File size: 8,717 Bytes
7dfe46c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
#!/usr/bin/env python3
"""
Fix Qdrant collection dimensions for Manufacturing RAG Agent
"""
import os
from dotenv import load_dotenv
from qdrant_client import QdrantClient
from qdrant_client.http import models
load_dotenv()
# QDRANT_API_KEY= os.getenv('QDRANT_API_KEY', 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.DHeUsIY234NwS-6cYDJec807Vdzbs1PHmBBU3_Jz9oo')
# QDRANT_URL=os.getenv('QDRANT_URL', 'https://50f53cc8-bbb0-4939-8254-8f025a577222.us-west-2-0.aws.cloud.qdrant.io:6333')
# QDRANT_URL= os.getenv('QDRANT_URL', 'http://localhost:6333')
def fix_qdrant_collection():
"""Fix the Qdrant collection dimensions."""
print("π§ Fixing Qdrant Collection Dimensions")
print("=" * 50)
# Get connection details
qdrant_api_key = os.environ["QDRANT_API_KEY"]
qdrant_url = os.environ["QDRANT_URL"]
collection_name = 'manufacturing_docs'
if not qdrant_url:
print("β QDRANT_URL not found in environment variables")
return False
try:
# Connect to Qdrant
print(f"π Connecting to Qdrant: {qdrant_url}")
client = QdrantClient(
url="https://50f53cc8-bbb0-4939-8254-8f025a577222.us-west-2-0.aws.cloud.qdrant.io:6333",
api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.gHOXbfqPucRwhczrW8s3VSZbconqQ6Rk49Uaz9ZChdE",)
# Check if collection exists
collections = client.get_collections()
collection_names = [col.name for col in collections.collections]
if collection_name in collection_names:
print(f"π Collection '{collection_name}' exists")
# Get collection info
collection_info = client.get_collection(collection_name)
current_dim = collection_info.config.params.vectors.size
print(f"π Current vector dimensions: {current_dim}")
if current_dim != 1024:
print(f"β οΈ Need to recreate collection with correct dimensions (1024)")
# Ask for confirmation
response = input("ποΈ Delete existing collection and recreate? (y/N): ").strip().lower()
if response != 'y':
print("β Aborted by user")
return False
# Delete existing collection
print(f"ποΈ Deleting collection '{collection_name}'...")
client.delete_collection(collection_name)
print("β
Collection deleted")
else:
print("β
Collection already has correct dimensions")
return True
# Create new collection with correct dimensions
print(f"π Creating collection '{collection_name}' with 4096 dimensions...")
client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(
size=4096, # Correct size for Qwen/Qwen3-Embedding-8B
distance=models.Distance.COSINE
)
)
# Create payload indexes
print("π Creating payload indexes...")
indexes_to_create = [
("document_id", models.PayloadFieldSchema(
data_type=models.PayloadSchemaType.KEYWORD
)),
("document_type", models.PayloadFieldSchema(
data_type=models.PayloadSchemaType.KEYWORD
)),
("page_number", models.PayloadFieldSchema(
data_type=models.PayloadSchemaType.INTEGER
)),
("worksheet_name", models.PayloadFieldSchema(
data_type=models.PayloadSchemaType.KEYWORD
)),
]
for field_name, field_schema in indexes_to_create:
try:
client.create_payload_index(
collection_name=collection_name,
field_name=field_name,
field_schema=field_schema
)
print(f"β
Created index for '{field_name}'")
except Exception as e:
print(f"β οΈ Failed to create index for '{field_name}': {e}")
print("β
Collection recreated successfully with correct dimensions!")
return True
except Exception as e:
print(f"β Error: {e}")
return False
def update_config_file():
"""Update config.yaml with correct vector dimensions."""
print("\nπ§ Updating Configuration")
print("=" * 30)
config_path = "src/config.yaml"
if not os.path.exists(config_path):
print(f"β Config file not found: {config_path}")
return False
try:
# Read current config
with open(config_path, 'r') as f:
content = f.read()
# Update vector_size if it exists
import re
# Look for vector_size configuration
if 'vector_size:' in content:
# Replace vector_size value
content = re.sub(r'vector_size:\s*\d+', 'vector_size: 4096', content)
print("β
Updated vector_size to 4096")
else:
# Add vector_size to vector_store section
if 'vector_store:' in content:
content = re.sub(
r'(vector_store:\s*\n)',
r'\1 vector_size: 4096\n',
content
)
print("β
Added vector_size: 4096 to vector_store section")
else:
print("β οΈ No vector_store section found, please add manually:")
print("vector_store:")
print(" vector_size: 4096")
# Write updated config
with open(config_path, 'w') as f:
f.write(content)
print(f"β
Updated {config_path}")
return True
except Exception as e:
print(f"β Error updating config: {e}")
return False
def test_embedding_dimensions():
"""Test the actual embedding dimensions from SiliconFlow."""
print("\nπ§ͺ Testing Embedding Dimensions")
print("=" * 35)
try:
import requests
api_key = os.getenv('SILICONFLOW_API_KEY')
if not api_key:
print("β SILICONFLOW_API_KEY not found")
return None
# Test embedding generation
payload = {
"model": "Qwen/Qwen3-Embedding-8B",
"input": ["test embedding dimension"],
"encoding_format": "float"
}
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
response = requests.post(
"https://api.siliconflow.com/v1/embeddings",
json=payload,
headers=headers,
timeout=10
)
if response.status_code == 200:
data = response.json()
if data.get('data') and len(data['data']) > 0:
embedding = data['data'][0]['embedding']
dim = len(embedding)
print(f"β
Actual embedding dimensions: {dim}")
return dim
else:
print("β No embedding data returned")
else:
print(f"β API error: {response.status_code} - {response.text}")
except Exception as e:
print(f"β Error testing embeddings: {e}")
return None
def main():
"""Main function."""
print("π Manufacturing RAG Agent - Dimension Fix")
print("=" * 60)
# Test actual embedding dimensions
actual_dim = test_embedding_dimensions()
if actual_dim and actual_dim != 4096:
print(f"β οΈ Warning: Expected 4096 dimensions, but got {actual_dim}")
print("You may need to update the vector_size in your config")
# Fix Qdrant collection
if fix_qdrant_collection():
print("\nβ
Qdrant collection fixed successfully!")
else:
print("\nβ Failed to fix Qdrant collection")
return
# Update config file
if update_config_file():
print("β
Configuration updated successfully!")
else:
print("β οΈ Please update config manually")
print("\nπ Fix Complete!")
print("\nπ Next Steps:")
print("1. Restart your Gradio demo")
print("2. Re-upload your documents")
print("3. Test question answering")
print("\nπ To restart the demo:")
print("python fixed_gradio_demo.py")
if __name__ == "__main__":
main() |