Spaces:
Sleeping
Sleeping
File size: 19,450 Bytes
7dfe46c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
import logging
from pathlib import Path
from typing import Dict, List, Any, Optional, Tuple
import pytesseract
from PIL import Image, ImageEnhance, ImageFilter
import io
import numpy as np
from dataclasses import dataclass
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.document_processor import (
DocumentProcessor,
ProcessedDocument,
DocumentType,
ProcessingStatus,
DocumentProcessingError,
ExtractedImage,
DocumentProcessorFactory
)
try:
from logger.custom_logger import CustomLoggerTracker
custom_log = CustomLoggerTracker()
logger = custom_log.get_logger("excel_processor")
except ImportError:
# Fallback to standard logging if custom logger not available
logger = logging.getLogger("excel_processor")
@dataclass
class OCRResult:
"""Result of OCR processing."""
text: str
confidence: float
word_count: int
processing_time: float
preprocessing_applied: List[str]
@dataclass
class ImageAnalysis:
"""Analysis results for an image."""
width: int
height: int
format: str
mode: str
size_bytes: int
is_grayscale: bool
average_brightness: float
contrast_level: float
estimated_dpi: Optional[int] = None
class ImageProcessor(DocumentProcessor):
"""
Image processor with OCR capabilities using Tesseract.
This processor handles standalone image files and provides OCR text extraction
with preprocessing to improve accuracy.
"""
def __init__(self, config: Dict[str, Any]):
"""
Initialize the image processor.
Args:
config: Configuration dictionary containing image processing settings
"""
super().__init__(config)
self.ocr_engine = config.get('ocr_engine', 'tesseract')
self.ocr_language = config.get('ocr_language', 'eng')
self.preprocessing_enabled = config.get('image_preprocessing', True)
self.min_confidence = config.get('min_ocr_confidence', 30.0)
self.max_image_size = config.get('max_image_size', (3000, 3000))
self.enhance_contrast = config.get('enhance_contrast', True)
self.enhance_sharpness = config.get('enhance_sharpness', True)
# Verify Tesseract installation
self._verify_tesseract()
logger.info(f"Image processor initialized with OCR language: {self.ocr_language}, "
f"preprocessing: {self.preprocessing_enabled}")
def _get_supported_extensions(self) -> List[str]:
"""Get supported file extensions for image processor."""
return ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff', '.tif']
def _verify_tesseract(self) -> None:
"""Verify that Tesseract is properly installed and accessible."""
try:
version = pytesseract.get_tesseract_version()
logger.info(f"Tesseract version: {version}")
except Exception as e:
logger.error(f"Tesseract not found or not properly installed: {e}")
raise DocumentProcessingError(
"tesseract",
"InstallationError",
f"Tesseract OCR engine not found: {e}"
)
def process_document(self, file_path: str) -> ProcessedDocument:
"""
Process an image file and extract text using OCR.
Args:
file_path: Path to the image file
Returns:
ProcessedDocument with extracted text and metadata
Raises:
DocumentProcessingError: If image processing fails
"""
try:
# Validate file first
self.validate_file(file_path)
# Generate document ID
document_id = self._generate_document_id(file_path)
logger.info(f"Processing image document: {file_path}")
# Load and analyze image
image = Image.open(file_path)
image_analysis = self._analyze_image(image, file_path)
# Preprocess image if enabled
processed_image = image
preprocessing_steps = []
if self.preprocessing_enabled:
processed_image, preprocessing_steps = self._preprocess_image(image)
# Perform OCR
ocr_result = self._perform_ocr(processed_image)
# Create extracted image object
with open(file_path, 'rb') as f:
image_content = f.read()
extracted_image = ExtractedImage(
image_id=f"{document_id}_main",
filename=Path(file_path).name,
content=image_content,
format=image_analysis.format,
width=image_analysis.width,
height=image_analysis.height,
ocr_text=ocr_result.text,
ocr_confidence=ocr_result.confidence,
extraction_method="tesseract_ocr",
metadata={
'image_analysis': {
'mode': image_analysis.mode,
'size_bytes': image_analysis.size_bytes,
'is_grayscale': image_analysis.is_grayscale,
'average_brightness': image_analysis.average_brightness,
'contrast_level': image_analysis.contrast_level,
'estimated_dpi': image_analysis.estimated_dpi
},
'ocr_result': {
'word_count': ocr_result.word_count,
'processing_time': ocr_result.processing_time,
'preprocessing_applied': ocr_result.preprocessing_applied
}
}
)
# Create metadata
metadata = {
'image_analysis': image_analysis.__dict__,
'ocr_result': ocr_result.__dict__,
'preprocessing_steps': preprocessing_steps,
'ocr_language': self.ocr_language,
'ocr_engine': self.ocr_engine
}
# Create processed document
processed_doc = ProcessedDocument(
document_id=document_id,
filename=Path(file_path).name,
file_path=file_path,
document_type=DocumentType.IMAGE,
content=ocr_result.text,
metadata=metadata,
images=[extracted_image],
processing_status=ProcessingStatus.COMPLETED
)
logger.info(f"Successfully processed image: {len(ocr_result.text)} characters extracted, "
f"confidence: {ocr_result.confidence:.1f}%")
return processed_doc
except Exception as e:
logger.error(f"Failed to process image {file_path}: {e}")
# Create failed document
document_id = self._generate_document_id(file_path)
return ProcessedDocument(
document_id=document_id,
filename=Path(file_path).name,
file_path=file_path,
document_type=DocumentType.IMAGE,
content="",
metadata={},
processing_status=ProcessingStatus.FAILED,
error_message=str(e)
)
def process_extracted_image(self, extracted_image: ExtractedImage) -> ExtractedImage:
"""
Process an already extracted image (e.g., from PDF or Excel) with OCR.
Args:
extracted_image: ExtractedImage object to process
Returns:
Updated ExtractedImage with OCR text
"""
try:
logger.debug(f"Processing extracted image: {extracted_image.image_id}")
# Load image from bytes
image = Image.open(io.BytesIO(extracted_image.content))
# Preprocess image if enabled
processed_image = image
preprocessing_steps = []
if self.preprocessing_enabled:
processed_image, preprocessing_steps = self._preprocess_image(image)
# Perform OCR
ocr_result = self._perform_ocr(processed_image)
# Update extracted image with OCR results
extracted_image.ocr_text = ocr_result.text
extracted_image.ocr_confidence = ocr_result.confidence
# Update metadata
if 'ocr_result' not in extracted_image.metadata:
extracted_image.metadata['ocr_result'] = {}
extracted_image.metadata['ocr_result'].update({
'word_count': ocr_result.word_count,
'processing_time': ocr_result.processing_time,
'preprocessing_applied': preprocessing_steps,
'ocr_language': self.ocr_language,
'ocr_engine': self.ocr_engine
})
logger.debug(f"OCR completed for {extracted_image.image_id}: "
f"{len(ocr_result.text)} characters, confidence: {ocr_result.confidence:.1f}%")
return extracted_image
except Exception as e:
logger.warning(f"Failed to process extracted image {extracted_image.image_id}: {e}")
# Return original image with error info
extracted_image.metadata['ocr_error'] = str(e)
return extracted_image
def _analyze_image(self, image: Image.Image, file_path: str) -> ImageAnalysis:
"""
Analyze image properties and characteristics.
Args:
image: PIL Image object
file_path: Path to the image file
Returns:
ImageAnalysis object with image properties
"""
try:
# Basic properties
width, height = image.size
format_name = image.format or Path(file_path).suffix[1:].upper()
mode = image.mode
# File size
size_bytes = Path(file_path).stat().st_size
# Convert to grayscale for analysis
if image.mode != 'L':
gray_image = image.convert('L')
else:
gray_image = image
# Calculate brightness and contrast
np_image = np.array(gray_image)
average_brightness = np.mean(np_image)
contrast_level = np.std(np_image)
# Check if image is grayscale
is_grayscale = mode in ['L', '1'] or (mode == 'RGB' and self._is_grayscale_rgb(image))
# Estimate DPI if available
estimated_dpi = None
if hasattr(image, 'info') and 'dpi' in image.info:
estimated_dpi = image.info['dpi'][0] if isinstance(image.info['dpi'], tuple) else image.info['dpi']
return ImageAnalysis(
width=width,
height=height,
format=format_name,
mode=mode,
size_bytes=size_bytes,
is_grayscale=is_grayscale,
average_brightness=float(average_brightness),
contrast_level=float(contrast_level),
estimated_dpi=estimated_dpi
)
except Exception as e:
logger.warning(f"Failed to analyze image: {e}")
# Return basic analysis
return ImageAnalysis(
width=image.size[0],
height=image.size[1],
format=image.format or "UNKNOWN",
mode=image.mode,
size_bytes=0,
is_grayscale=False,
average_brightness=128.0,
contrast_level=50.0
)
def _is_grayscale_rgb(self, image: Image.Image) -> bool:
"""
Check if an RGB image is actually grayscale.
Args:
image: PIL Image object in RGB mode
Returns:
True if image is grayscale, False otherwise
"""
try:
# Sample a few pixels to check if R=G=B
sample_size = min(100, image.size[0] * image.size[1])
pixels = list(image.getdata())
# Check first 'sample_size' pixels
for i in range(0, min(sample_size, len(pixels))):
r, g, b = pixels[i][:3] # Handle RGBA by taking only RGB
if r != g or g != b:
return False
return True
except Exception:
return False
def _preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, List[str]]:
"""
Preprocess image to improve OCR accuracy.
Args:
image: PIL Image object
Returns:
Tuple of (processed_image, list_of_applied_steps)
"""
processed_image = image.copy()
applied_steps = []
try:
# Resize if image is too large
if image.size[0] > self.max_image_size[0] or image.size[1] > self.max_image_size[1]:
processed_image.thumbnail(self.max_image_size, Image.Resampling.LANCZOS)
applied_steps.append("resize")
# Convert to grayscale if not already
if processed_image.mode != 'L':
processed_image = processed_image.convert('L')
applied_steps.append("grayscale_conversion")
# Enhance contrast if enabled
if self.enhance_contrast:
enhancer = ImageEnhance.Contrast(processed_image)
processed_image = enhancer.enhance(1.5) # Increase contrast by 50%
applied_steps.append("contrast_enhancement")
# Enhance sharpness if enabled
if self.enhance_sharpness:
enhancer = ImageEnhance.Sharpness(processed_image)
processed_image = enhancer.enhance(1.2) # Increase sharpness by 20%
applied_steps.append("sharpness_enhancement")
# Apply noise reduction
processed_image = processed_image.filter(ImageFilter.MedianFilter(size=3))
applied_steps.append("noise_reduction")
except Exception as e:
logger.warning(f"Error during image preprocessing: {e}")
# Return original image if preprocessing fails
return image, ["preprocessing_failed"]
return processed_image, applied_steps
def _perform_ocr(self, image: Image.Image) -> OCRResult:
"""
Perform OCR on the processed image.
Args:
image: PIL Image object
Returns:
OCRResult with extracted text and metadata
"""
import time
start_time = time.time()
try:
# Configure Tesseract
custom_config = r'--oem 3 --psm 6' # Use LSTM OCR Engine Mode with uniform text block
# Get text with confidence scores
data = pytesseract.image_to_data(
image,
lang=self.ocr_language,
config=custom_config,
output_type=pytesseract.Output.DICT
)
# Extract text and calculate average confidence
words = []
confidences = []
for i, conf in enumerate(data['conf']):
if int(conf) > 0: # Only include words with confidence > 0
word = data['text'][i].strip()
if word: # Only include non-empty words
words.append(word)
confidences.append(int(conf))
# Combine words into text
extracted_text = ' '.join(words)
# Calculate average confidence
avg_confidence = sum(confidences) / len(confidences) if confidences else 0.0
# Calculate processing time
processing_time = time.time() - start_time
# Clean up text
extracted_text = self._clean_ocr_text(extracted_text)
return OCRResult(
text=extracted_text,
confidence=avg_confidence,
word_count=len(words),
processing_time=processing_time,
preprocessing_applied=[] # Will be filled by caller
)
except Exception as e:
logger.error(f"OCR processing failed: {e}")
processing_time = time.time() - start_time
return OCRResult(
text="",
confidence=0.0,
word_count=0,
processing_time=processing_time,
preprocessing_applied=[]
)
def _clean_ocr_text(self, text: str) -> str:
"""
Clean and normalize OCR extracted text.
Args:
text: Raw OCR text
Returns:
Cleaned text
"""
if not text:
return ""
# Remove excessive whitespace
import re
text = re.sub(r'\s+', ' ', text)
# Remove common OCR artifacts
text = text.replace('|', 'I') # Common misrecognition
text = text.replace('0', 'O') # In some contexts
# Strip leading/trailing whitespace
text = text.strip()
return text
def batch_process_images(self, image_list: List[ExtractedImage]) -> List[ExtractedImage]:
"""
Process multiple extracted images in batch.
Args:
image_list: List of ExtractedImage objects
Returns:
List of processed ExtractedImage objects with OCR text
"""
processed_images = []
logger.info(f"Starting batch OCR processing for {len(image_list)} images")
for i, extracted_image in enumerate(image_list):
try:
logger.debug(f"Processing image {i+1}/{len(image_list)}: {extracted_image.image_id}")
processed_image = self.process_extracted_image(extracted_image)
processed_images.append(processed_image)
except Exception as e:
logger.warning(f"Failed to process image {extracted_image.image_id}: {e}")
# Add original image with error info
extracted_image.metadata['batch_processing_error'] = str(e)
processed_images.append(extracted_image)
logger.info(f"Completed batch OCR processing: {len(processed_images)} images processed")
return processed_images
# Register the Image processor
DocumentProcessorFactory.register_processor(DocumentType.IMAGE, ImageProcessor)
if __name__=="__main__":
logger.info(f"Image processor init ..") |