File size: 15,046 Bytes
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""
Integration tests for the complete RAG system.
"""

import pytest
import tempfile
from pathlib import Path
from unittest.mock import Mock, patch, MagicMock
import json

from src.rag.embedding_system import EmbeddingSystem, EmbeddingResult, RerankResult
from src.rag.vector_store import QdrantVectorStore, SearchResult
from src.rag.groq_client import GroqClient, LLMResponse, LLMSystem
from src.rag.rag_engine import RAGEngine, RAGResponse, Citation
from src.rag.metadata_manager import MetadataManager, DocumentMetadata
from src.rag.ingestion_pipeline import DocumentIngestionPipeline, IngestionResult
from src.rag.document_processor import DocumentChunk, ChunkMetadata, ProcessingStatus


class TestEmbeddingSystem:
    """Test cases for EmbeddingSystem."""
    
    def setup_method(self):
        """Set up test fixtures."""
        self.config = {
            'siliconflow_api_key': 'test_key',
            'embedding_model': 'test-model',
            'reranker_model': 'test-reranker',
            'batch_size': 2,
            'max_retries': 2,
            'enable_embedding_cache': True
        }
    
    @patch('src.rag.embedding_system.SiliconFlowEmbeddingClient')
    def test_embedding_system_initialization(self, mock_client_class):
        """Test embedding system initialization."""
        mock_client = Mock()
        mock_client_class.return_value = mock_client
        
        embedding_system = EmbeddingSystem(self.config)
        
        assert embedding_system.api_key == 'test_key'
        assert embedding_system.embedding_model == 'test-model'
        assert embedding_system.batch_size == 2
        assert embedding_system.cache_enabled is True
        mock_client_class.assert_called_once_with('test_key')
    
    @patch('src.rag.embedding_system.SiliconFlowEmbeddingClient')
    def test_generate_embeddings_success(self, mock_client_class):
        """Test successful embedding generation."""
        mock_client = Mock()
        mock_client_class.return_value = mock_client
        
        # Mock successful embedding response
        mock_client.generate_embeddings.return_value = EmbeddingResult(
            embeddings=[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]],
            model_name='test-model',
            processing_time=1.0,
            token_count=10,
            success=True
        )
        
        embedding_system = EmbeddingSystem(self.config)
        embeddings = embedding_system.generate_embeddings(['text1', 'text2'])
        
        assert len(embeddings) == 2
        assert embeddings[0] == [0.1, 0.2, 0.3]
        assert embeddings[1] == [0.4, 0.5, 0.6]
    
    @patch('src.rag.embedding_system.SiliconFlowEmbeddingClient')
    def test_rerank_results(self, mock_client_class):
        """Test reranking functionality."""
        mock_client = Mock()
        mock_client_class.return_value = mock_client
        
        # Mock reranking response
        mock_client.rerank_documents.return_value = [
            RerankResult(text='doc2', score=0.9, index=1),
            RerankResult(text='doc1', score=0.7, index=0)
        ]
        
        embedding_system = EmbeddingSystem(self.config)
        results = embedding_system.rerank_results('query', ['doc1', 'doc2'])
        
        assert len(results) == 2
        assert results[0].text == 'doc2'
        assert results[0].score == 0.9
        assert results[1].text == 'doc1'
        assert results[1].score == 0.7


class TestGroqClient:
    """Test cases for GroqClient."""
    
    def setup_method(self):
        """Set up test fixtures."""
        self.api_key = 'test_groq_key'
        self.client = GroqClient(self.api_key)
    
    @patch('requests.Session.post')
    def test_generate_response_success(self, mock_post):
        """Test successful response generation."""
        # Mock successful API response
        mock_response = Mock()
        mock_response.status_code = 200
        mock_response.json.return_value = {
            'choices': [{
                'message': {'content': 'Test response'},
                'finish_reason': 'stop'
            }],
            'usage': {'total_tokens': 50}
        }
        mock_post.return_value = mock_response
        
        messages = [{'role': 'user', 'content': 'Test question'}]
        result = self.client.generate_response(messages)
        
        assert result.success is True
        assert result.text == 'Test response'
        assert result.token_count == 50
        assert result.finish_reason == 'stop'
    
    @patch('requests.Session.post')
    def test_answer_question(self, mock_post):
        """Test question answering functionality."""
        # Mock successful API response
        mock_response = Mock()
        mock_response.status_code = 200
        mock_response.json.return_value = {
            'choices': [{
                'message': {'content': 'Based on the context, the answer is...'},
                'finish_reason': 'stop'
            }],
            'usage': {'total_tokens': 75}
        }
        mock_post.return_value = mock_response
        
        result = self.client.answer_question('What is the yield?', 'Context: Yield is 95%')
        
        assert result.success is True
        assert 'answer is' in result.text
        assert result.token_count == 75


class TestRAGEngine:
    """Test cases for RAGEngine."""
    
    def setup_method(self):
        """Set up test fixtures."""
        self.config = {
            'siliconflow_api_key': 'test_key',
            'groq_api_key': 'test_groq_key',
            'qdrant_url': 'http://localhost:6333',
            'qdrant_api_key': 'test_qdrant_key',
            'qdrant_collection': 'test_collection',
            'max_context_chunks': 3,
            'similarity_threshold': 0.7,
            'rerank_top_k': 10,
            'final_top_k': 3
        }
    
    @patch('src.rag.rag_engine.EmbeddingSystem')
    @patch('src.rag.rag_engine.QdrantVectorStore')
    @patch('src.rag.rag_engine.LLMSystem')
    def test_rag_engine_initialization(self, mock_llm, mock_vector, mock_embedding):
        """Test RAG engine initialization."""
        rag_engine = RAGEngine(self.config)
        
        assert rag_engine.max_context_chunks == 3
        assert rag_engine.similarity_threshold == 0.7
        assert rag_engine.rerank_top_k == 10
        assert rag_engine.final_top_k == 3
        
        mock_embedding.assert_called_once()
        mock_vector.assert_called_once()
        mock_llm.assert_called_once()
    
    @patch('src.rag.rag_engine.EmbeddingSystem')
    @patch('src.rag.rag_engine.QdrantVectorStore')
    @patch('src.rag.rag_engine.LLMSystem')
    def test_answer_question_success(self, mock_llm, mock_vector, mock_embedding):
        """Test successful question answering."""
        # Mock components
        mock_embedding_instance = Mock()
        mock_vector_instance = Mock()
        mock_llm_instance = Mock()
        
        mock_embedding.return_value = mock_embedding_instance
        mock_vector.return_value = mock_vector_instance
        mock_llm.return_value = mock_llm_instance
        
        # Mock embedding generation
        mock_embedding_instance.generate_query_embedding.return_value = [0.1, 0.2, 0.3]
        
        # Mock search results
        mock_chunk = DocumentChunk(
            content="Test content about manufacturing",
            metadata=ChunkMetadata(
                chunk_id="test_chunk_1",
                document_id="test_doc_1",
                chunk_index=0,
                page_number=1
            )
        )
        
        mock_search_result = SearchResult(
            chunk=mock_chunk,
            similarity_score=0.9
        )
        
        mock_vector_instance.similarity_search.return_value = [mock_search_result]
        
        # Mock reranking
        mock_embedding_instance.rerank_results.return_value = [
            RerankResult(text="Test content about manufacturing", score=0.95, index=0)
        ]
        
        # Mock LLM response
        mock_llm_instance.answer_question.return_value = "The manufacturing process shows good results."
        
        # Test question answering
        rag_engine = RAGEngine(self.config)
        response = rag_engine.answer_question("What are the manufacturing results?")
        
        assert response.success is True
        assert "manufacturing process" in response.answer
        assert len(response.citations) == 1
        assert response.citations[0].confidence == 0.9
        assert response.total_chunks_retrieved == 1


class TestMetadataManager:
    """Test cases for MetadataManager."""
    
    def setup_method(self):
        """Set up test fixtures."""
        self.temp_dir = tempfile.mkdtemp()
        self.config = {
            'metadata_db_path': str(Path(self.temp_dir) / 'test_metadata.db')
        }
        self.metadata_manager = MetadataManager(self.config)
    
    def test_store_and_retrieve_document_metadata(self):
        """Test storing and retrieving document metadata."""
        from datetime import datetime
        
        # Create test metadata
        metadata = DocumentMetadata(
            document_id='test_doc_1',
            filename='test.pdf',
            file_path='/path/to/test.pdf',
            file_type='pdf',
            upload_timestamp=datetime.now(),
            processing_status=ProcessingStatus.COMPLETED,
            total_chunks=10,
            file_size=1024,
            checksum='abc123',
            processing_time=5.5
        )
        
        # Store metadata
        success = self.metadata_manager.store_document_metadata('test_doc_1', metadata)
        assert success is True
        
        # Retrieve metadata
        retrieved = self.metadata_manager.get_document_metadata('test_doc_1')
        assert retrieved is not None
        assert retrieved.document_id == 'test_doc_1'
        assert retrieved.filename == 'test.pdf'
        assert retrieved.processing_status == ProcessingStatus.COMPLETED
        assert retrieved.total_chunks == 10
        assert retrieved.processing_time == 5.5
    
    def test_update_document_status(self):
        """Test updating document status."""
        from datetime import datetime
        
        # First store a document
        metadata = DocumentMetadata(
            document_id='test_doc_2',
            filename='test2.pdf',
            file_path='/path/to/test2.pdf',
            file_type='pdf',
            upload_timestamp=datetime.now(),
            processing_status=ProcessingStatus.PENDING,
            total_chunks=0,
            file_size=2048,
            checksum='def456'
        )
        
        self.metadata_manager.store_document_metadata('test_doc_2', metadata)
        
        # Update status
        success = self.metadata_manager.update_document_status(
            'test_doc_2', 
            ProcessingStatus.COMPLETED,
            processing_time=3.2
        )
        assert success is True
        
        # Verify update
        retrieved = self.metadata_manager.get_document_metadata('test_doc_2')
        assert retrieved.processing_status == ProcessingStatus.COMPLETED
        assert retrieved.processing_time == 3.2
    
    def test_list_documents(self):
        """Test listing documents with filters."""
        from datetime import datetime
        
        # Store multiple documents
        for i in range(3):
            metadata = DocumentMetadata(
                document_id=f'test_doc_{i}',
                filename=f'test{i}.pdf',
                file_path=f'/path/to/test{i}.pdf',
                file_type='pdf',
                upload_timestamp=datetime.now(),
                processing_status=ProcessingStatus.COMPLETED if i < 2 else ProcessingStatus.FAILED,
                total_chunks=i * 5,
                file_size=1024 * (i + 1),
                checksum=f'hash{i}'
            )
            self.metadata_manager.store_document_metadata(f'test_doc_{i}', metadata)
        
        # List all documents
        all_docs = self.metadata_manager.list_documents()
        assert len(all_docs) == 3
        
        # List only completed documents
        completed_docs = self.metadata_manager.list_documents(status=ProcessingStatus.COMPLETED)
        assert len(completed_docs) == 2
        
        # List by file type
        pdf_docs = self.metadata_manager.list_documents(file_type='pdf')
        assert len(pdf_docs) == 3
    
    def test_get_statistics(self):
        """Test getting database statistics."""
        from datetime import datetime
        
        # Store some test documents
        for i in range(2):
            metadata = DocumentMetadata(
                document_id=f'stats_doc_{i}',
                filename=f'stats{i}.pdf',
                file_path=f'/path/to/stats{i}.pdf',
                file_type='pdf',
                upload_timestamp=datetime.now(),
                processing_status=ProcessingStatus.COMPLETED,
                total_chunks=5,
                file_size=1000,
                checksum=f'stats_hash{i}'
            )
            self.metadata_manager.store_document_metadata(f'stats_doc_{i}', metadata)
        
        # Get statistics
        stats = self.metadata_manager.get_statistics()
        
        assert stats['total_documents'] >= 2
        assert stats['total_chunks'] >= 10
        assert stats['total_file_size'] >= 2000
        assert 'pdf' in stats['documents_by_type']
        assert ProcessingStatus.COMPLETED.value in stats['documents_by_status']


class TestIngestionPipeline:
    """Test cases for DocumentIngestionPipeline."""
    
    def setup_method(self):
        """Set up test fixtures."""
        self.temp_dir = tempfile.mkdtemp()
        self.config = {
            'siliconflow_api_key': 'test_key',
            'groq_api_key': 'test_groq_key',
            'qdrant_url': 'http://localhost:6333',
            'qdrant_api_key': 'test_qdrant_key',
            'qdrant_collection': 'test_collection',
            'metadata_db_path': str(Path(self.temp_dir) / 'test_metadata.db'),
            'chunk_size': 100,
            'chunk_overlap': 20,
            'max_workers': 2,
            'image_processing': True
        }
    
    @patch('src.rag.ingestion_pipeline.EmbeddingSystem')
    @patch('src.rag.ingestion_pipeline.QdrantVectorStore')
    @patch('src.rag.ingestion_pipeline.MetadataManager')
    @patch('src.rag.ingestion_pipeline.ImageProcessor')
    def test_pipeline_initialization(self, mock_image, mock_metadata, mock_vector, mock_embedding):
        """Test pipeline initialization."""
        pipeline = DocumentIngestionPipeline(self.config)
        
        assert pipeline.chunk_size == 100
        assert pipeline.chunk_overlap == 20
        assert pipeline.max_workers == 2
        assert pipeline.enable_ocr is True
        
        mock_embedding.assert_called_once()
        mock_vector.assert_called_once()
        mock_metadata.assert_called_once()
        mock_image.assert_called_once()


if __name__ == "__main__":
    pytest.main([__file__])