File size: 16,816 Bytes
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547616
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547616
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import logging
import uuid
from typing import Dict, List, Any, Optional, Tuple
from dataclasses import dataclass, asdict
import time
from qdrant_client import QdrantClient
from qdrant_client.http import models
from qdrant_client.http.models import Distance, VectorParams, PointStruct, Filter, FieldCondition, MatchValue
import os 
import sys 
from dotenv import load_dotenv
load_dotenv()


sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.document_processor import DocumentChunk, ChunkMetadata
try:
    from logger.custom_logger import CustomLoggerTracker
    custom_log = CustomLoggerTracker()
    logger = custom_log.get_logger("vector_store")

except ImportError:
    # Fallback to standard logging if custom logger not available
    logger = logging.getLogger("vector_store")




@dataclass
class SearchResult:
    """Result of vector similarity search."""
    chunk: DocumentChunk
    similarity_score: float
    rerank_score: Optional[float] = None
    metadata: Dict[str, Any] = None
    
    def __post_init__(self):
        if self.metadata is None:
            self.metadata = {}
            
            
@dataclass
class IndexStats:
    """Statistics about the vector index."""
    total_points: int
    collection_name: str
    vector_size: int
    distance_metric: str
    indexed_documents: int
    last_updated: str


class QdrantVectorStore:
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.url = config.get('qdrant_url', 'http://localhost:6333')
        self.api_key = config.get('qdrant_api_key')
        self.collection_name = config.get('qdrant_collection', 'manufacturing_docs')
        self.vector_size = config.get('vector_size', 1024)
        self.distance_metric = Distance.COSINE
        
        # Initialize Qdrant client
        logger.info(f"Connecting to Qdrant at URL: {os.environ['QDRANT_URL']}")
        self.client = QdrantClient(
            url="https://50f53cc8-bbb0-4939-8254-8f025a577222.us-west-2-0.aws.cloud.qdrant.io:6333", 
            api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.gHOXbfqPucRwhczrW8s3VSZbconqQ6Rk49Uaz9ZChdE",)
        
        self._ensure_collection_exists()
        logger.info(f"Qdrant vector store initialized: {os.environ['QDRANT_URL']}, collection: {self.collection_name}")
    
    
    def _ensure_collection_exists(self):
        try:
            # Check if collection exists
            collections = self.client.get_collections()
            collection_names = [col.name for col in collections.collections]
            if self.collection_name not in collection_names:
                logger.info(f"Creating collection: {self.collection_name}")
                # Create collection with vector configuration
                self.client.create_collection(
                    collection_name=self.collection_name,
                    vectors_config=VectorParams(
                        size=self.vector_size,
                        distance=self.distance_metric
                    )
                )
                
                # Create payload indexes for efficient filtering
                self._create_payload_indexes()
                logger.info(f"Collection {self.collection_name} created successfully")
            else:
                logger.debug(f"Collection {self.collection_name} already exists")
                
        except Exception as e:
            logger.error(f"Failed to ensure collection exists: {e}")
            raise
    
    
    
    def _create_payload_indexes(self):
        try:
            self.client.create_payload_index(
                collection_name=self.collection_name,
                field_name="document_id",
                field_schema=models.KeywordIndexParams())
            # Index on document type for filtering by file type
            self.client.create_payload_index(
                collection_name=self.collection_name,
                field_name="document_type",
                field_schema=models.KeywordIndexParams())
            
            # Index on page_number for PDF citations
            self.client.create_payload_index(
                collection_name=self.collection_name,
                field_name="page_number",
                field_schema=models.IntegerIndexParams())
            
            # Index on worksheet_name for Excel citations
            self.client.create_payload_index(
                collection_name=self.collection_name,
                field_name="worksheet_name",
                field_schema=models.KeywordIndexParams())
            
            logger.debug("Payload indexes created successfully")
        except Exception as e:
            logger.warning(f"Failed to create payload indexes: {e}")
    
    def add_documents(self, chunks: List[DocumentChunk]) -> bool:
        if not chunks:
            logger.warning("No chunks provided for indexing")
            return True
        try:
            points = []
            for chunk in chunks:
                if not chunk.embedding:
                    logger.warning(f"Chunk {chunk.metadata.chunk_id} has no embedding, skipping")
                    continue
                
                # Create point for Qdrant
                point = PointStruct(
                    id=str(uuid.uuid4()),  # Generate unique ID
                    vector=chunk.embedding,
                    payload={
                        # Chunk metadata
                        "chunk_id": chunk.metadata.chunk_id,
                        "document_id": chunk.metadata.document_id,
                        "chunk_index": chunk.metadata.chunk_index,
                        "content": chunk.content,
                        
                        # Citation information
                        "page_number": chunk.metadata.page_number,
                        "worksheet_name": chunk.metadata.worksheet_name,
                        "cell_range": chunk.metadata.cell_range,
                        "section_title": chunk.metadata.section_title,
                        
                        # References
                        "image_references": chunk.metadata.image_references,
                        "table_references": chunk.metadata.table_references,
                        
                        # Timestamps and confidence
                        "extraction_timestamp": chunk.metadata.extraction_timestamp.isoformat(),
                        "confidence_score": chunk.metadata.confidence_score,
                        
                        # Additional metadata
                        "content_length": len(chunk.content),
                        "indexed_at": time.time()
                    }
                )
                
                points.append(point)
            if not points:
                logger.warning("No valid points to index")
                return True
            
            # Upload points to Qdrant
            operation_info = self.client.upsert(
                collection_name=self.collection_name,
                points=points)
            logger.info(f"Successfully indexed {len(points)} chunks to Qdrant")
            return True
            
        except Exception as e:
            logger.error(f"Failed to add documents to vector store: {e}")
            return False
    
    def similarity_search(self, query_embedding: List[float], k: int = 10, 
                         filters: Optional[Dict[str, Any]] = None) -> List[SearchResult]:
        try:
            # Build filter conditions
            filter_conditions = self._build_filter_conditions(filters) if filters else None
            # Perform search
            search_results = self.client.search(
                collection_name=self.collection_name,
                query_vector=query_embedding,
                limit=k,
                query_filter=filter_conditions,
                with_payload=True,
                with_vectors=False  # Don't return vectors to save bandwidth
            )
            
            # Convert to SearchResult objects
            results = []
            for result in search_results:
                payload = result.payload
                
                # Reconstruct chunk metadata
                metadata = ChunkMetadata(
                    chunk_id=payload.get("chunk_id", ""),
                    document_id=payload.get("document_id", ""),
                    chunk_index=payload.get("chunk_index", 0),
                    page_number=payload.get("page_number"),
                    worksheet_name=payload.get("worksheet_name"),
                    cell_range=payload.get("cell_range"),
                    section_title=payload.get("section_title"),
                    image_references=payload.get("image_references", []),
                    table_references=payload.get("table_references", []),
                    confidence_score=payload.get("confidence_score"))
                
                # Reconstruct document chunk
                chunk = DocumentChunk(
                    content=payload.get("content", ""),
                    metadata=metadata,
                    embedding=None  # Don't include embedding in results
                )
                
                # Create search result
                search_result = SearchResult(
                    chunk=chunk,
                    similarity_score=result.score,
                    metadata={
                        "qdrant_id": result.id,
                        "content_length": payload.get("content_length", 0),
                        "indexed_at": payload.get("indexed_at"),
                        "extraction_timestamp": payload.get("extraction_timestamp")
                    }
                )
                
                results.append(search_result)
            
            logger.debug(f"Found {len(results)} similar chunks")
            return results
            
        except Exception as e:
            logger.error(f"Similarity search failed: {e}")
            return []
    
    def filtered_search(self, query_embedding: List[float], filters: Dict[str, Any], 
                       k: int = 10) -> List[SearchResult]:
        return self.similarity_search(query_embedding, k, filters)
    
    def delete_document(self, document_id: str) -> bool:
        try:
            # Delete points with matching document_id
            self.client.delete(
                collection_name=self.collection_name,
                points_selector=models.FilterSelector(
                    filter=Filter(
                        must=[
                            FieldCondition(
                                key="document_id",
                                match=MatchValue(value=document_id)
                            )
                        ]
                    )
                )
            )
            
            logger.info(f"Deleted all chunks for document: {document_id}")
            return True
            
        except Exception as e:
            logger.error(f"Failed to delete document {document_id}: {e}")
            return False
    
    
    def get_collection_info(self) -> Optional[IndexStats]:
        try:
            collection_info = self.client.get_collection(self.collection_name)
            # Count unique documents
            # This is a simplified count - in production you might want to use aggregation
            search_results = self.client.scroll(
                collection_name=self.collection_name,
                limit=10000,  # Adjust based on your needs
                with_payload=["document_id"],
                with_vectors=False
            )
            
            unique_documents = set()
            for point in search_results[0]:
                if point.payload and "document_id" in point.payload:
                    unique_documents.add(point.payload["document_id"])
            
            return IndexStats(
                total_points=collection_info.points_count,
                collection_name=self.collection_name,
                vector_size=collection_info.config.params.vectors.size,
                distance_metric=collection_info.config.params.vectors.distance.name,
                indexed_documents=len(unique_documents),
                last_updated=time.strftime("%Y-%m-%d %H:%M:%S")
            )
            
        except Exception as e:
            logger.error(f"Failed to get collection info: {e}")
            return None
    
    def _build_filter_conditions(self, filters: Dict[str, Any]) -> Filter:
        """
        Build Qdrant filter conditions from filter dictionary.
        
        Args:
            filters: Dictionary of filter conditions
            
        Returns:
            Qdrant Filter object
        """
        conditions = []
        
        # Document ID filter
        if "document_id" in filters:
            conditions.append(
                FieldCondition(
                    key="document_id",
                    match=MatchValue(value=filters["document_id"])
                )
            )
        
        # Document type filter
        if "document_type" in filters:
            conditions.append(
                FieldCondition(
                    key="document_type",
                    match=MatchValue(value=filters["document_type"])
                )
            )
        
        # Page number filter
        if "page_number" in filters:
            conditions.append(
                FieldCondition(
                    key="page_number",
                    match=MatchValue(value=filters["page_number"])
                )
            )
        
        # Worksheet name filter
        if "worksheet_name" in filters:
            conditions.append(
                FieldCondition(
                    key="worksheet_name",
                    match=MatchValue(value=filters["worksheet_name"])
                )
            )
        
        # Content length range filter
        if "min_content_length" in filters:
            conditions.append(
                FieldCondition(
                    key="content_length",
                    range=models.Range(gte=filters["min_content_length"])
                )
            )
        
        if "max_content_length" in filters:
            conditions.append(
                FieldCondition(
                    key="content_length",
                    range=models.Range(lte=filters["max_content_length"])
                )
            )
        
        return Filter(must=conditions) if conditions else None
    
    def health_check(self) -> bool:
        """
        Check if the vector store is healthy and accessible.
        
        Returns:
            True if healthy, False otherwise
        """
        try:
            # Try to get collection info
            self.client.get_collection(self.collection_name)
            return True
            
        except Exception as e:
            logger.error(f"Vector store health check failed: {e}")
            return False
    
    def create_collection(self, vector_size: int, distance_metric: Distance = Distance.COSINE) -> bool:
        try:
            self.client.create_collection(
                collection_name=self.collection_name,
                vectors_config=VectorParams(
                    size=vector_size,
                    distance=distance_metric
                )
            )
            
            # Update instance variables
            self.vector_size = vector_size
            self.distance_metric = distance_metric
            
            self._create_payload_indexes()
            logger.info(f"Created collection {self.collection_name} with vector size {vector_size}")
            return True
        except Exception as e:
            logger.error(f"Failed to create collection: {e}")
            return False
    
    def delete_collection(self) -> bool:
        try:
            self.client.delete_collection(self.collection_name)
            logger.info(f"Deleted collection: {self.collection_name}")
            return True
            
        except Exception as e:
            logger.error(f"Failed to delete collection: {e}")
            return False
        
        
        
        
        
if __name__=="__main__":
    logger.info(f"Vector store init ..")
    config = {
        'qdrant_url': os.getenv('QDRANT_URL', 'http://localhost:6333'),
        'qdrant_api_key': os.getenv('QDRANT_API_KEY'),
        'qdrant_collection': 'manufacturing_docs',
        'vector_size': 1024
    }
    vector_store = QdrantVectorStore(config)
    health = vector_store.health_check()
    if health:
        logger.info("Vector store is healthy and ready.")
    else:
        logger.error("Vector store is not accessible.")