pass_rate', 0):.2f}%"],
                ['Average Score', f"{results.get('average_score', 0):.4f}"],
                ['Threshold', results.get('threshold', 0.8)],
                ['Model', results.get('model_name', 'N/A')],
                ['Evaluation Time', results.get('evaluation_timestamp', 'N/A')]
            ]
            
            fig = go.Figure(data=[go.Table(
                header=dict(
                    values=['Metric', 'Value'],
                    fill_color='lightblue',
                    align='left',
                    font=dict(size=14, color='black')
                ),
                cells=dict(
                    values=list(zip(*stats)),
                    fill_color='white',
                    align='left',
                    font=dict(size=12)
                )
            )])
            
            fig.update_layout(
                title='Evaluation Summary',
                height=400,
                margin=dict(l=0, r=0, t=30, b=0)
            )
            
            return fig
            
        except Exception as e:
            logger.error(f"Error creating summary table: {e}")
            return self._create_empty_figure("Error creating summary table")
    
    def _create_empty_figure(self, message: str) -> go.Figure:
        """Create an empty figure with a message."""
        fig = go.Figure()
        fig.add_annotation(
            text=message,
            xref="paper", yref="paper",
            x=0.5, y=0.5,
            showarrow=False,
            font=dict(size=16)
        )
        fig.update_layout(
            template='plotly_white',
            height=400,
            xaxis=dict(visible=False),
            yaxis=dict(visible=False)
        )
        return fig
    
    def save_matplotlib_plots(self, results: Dict[str, Any], output_dir: str = "plots") -> List[str]:
        """Save matplotlib plots to files."""
        import os
        os.makedirs(output_dir, exist_ok=True)
        
        saved_files = []
        
        try:
            # Extract scores
            scores = []
            for result in results.get('detailed_results', []):
                metrics = result.get('metrics', {})
                for metric_data in metrics.values():
                    scores.append(metric_data.get('score', 0))
                    break
            
            if scores:
                # Score histogram
                plt.figure(figsize=(10, 6))
                plt.hist(scores, bins=20, alpha=0.7, color='skyblue', edgecolor='black')
                plt.axvline(results.get('threshold', 0.8), color='red', linestyle='--', 
                           label=f"Threshold: {results.get('threshold', 0.8)}")
                plt.xlabel('Score')
                plt.ylabel('Frequency')
                plt.title('Score Distribution')
                plt.legend()
                plt.grid(True, alpha=0.3)
                
                hist_file = os.path.join(output_dir, 'score_histogram.png')
                plt.savefig(hist_file, dpi=300, bbox_inches='tight')
                plt.close()
                saved_files.append(hist_file)
                
                # Box plot
                plt.figure(figsize=(8, 6))
                plt.boxplot(scores, labels=['Scores'])
                plt.ylabel('Score')
                plt.title('Score Distribution (Box Plot)')
                plt.grid(True, alpha=0.3)
                
                box_file = os.path.join(output_dir, 'score_boxplot.png')
                plt.savefig(box_file, dpi=300, bbox_inches='tight')
                plt.close()
                saved_files.append(box_file)
            
            logger.info(f"Saved {len(saved_files)} matplotlib plots to {output_dir}")
            return saved_files
            
        except Exception as e:
            logger.error(f"Error saving matplotlib plots: {e}")
            return []