File size: 24,540 Bytes
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
import logging
from pathlib import Path
from typing import Dict, List, Any, Optional, Tuple
import openpyxl
from openpyxl.worksheet.worksheet import Worksheet
from openpyxl.drawing.image import Image as OpenpyxlImage
from dataclasses import dataclass
import io
from PIL import Image as PILImage
import sys 
import os 

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from src.document_processor import (
    DocumentProcessor,
    ProcessedDocument,
    DocumentType,
    ProcessingStatus,
    DocumentProcessingError,
    ExtractedImage,
    ExtractedTable,
    DocumentProcessorFactory
)


try:
    from logger.custom_logger import CustomLoggerTracker
    custom_log = CustomLoggerTracker()
    logger = custom_log.get_logger("excel_processor")

except ImportError:
    # Fallback to standard logging if custom logger not available
    logger = logging.getLogger("excel_processor")

@dataclass
class ExcelWorksheetInfo:
    """Information about an Excel worksheet."""
    name: str
    max_row: int
    max_column: int
    cell_count: int
    image_count: int
    table_count: int
    has_data: bool


@dataclass
class CellRange:
    """Represents a range of cells in Excel."""
    start_row: int
    start_col: int
    end_row: int
    end_col: int
    
    def to_excel_range(self) -> str:
        """Convert to Excel range notation (e.g., 'A1:C5')."""
        start_col_letter = openpyxl.utils.get_column_letter(self.start_col)
        end_col_letter = openpyxl.utils.get_column_letter(self.end_col)
        return f"{start_col_letter}{self.start_row}:{end_col_letter}{self.end_row}"


class ExcelProcessor(DocumentProcessor):
    """
    Excel document processor using openpyxl.
    
    This processor extracts data from Excel worksheets, embedded images,
    and maintains proper citations with worksheet names and cell references.
    """
    
    def __init__(self, config: Dict[str, Any]):
        """
        Initialize the Excel processor.
        
        Args:
            config: Configuration dictionary containing Excel processing settings
        """
        super().__init__(config)
        self.extract_images = config.get('image_processing', True)
        self.extract_tables = config.get('table_extraction', True)
        self.min_table_rows = config.get('min_table_rows', 2)
        self.min_table_cols = config.get('min_table_cols', 2)
        self.max_empty_rows = config.get('max_empty_rows', 5)
        self.max_empty_cols = config.get('max_empty_cols', 5)
        
        logger.info(f"Excel processor initialized with image_processing={self.extract_images}, "
                   f"table_extraction={self.extract_tables}")
    
    def _get_supported_extensions(self) -> List[str]:
        """Get supported file extensions for Excel processor."""
        return ['.xlsx', '.xls', '.xlsm']
    
    def process_document(self, file_path: str) -> ProcessedDocument:
        """
        Process an Excel document and extract all content.
        
        Args:
            file_path: Path to the Excel file
            
        Returns:
            ProcessedDocument with extracted content and metadata
            
        Raises:
            DocumentProcessingError: If Excel processing fails
        """
        try:
            # Validate file first
            self.validate_file(file_path)
            
            # Generate document ID
            document_id = self._generate_document_id(file_path)
            
            logger.info(f"Processing Excel document: {file_path}")
            
            # Open Excel workbook
            workbook = openpyxl.load_workbook(file_path, data_only=True)
            
            try:
                # Extract metadata
                metadata = self._extract_metadata(workbook, file_path)
                
                # Process all worksheets
                all_content = []
                all_images = []
                all_tables = []
                worksheet_info = []
                
                for sheet_name in workbook.sheetnames:
                    worksheet = workbook[sheet_name]
                    
                    logger.debug(f"Processing worksheet: {sheet_name}")
                    
                    # Extract data from worksheet
                    sheet_content = self._extract_worksheet_content(worksheet, sheet_name)
                    if sheet_content.strip():
                        all_content.append(f"[Worksheet: {sheet_name}]\n{sheet_content}")
                    
                    # Extract images if enabled
                    if self.extract_images:
                        sheet_images = self._extract_worksheet_images(worksheet, sheet_name, document_id)
                        all_images.extend(sheet_images)
                    
                    # Extract tables if enabled
                    if self.extract_tables:
                        sheet_tables = self._extract_worksheet_tables(worksheet, sheet_name)
                        all_tables.extend(sheet_tables)
                    
                    # Collect worksheet info
                    worksheet_info.append(ExcelWorksheetInfo(
                        name=sheet_name,
                        max_row=worksheet.max_row or 0,
                        max_column=worksheet.max_column or 0,
                        cell_count=self._count_non_empty_cells(worksheet),
                        image_count=len(sheet_images) if self.extract_images else 0,
                        table_count=len(sheet_tables) if self.extract_tables else 0,
                        has_data=bool(sheet_content.strip())
                    ))
                
                # Combine all content
                full_content = "\n\n".join(all_content)
                
                # Update metadata with processing info
                metadata.update({
                    'total_worksheets': len(workbook.sheetnames),
                    'worksheet_names': workbook.sheetnames,
                    'total_images': len(all_images),
                    'total_tables': len(all_tables),
                    'total_content_length': len(full_content),
                    'worksheet_info': [
                        {
                            'name': info.name,
                            'max_row': info.max_row,
                            'max_column': info.max_column,
                            'cell_count': info.cell_count,
                            'image_count': info.image_count,
                            'table_count': info.table_count,
                            'has_data': info.has_data
                        }
                        for info in worksheet_info
                    ]
                })
                
                # Create processed document
                processed_doc = ProcessedDocument(
                    document_id=document_id,
                    filename=Path(file_path).name,
                    file_path=file_path,
                    document_type=DocumentType.EXCEL,
                    content=full_content,
                    metadata=metadata,
                    images=all_images,
                    tables=all_tables,
                    processing_status=ProcessingStatus.COMPLETED
                )
                
                logger.info(f"Successfully processed Excel: {len(workbook.sheetnames)} worksheets, "
                           f"{len(all_images)} images, {len(all_tables)} tables")
                
                return processed_doc
                
            finally:
                workbook.close()
                
        except Exception as e:
            logger.error(f"Failed to process Excel {file_path}: {e}")
            
            # Create failed document
            document_id = self._generate_document_id(file_path)
            return ProcessedDocument(
                document_id=document_id,
                filename=Path(file_path).name,
                file_path=file_path,
                document_type=DocumentType.EXCEL,
                content="",
                metadata={},
                processing_status=ProcessingStatus.FAILED,
                error_message=str(e)
            )
    
    
    def _extract_metadata(self, workbook: openpyxl.Workbook, file_path: str) -> Dict[str, Any]:
        metadata = {}
        try:
            props = workbook.properties
            if props.title:
                metadata['title'] = props.title
            if props.creator:
                metadata['creator'] = props.creator
            if props.description:
                metadata['description'] = props.description
            if props.subject:
                metadata['subject'] = props.subject
            if props.keywords:
                metadata['keywords'] = props.keywords
            if props.category:
                metadata['category'] = props.category
            if props.created:
                metadata['created'] = props.created.isoformat()
            if props.modified:
                metadata['modified'] = props.modified.isoformat()
            if props.lastModifiedBy:
                metadata['last_modified_by'] = props.lastModifiedBy
            
            # Workbook info
            metadata['worksheet_count'] = len(workbook.sheetnames)
            metadata['active_sheet'] = workbook.active.title if workbook.active else None
            
            # File info
            file_path_obj = Path(file_path)
            metadata['file_size'] = file_path_obj.stat().st_size
            metadata['file_extension'] = file_path_obj.suffix
            
        except Exception as e:
            logger.warning(f"Failed to extract Excel metadata: {e}")
            metadata['metadata_extraction_error'] = str(e)
        
        return metadata
    
    def _extract_worksheet_content(self, worksheet: Worksheet, sheet_name: str) -> str:
        try:
            content_lines = []
            
            if not worksheet.max_row or worksheet.max_row == 1:
                return ""
            
            # Iterate through rows and columns
            for row in worksheet.iter_rows(min_row=1, max_row=worksheet.max_row,
                                         min_col=1, max_col=worksheet.max_column,
                                         values_only=True):
                
                # Convert row values to strings, handling None values
                row_values = []
                for cell_value in row:
                    if cell_value is not None:
                        # Handle different data types
                        if isinstance(cell_value, (int, float)):
                            row_values.append(str(cell_value))
                        elif isinstance(cell_value, str):
                            row_values.append(cell_value.strip())
                        else:
                            row_values.append(str(cell_value))
                    else:
                        row_values.append("")
                
                # Skip completely empty rows
                if any(val.strip() for val in row_values if val):
                    # Join non-empty values with tabs
                    row_text = "\t".join(row_values)
                    content_lines.append(row_text)
            
            return "\n".join(content_lines)
            
        except Exception as e:
            logger.warning(f"Failed to extract content from worksheet {sheet_name}: {e}")
            return ""
    
    def _extract_worksheet_images(self, worksheet: Worksheet, sheet_name: str, document_id: str) -> List[ExtractedImage]:
        images = []
        
        try:
            # Get images from worksheet
            if hasattr(worksheet, '_images') and worksheet._images:
                for img_index, img in enumerate(worksheet._images):
                    try:
                        # Extract image data
                        image_data = self._extract_image_data(img)
                        if not image_data:
                            continue
                        
                        # Create image object
                        image_id = f"{document_id}_{sheet_name}_img{img_index}"
                        filename = f"{sheet_name}_image{img_index}.{image_data['format'].lower()}"
                        
                        # Get image position if available
                        anchor_info = {}
                        if hasattr(img, 'anchor') and img.anchor:
                            if hasattr(img.anchor, '_from'):
                                anchor_info['from_cell'] = f"{img.anchor._from.col}{img.anchor._from.row}"
                            if hasattr(img.anchor, 'to'):
                                anchor_info['to_cell'] = f"{img.anchor.to.col}{img.anchor.to.row}"
                        
                        extracted_image = ExtractedImage(
                            image_id=image_id,
                            filename=filename,
                            content=image_data['content'],
                            format=image_data['format'],
                            width=image_data.get('width'),
                            height=image_data.get('height'),
                            extraction_method="openpyxl",
                            metadata={
                                'worksheet_name': sheet_name,
                                'image_index': img_index,
                                'size_bytes': len(image_data['content']),
                                'anchor_info': anchor_info
                            }
                        )
                        
                        images.append(extracted_image)
                        
                    except Exception as e:
                        logger.warning(f"Failed to extract image {img_index} from worksheet {sheet_name}: {e}")
                        continue
        
        except Exception as e:
            logger.warning(f"Failed to extract images from worksheet {sheet_name}: {e}")
        
        return images
    
    def _extract_image_data(self, img: OpenpyxlImage) -> Optional[Dict[str, Any]]:
        """
        Extract data from an openpyxl Image object.
        
        Args:
            img: openpyxl Image object
            
        Returns:
            Dictionary with image data or None if extraction fails
        """
        try:
            # Get image data
            if hasattr(img, 'ref') and img.ref:
                # Image has reference to external file
                image_data = img.ref
            elif hasattr(img, '_data') and img._data:
                # Image data is embedded
                image_data = img._data()
            else:
                logger.warning("No image data found in image object")
                return None
            
            # Determine format
            image_format = "PNG"  # Default
            if hasattr(img, 'format') and img.format:
                image_format = img.format.upper()
            
            # Try to get dimensions using PIL
            width, height = None, None
            try:
                with io.BytesIO(image_data) as img_buffer:
                    pil_img = PILImage.open(img_buffer)
                    width, height = pil_img.size
            except Exception as e:
                logger.debug(f"Could not determine image dimensions: {e}")
            
            return {
                'content': image_data,
                'format': image_format,
                'width': width,
                'height': height
            }
            
        except Exception as e:
            logger.warning(f"Failed to extract image data: {e}")
            return None
    
    def _extract_worksheet_tables(self, worksheet: Worksheet, sheet_name: str) -> List[ExtractedTable]:
        """
        Extract tables from an Excel worksheet.
        
        Args:
            worksheet: openpyxl Worksheet object
            sheet_name: Name of the worksheet
            
        Returns:
            List of ExtractedTable objects
        """
        tables = []
        
        try:
            # First, try to extract defined tables
            if hasattr(worksheet, 'tables') and worksheet.tables:
                for table_name, table in worksheet.tables.items():
                    try:
                        extracted_table = self._extract_defined_table(table, sheet_name, len(tables))
                        if extracted_table:
                            tables.append(extracted_table)
                    except Exception as e:
                        logger.warning(f"Failed to extract defined table {table_name}: {e}")
            
            # If no defined tables found, try to detect tables from data
            if not tables and self.extract_tables:
                detected_tables = self._detect_data_tables(worksheet, sheet_name)
                tables.extend(detected_tables)
        
        except Exception as e:
            logger.warning(f"Failed to extract tables from worksheet {sheet_name}: {e}")
        
        return tables
    
    def _extract_defined_table(self, table, sheet_name: str, table_index: int) -> Optional[ExtractedTable]:
        """
        Extract a defined Excel table.
        
        Args:
            table: Excel table object
            sheet_name: Name of the worksheet
            table_index: Index of the table
            
        Returns:
            ExtractedTable object or None if extraction fails
        """
        try:
            # Get table range
            table_range = table.ref
            
            # Parse range (e.g., "A1:C10")
            start_cell, end_cell = table_range.split(':')
            
            # Get table data from worksheet
            worksheet = table.parent
            table_data = []
            
            for row in worksheet[table_range]:
                row_data = []
                for cell in row:
                    value = cell.value if cell.value is not None else ""
                    row_data.append(str(value))
                table_data.append(row_data)
            
            if not table_data:
                return None
            
            # First row is typically headers
            headers = table_data[0] if table_data else []
            rows = table_data[1:] if len(table_data) > 1 else []
            
            # Create table object
            table_id = f"{sheet_name}_table{table_index}"
            
            return ExtractedTable(
                table_id=table_id,
                headers=headers,
                rows=rows,
                worksheet_name=sheet_name,
                cell_range=table_range,
                extraction_confidence=0.9,  # High confidence for defined tables
                metadata={
                    'extraction_method': 'defined_table',
                    'table_index': table_index,
                    'table_name': getattr(table, 'name', '')
                }
            )
        
        except Exception as e:
            logger.warning(f"Failed to extract defined table: {e}")
            return None
    
    def _detect_data_tables(self, worksheet: Worksheet, sheet_name: str) -> List[ExtractedTable]:
        """
        Detect tables from worksheet data patterns.
        
        Args:
            worksheet: openpyxl Worksheet object
            sheet_name: Name of the worksheet
            
        Returns:
            List of detected ExtractedTable objects
        """
        tables = []
        
        try:
            if not worksheet.max_row or worksheet.max_row < self.min_table_rows:
                return tables
            
            # Simple table detection: look for contiguous data blocks
            data_blocks = self._find_data_blocks(worksheet)
            
            for block_index, data_block in enumerate(data_blocks):
                if len(data_block) >= self.min_table_rows and len(data_block[0]) >= self.min_table_cols:
                    # Create table from data block
                    headers = data_block[0]
                    rows = data_block[1:]
                    
                    # Calculate cell range
                    start_row = 1  # This is simplified - in reality would need to track actual positions
                    end_row = start_row + len(data_block) - 1
                    start_col = 1
                    end_col = len(headers)
                    
                    cell_range = CellRange(start_row, start_col, end_row, end_col).to_excel_range()
                    
                    table_id = f"{sheet_name}_detected_table{block_index}"
                    
                    table = ExtractedTable(
                        table_id=table_id,
                        headers=headers,
                        rows=rows,
                        worksheet_name=sheet_name,
                        cell_range=cell_range,
                        extraction_confidence=0.7,  # Lower confidence for detected tables
                        metadata={
                            'extraction_method': 'data_pattern_detection',
                            'table_index': block_index
                        }
                    )
                    
                    tables.append(table)
        
        except Exception as e:
            logger.warning(f"Failed to detect data tables: {e}")
        
        return tables
    
    def _find_data_blocks(self, worksheet: Worksheet) -> List[List[List[str]]]:
        """
        Find contiguous blocks of data in the worksheet.
        
        Args:
            worksheet: openpyxl Worksheet object
            
        Returns:
            List of data blocks, where each block is a list of rows
        """
        data_blocks = []
        
        try:
            current_block = []
            empty_row_count = 0
            
            for row in worksheet.iter_rows(min_row=1, max_row=worksheet.max_row,
                                         min_col=1, max_col=worksheet.max_column,
                                         values_only=True):
                
                # Convert row to strings
                row_values = []
                has_data = False
                
                for cell_value in row:
                    if cell_value is not None:
                        row_values.append(str(cell_value).strip())
                        if str(cell_value).strip():
                            has_data = True
                    else:
                        row_values.append("")
                
                if has_data:
                    # Reset empty row count and add to current block
                    empty_row_count = 0
                    current_block.append(row_values)
                else:
                    # Empty row
                    empty_row_count += 1
                    
                    # If we've seen too many empty rows, end the current block
                    if empty_row_count >= self.max_empty_rows and current_block:
                        if len(current_block) >= self.min_table_rows:
                            data_blocks.append(current_block)
                        current_block = []
                        empty_row_count = 0
            
            # Add final block if it exists
            if current_block and len(current_block) >= self.min_table_rows:
                data_blocks.append(current_block)
        
        except Exception as e:
            logger.warning(f"Failed to find data blocks: {e}")
        
        return data_blocks
    
    def _count_non_empty_cells(self, worksheet: Worksheet) -> int:
        """
        Count non-empty cells in a worksheet.
        
        Args:
            worksheet: openpyxl Worksheet object
            
        Returns:
            Number of non-empty cells
        """
        count = 0
        
        try:
            for row in worksheet.iter_rows(values_only=True):
                for cell_value in row:
                    if cell_value is not None and str(cell_value).strip():
                        count += 1
        except Exception as e:
            logger.warning(f"Failed to count non-empty cells: {e}")
        
        return count


# Register the Excel processor
DocumentProcessorFactory.register_processor(DocumentType.EXCEL, ExcelProcessor)


if __name__=="__main__":
    logger.info(f"Start excel processing...")