import gradio as gr from inference import Inference import os from huggingface_hub import snapshot_download #MODEL_ID = os.getenv("MODEL_ID", "your_username/your_model_name") # 替换为你的模型ID model_path = snapshot_download(repo_id='AIMClab-RUC/UNet_DCP_1024') TEXT_OPTIONS = ["CFP", "UWF", "FFA", "SLO", "OCTA"] inference_engine = Inference(model_path=model_path) def main(image): out = inference_engine.inference(image, "CFP") return out with gr.Blocks() as demo: gr.Markdown("# [ICASSP 2025] Broad domain retinal vessel segmentation") with gr.Row(): with gr.Column(): image_input = gr.Image(type="numpy", label="Input Image") with gr.Column(): image_output = gr.Image(type="numpy", label="Output") # 当图像输入发生变化时自动触发推理 image_input.change( fn=main, inputs=image_input, outputs=image_output ) demo.launch()