File size: 13,926 Bytes
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603b08e
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603b08e
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603b08e
7dfe46c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import logging
import time
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
import requests
import json
import os 
import os 
import sys 
from dotenv import load_dotenv
load_dotenv()

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Setup logging
try:
    from logger.custom_logger import CustomLoggerTracker
    custom_log = CustomLoggerTracker()
    logger = custom_log.get_logger("groq_client")

except ImportError:
    # Fallback to standard logging if custom logger not available
    logger = logging.getLogger("groq_client")

GROQ_API_KEY=os.getenv('GROQ_API_KEY', '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')


@dataclass
class LLMResponse:
    """Response from LLM generation."""
    text: str
    model_name: str
    processing_time: float
    token_count: int
    success: bool
    error_message: Optional[str] = None
    finish_reason: Optional[str] = None


class GroqClient:
    """
    Groq API client for fast LLM inference.
    
    This client provides high-speed inference using Groq's LPU architecture
    with support for various models like Llama, Mixtral, and Gemma.
    """
    
    def __init__(self, api_key: str, base_url: str = "https://api.groq.com/openai/v1"):
        """
        Initialize the Groq client.
        
        Args:
            api_key: Groq API key
            base_url: Base URL for Groq API
        """
        self.api_key = api_key
        self.base_url = base_url.rstrip('/')
        self.session = requests.Session()
        self.session.headers.update({
            'Authorization': f'Bearer {api_key}',
            'Content-Type': 'application/json'
        })
        
        # Rate limiting
        self.max_requests_per_minute = 30
        self.request_timestamps = []
        
        logger.info(f"Groq client initialized with base URL: {base_url}")
    
    def generate_response(self, messages: List[Dict[str, str]], 
                         model: str = "openai/gpt-oss-120b",
                         max_tokens: int = 1024,
                         temperature: float = 0.1) -> LLMResponse:
        """
        Generate response using Groq LLM.
        
        Args:
            messages: List of message dictionaries with 'role' and 'content'
            model: Model name to use
            max_tokens: Maximum tokens to generate
            temperature: Sampling temperature
            
        Returns:
            LLMResponse with generated text and metadata
        """
        start_time = time.time()
        
        try:
            # Rate limiting check
            self._check_rate_limit()
            
            # Prepare request payload
            payload = {
                "model": model,
                "messages": messages,
                "max_tokens": max_tokens,
                "temperature": temperature,
                "stream": False
            }
            
            # Make API request
            response = self.session.post(
                f"{self.base_url}/chat/completions",
                json=payload,
                timeout=60
            )
            
            processing_time = time.time() - start_time
            
            if response.status_code == 200:
                data = response.json()
                
                # Extract response text
                choice = data.get('choices', [{}])[0]
                message = choice.get('message', {})
                generated_text = message.get('content', '')
                finish_reason = choice.get('finish_reason', 'unknown')
                
                # Get usage info
                usage = data.get('usage', {})
                token_count = usage.get('total_tokens', 0)
                
                logger.debug(f"Generated response in {processing_time:.2f}s, {token_count} tokens")
                
                return LLMResponse(
                    text=generated_text,
                    model_name=model,
                    processing_time=processing_time,
                    token_count=token_count,
                    success=True,
                    finish_reason=finish_reason
                )
            else:
                error_msg = f"API request failed with status {response.status_code}: {response.text}"
                logger.error(error_msg)
                
                return LLMResponse(
                    text="",
                    model_name=model,
                    processing_time=processing_time,
                    token_count=0,
                    success=False,
                    error_message=error_msg
                )
                
        except Exception as e:
            processing_time = time.time() - start_time
            error_msg = f"LLM generation failed: {str(e)}"
            logger.error(error_msg)
            
            return LLMResponse(
                text="",
                model_name=model,
                processing_time=processing_time,
                token_count=0,
                success=False,
                error_message=error_msg
            )
    
    def answer_question(self, question: str, context: str, 
                       model: str = "openai/gpt-oss-120b") -> LLMResponse:
        """
        Answer a question based on provided context.
        
        Args:
            question: Question to answer
            context: Context information
            model: Model name to use
            
        Returns:
            LLMResponse with the answer
        """
        # Create system prompt for manufacturing Q&A
        system_prompt = """You are an expert manufacturing analyst assistant. Your task is to answer questions about manufacturing data, processes, and documentation based on the provided context.

Guidelines:
1. Answer questions accurately based only on the provided context
2. If the context doesn't contain enough information, say so clearly
3. Include specific references to data points, measurements, or processes when available
4. Use technical manufacturing terminology appropriately
5. Provide concise but complete answers
6. If asked about trends or comparisons, use the numerical data from the context

Always cite your sources by mentioning the specific document, page, or section where you found the information."""
        
        # Create user prompt with context and question
        user_prompt = f"""Context:
{context}

Question: {question}

Please provide a detailed answer based on the context above. Include specific citations where possible."""
        
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ]
        
        return self.generate_response(messages, model, max_tokens=1024, temperature=0.1)
    
    def summarize_document(self, content: str, 
                          model: str = "openai/gpt-oss-120b") -> LLMResponse:
        system_prompt = """You are an expert at summarizing manufacturing documents. Create concise, informative summaries that capture the key information, data points, and insights from manufacturing documentation."""
        
        user_prompt = f"""Please provide a comprehensive summary of the following manufacturing document content:

{content}

Focus on:
- Key manufacturing processes described
- Important measurements, specifications, or data points
- Quality metrics or performance indicators
- Any issues, recommendations, or conclusions
- Critical dates, locations, or responsible parties

Keep the summary concise but comprehensive."""
        
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ]
        
        return self.generate_response(messages, model, max_tokens=512, temperature=0.1)
    
    def extract_key_information(self, content: str, 
                               model: str = "openai/gpt-oss-120b") -> LLMResponse:
        """
        Extract key information from document content.
        
        Args:
            content: Document content to analyze
            model: Model name to use
            
        Returns:
            LLMResponse with extracted key information
        """
        system_prompt = """You are an expert at extracting key information from manufacturing documents. Identify and extract the most important data points, specifications, processes, and insights."""
        
        user_prompt = f"""Extract the key information from the following manufacturing document content:

{content}

Please organize the extracted information into categories such as:
- Manufacturing Processes
- Quality Metrics
- Specifications/Parameters
- Performance Data
- Issues/Problems
- Recommendations
- Dates and Timelines

Present the information in a structured, easy-to-read format."""
        
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ]
        
        return self.generate_response(messages, model, max_tokens=768, temperature=0.1)
    
    def _check_rate_limit(self):
        """Check and enforce rate limiting."""
        current_time = time.time()
        
        # Remove timestamps older than 1 minute
        self.request_timestamps = [
            ts for ts in self.request_timestamps 
            if current_time - ts < 60
        ]
        
        # Check if we're at the rate limit
        if len(self.request_timestamps) >= self.max_requests_per_minute:
            sleep_time = 60 - (current_time - self.request_timestamps[0])
            if sleep_time > 0:
                logger.warning(f"Rate limit reached, sleeping for {sleep_time:.2f} seconds")
                time.sleep(sleep_time)
        
        # Add current request timestamp
        self.request_timestamps.append(current_time)
    
    def get_available_models(self) -> List[str]:
        """
        Get list of available models.
        
        Returns:
            List of available model names
        """
        try:
            response = self.session.get(f"{self.base_url}/models")
            
            if response.status_code == 200:
                data = response.json()
                models = [model['id'] for model in data.get('data', [])]
                return models
            else:
                logger.error(f"Failed to get models: {response.status_code}")
                return []
                
        except Exception as e:
            logger.error(f"Failed to get available models: {e}")
            return []
    
    def health_check(self) -> bool:
        """
        Check if the Groq API is accessible.
        
        Returns:
            True if healthy, False otherwise
        """
        try:
            response = self.session.get(f"{self.base_url}/models", timeout=10)
            return response.status_code == 200
            
        except Exception as e:
            logger.error(f"Groq health check failed: {e}")
            return False




class LLMSystem:
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.api_key = GROQ_API_KEY
        self.default_model = config.get('llm_model', 'openai/gpt-oss-120b')
        self.max_retries = config.get('max_retries', 3)
        if not self.api_key:
            raise ValueError("Groq API key is required")
        self.client = GroqClient(self.api_key)
        logger.info(f"LLM system initialized with default model: {self.default_model}")
    
    def answer_question(self, question: str, context: str, model: Optional[str] = None) -> str:
        model = model or self.default_model
        for attempt in range(self.max_retries):
            try:
                response = self.client.answer_question(question, context, model)
                if response.success:
                    return response.text
                else:
                    logger.warning(f"LLM generation failed (attempt {attempt + 1}): {response.error_message}")
                    if attempt < self.max_retries - 1:
                        time.sleep(2 ** attempt)  # Exponential backoff
            except Exception as e:
                logger.warning(f"LLM generation error (attempt {attempt + 1}): {e}")
                if attempt < self.max_retries - 1:
                    time.sleep(2 ** attempt)
        # Return fallback response if all attempts failed
        return "I apologize, but I'm unable to generate a response at this time due to technical difficulties. Please try again later."
    
    def summarize_content(self, content: str, model: Optional[str] = None) -> str:
        model = model or self.default_model
        for attempt in range(self.max_retries):
            try:
                response = self.client.summarize_document(content, model)
                if response.success:
                    return response.text
                else:
                    logger.warning(f"Summarization failed (attempt {attempt + 1}): {response.error_message}")
                    if attempt < self.max_retries - 1:
                        time.sleep(2 ** attempt)
            except Exception as e:
                logger.warning(f"Summarization error (attempt {attempt + 1}): {e}")
                if attempt < self.max_retries - 1:
                    time.sleep(2 ** attempt)
        return "Unable to generate summary at this time."


if __name__=="__main__":
    logger.info(f"Groq client init ..")
    ## Test code (for demonstration purposes)
    config = {
        'groq_api_key': GROQ_API_KEY,
        'llm_model': 'openai/gpt-oss-120b',
        'max_retries': 3
    }
    llm_system = LLMSystem(config)
    question = "What is the capital of France?"
    context = "France is a country in Western Europe."
    answer = llm_system.answer_question(question, context)
    logger.info(f"Answer: {answer}")