Spaces:
Sleeping
Sleeping
Create icc.py
Browse files
icc.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import pingouin as pg
|
| 4 |
+
import seaborn as sns
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
# Set up output directories
|
| 8 |
+
HEATMAPS_FOLDER = "icc_heatmaps/"
|
| 9 |
+
os.makedirs(HEATMAPS_FOLDER, exist_ok=True)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def preprocess_data(df, selected_assessors, selected_respondents, selected_criteria):
|
| 13 |
+
"""
|
| 14 |
+
Filters the dataset based on user-selected assessors, respondents, and criteria.
|
| 15 |
+
Ensures data is properly formatted for ICC computation.
|
| 16 |
+
"""
|
| 17 |
+
df = df[df["assessor"].isin(selected_assessors) & df["respondent"].isin(selected_respondents)]
|
| 18 |
+
df = df[["assessor", "respondent"] + selected_criteria]
|
| 19 |
+
|
| 20 |
+
# Convert all columns to numeric (handling comma decimals)
|
| 21 |
+
for col in selected_criteria:
|
| 22 |
+
df[col] = df[col].str.replace(",", ".").astype(float)
|
| 23 |
+
|
| 24 |
+
# Ensure 'assessor' and 'respondent' are treated as categorical
|
| 25 |
+
df["assessor"] = df["assessor"].astype(str)
|
| 26 |
+
df["respondent"] = df["respondent"].astype(str)
|
| 27 |
+
|
| 28 |
+
return df
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def compute_icc(df):
|
| 32 |
+
"""
|
| 33 |
+
Computes the overall ICC (Intraclass Correlation Coefficient).
|
| 34 |
+
"""
|
| 35 |
+
melted_df = df.melt(id_vars=["assessor", "respondent"], var_name="Criterion", value_name="Score")
|
| 36 |
+
|
| 37 |
+
if melted_df["respondent"].nunique() >= 5:
|
| 38 |
+
icc_results = pg.intraclass_corr(data=melted_df, targets="respondent", raters="assessor", ratings="Score").round(3)
|
| 39 |
+
return icc_results
|
| 40 |
+
else:
|
| 41 |
+
return None
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def compute_assessor_icc(df):
|
| 45 |
+
"""
|
| 46 |
+
Computes ICC matrices between assessors and generates heatmaps.
|
| 47 |
+
"""
|
| 48 |
+
melted_df = df.melt(id_vars=["assessor", "respondent"], var_name="Criterion", value_name="Score")
|
| 49 |
+
assessors = df["assessor"].unique()
|
| 50 |
+
icc_matrix_types = {icc_type: pd.DataFrame(index=assessors, columns=assessors, dtype=float) for icc_type in ["ICC1", "ICC2", "ICC3"]}
|
| 51 |
+
|
| 52 |
+
for assessor1 in assessors:
|
| 53 |
+
for assessor2 in assessors:
|
| 54 |
+
if assessor1 != assessor2:
|
| 55 |
+
subset = melted_df[melted_df["assessor"].isin([assessor1, assessor2])]
|
| 56 |
+
|
| 57 |
+
if subset["respondent"].nunique() >= 5:
|
| 58 |
+
icc_results = pg.intraclass_corr(
|
| 59 |
+
data=subset, targets="respondent", raters="assessor", ratings="Score"
|
| 60 |
+
).round(3)
|
| 61 |
+
|
| 62 |
+
for icc_type in ["ICC1", "ICC2", "ICC3"]:
|
| 63 |
+
icc_matrix_types[icc_type].loc[assessor1, assessor2] = icc_results.set_index("Type").loc[icc_type]["ICC"]
|
| 64 |
+
|
| 65 |
+
return icc_matrix_types
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def generate_heatmaps(icc_matrix_types):
|
| 69 |
+
"""
|
| 70 |
+
Generates and saves heatmaps for ICC matrices.
|
| 71 |
+
"""
|
| 72 |
+
heatmap_files = {}
|
| 73 |
+
for icc_type, icc_matrix in icc_matrix_types.items():
|
| 74 |
+
plt.figure(figsize=(8, 6))
|
| 75 |
+
sns.heatmap(icc_matrix.astype(float), annot=True, cmap="coolwarm", linewidths=0.5, fmt=".2f")
|
| 76 |
+
plt.title(f"Assessor ICC Matrix ({icc_type})")
|
| 77 |
+
plt.xlabel("Assessor (LLM)")
|
| 78 |
+
plt.ylabel("Assessor (LLM)")
|
| 79 |
+
plt.xticks(rotation=45)
|
| 80 |
+
plt.yticks(rotation=0)
|
| 81 |
+
heatmap_file = os.path.join(HEATMAPS_FOLDER, f"icc_matrix_{icc_type}.png")
|
| 82 |
+
plt.savefig(heatmap_file)
|
| 83 |
+
plt.close()
|
| 84 |
+
heatmap_files[icc_type] = heatmap_file
|
| 85 |
+
|
| 86 |
+
return heatmap_files
|