File size: 35,889 Bytes
0249933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b882da
2cea58f
0249933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528af79
0249933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b882da
 
 
 
2cea58f
8b882da
2cea58f
 
8b882da
2cea58f
8b882da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cea58f
8b882da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cea58f
8b882da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cea58f
8b882da
 
 
2cea58f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0249933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528af79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
"""ForgeKit โ€” Forge your perfect AI model, no code required.

Main Gradio application with 5 tabs:
1. Merge Builder โ€” Visual merge configuration + notebook generation
2. Model Explorer โ€” Search and discover HF models
3. GGUF Quantizer โ€” Generate quantization notebooks
4. Deploy โ€” Generate deployment files for HF Spaces
5. Leaderboard โ€” Community merge rankings
"""

import gradio as gr
import json
import tempfile
import os

from forgekit.model_info import fetch_model_info, search_models
from forgekit.compatibility import check_compatibility, quick_check
from forgekit.config_generator import (
    MergeConfig, generate_yaml, generate_from_preset,
    MERGE_METHODS, PRESETS,
)
from forgekit.notebook_generator import generate_merge_notebook, save_notebook
from forgekit.ai_advisor import merge_advisor, model_describer, config_explainer
from forgekit.kaggle_runner import push_and_run_kernel, check_kernel_status, generate_kaggle_notebook

# ===== THEME =====
theme = gr.themes.Base(
    primary_hue=gr.themes.colors.amber,
    secondary_hue=gr.themes.colors.purple,
    neutral_hue=gr.themes.colors.gray,
    font=gr.themes.GoogleFont("Inter"),
    font_mono=gr.themes.GoogleFont("JetBrains Mono"),
).set(
    body_background_fill="#0a0a0f",
    body_background_fill_dark="#0a0a0f",
    body_text_color="#e5e5e5",
    body_text_color_dark="#e5e5e5",
    block_background_fill="#111118",
    block_background_fill_dark="#111118",
    block_border_color="#1f1f2e",
    block_border_color_dark="#1f1f2e",
    block_label_text_color="#9ca3af",
    block_label_text_color_dark="#9ca3af",
    block_title_text_color="#e5e5e5",
    block_title_text_color_dark="#e5e5e5",
    input_background_fill="#16161f",
    input_background_fill_dark="#16161f",
    input_border_color="#2a2a3a",
    input_border_color_dark="#2a2a3a",
    button_primary_background_fill="linear-gradient(to right, #f59e0b, #f97316)",
    button_primary_background_fill_dark="linear-gradient(to right, #f59e0b, #f97316)",
    button_primary_text_color="#ffffff",
    button_primary_text_color_dark="#ffffff",
    button_secondary_background_fill="#1f1f2e",
    button_secondary_background_fill_dark="#1f1f2e",
    button_secondary_text_color="#e5e5e5",
    button_secondary_text_color_dark="#e5e5e5",
)

CSS = """
.forgekit-header { text-align: center; padding: 1.5rem 0 1rem; }
.forgekit-header h1 { font-size: 2.5rem; font-weight: 800; margin: 0;
    background: linear-gradient(135deg, #a855f7, #ec4899, #f59e0b);
    -webkit-background-clip: text; -webkit-text-fill-color: transparent; }
.forgekit-header p { color: #9ca3af; font-size: 1rem; margin-top: 0.25rem; }
.status-ok { color: #4ade80; font-weight: 600; }
.status-warn { color: #fbbf24; font-weight: 600; }
.status-err { color: #f87171; font-weight: 600; }
.method-card { border: 1px solid #2a2a3a; border-radius: 12px; padding: 1rem; margin: 0.25rem 0; }
footer { display: none !important; }
"""

# ===== CALLBACKS =====

def check_models(models_text: str, token: str) -> tuple[str, str]:
    """Check model compatibility and return report + quick status."""
    models = [m.strip() for m in models_text.strip().split("\n") if m.strip()]
    if len(models) < 2:
        return "โš ๏ธ Add at least 2 models (one per line)", ""

    tok = token.strip() if token else None
    report = check_compatibility(models, token=tok)
    quick = quick_check(models, token=tok)
    return report.to_markdown(), quick


def generate_config(
    models_text: str, method: str, base_model: str,
    weights_text: str, densities_text: str,
    tokenizer_src: str, dtype: str,
    slerp_t: float, int8_mask: bool, normalize: bool,
) -> str:
    """Generate YAML config from UI inputs."""
    models = [m.strip() for m in models_text.strip().split("\n") if m.strip()]
    if not models:
        return "# Add models first"

    # Parse weights
    weights = []
    if weights_text.strip():
        try:
            weights = [float(w.strip()) for w in weights_text.split(",")]
        except ValueError:
            return "# Invalid weights โ€” use comma-separated numbers"

    densities = []
    if densities_text.strip():
        try:
            densities = [float(d.strip()) for d in densities_text.split(",")]
        except ValueError:
            return "# Invalid densities โ€” use comma-separated numbers"

    config = MergeConfig(
        method=method,
        models=models,
        base_model=base_model.strip(),
        weights=weights,
        densities=densities,
        tokenizer_source=tokenizer_src.strip(),
        dtype=dtype,
        slerp_t=slerp_t,
        int8_mask=int8_mask,
        normalize=normalize,
    )

    return generate_yaml(config)


def apply_preset(preset_name: str, models_text: str) -> tuple[str, str]:
    """Apply a preset and return weights + densities strings."""
    models = [m.strip() for m in models_text.strip().split("\n") if m.strip()]
    if not models:
        return "", ""

    preset = PRESETS.get(preset_name)
    if not preset:
        return "", ""

    weights, densities = preset.apply(models)
    return ", ".join(str(w) for w in weights), ", ".join(str(d) for d in densities)


def generate_notebook_file(
    models_text: str, method: str, base_model: str,
    weights_text: str, densities_text: str,
    tokenizer_src: str, dtype: str,
    slerp_t: float, int8_mask: bool, normalize: bool,
    output_name: str, hf_user: str,
    inc_quantize: bool, inc_deploy: bool,
    quant_types_text: str,
) -> str | None:
    """Generate and save a Colab notebook, return file path."""
    models = [m.strip() for m in models_text.strip().split("\n") if m.strip()]
    if not models:
        return None

    weights = []
    if weights_text.strip():
        try:
            weights = [float(w.strip()) for w in weights_text.split(",")]
        except ValueError:
            pass

    densities = []
    if densities_text.strip():
        try:
            densities = [float(d.strip()) for d in densities_text.split(",")]
        except ValueError:
            pass

    quant_types = [q.strip() for q in quant_types_text.split(",") if q.strip()]
    if not quant_types:
        quant_types = ["Q5_K_M", "Q4_K_M"]

    config = MergeConfig(
        method=method,
        models=models,
        base_model=base_model.strip(),
        weights=weights,
        densities=densities,
        tokenizer_source=tokenizer_src.strip(),
        dtype=dtype,
        slerp_t=slerp_t,
        int8_mask=int8_mask,
        normalize=normalize,
    )

    name = output_name.strip() or "ForgeKit-Merged-Model"
    user = hf_user.strip()

    nb = generate_merge_notebook(
        config,
        output_model_name=name,
        hf_username=user,
        include_quantize=inc_quantize,
        include_deploy=inc_deploy,
        quant_types=quant_types,
    )

    path = os.path.join(tempfile.gettempdir(), f"{name}_merge.ipynb")
    save_notebook(nb, path)
    return path


def search_hf_models(query: str, arch_filter: str, sort_by: str) -> str:
    """Search HF Hub and return formatted results."""
    if not query.strip():
        return "Enter a search query"

    results = search_models(
        query=query.strip(),
        architecture=arch_filter if arch_filter != "Any" else "",
        limit=15,
        sort=sort_by.lower(),
    )

    if not results:
        return "No models found"

    lines = ["| Model | Architecture | Downloads |", "|-------|-------------|-----------|"]
    for r in results:
        mid = r.get("model_id", "")
        mtype = r.get("model_type", "โ€”")
        dl = r.get("downloads", 0)
        dl_str = f"{dl:,}" if dl else "โ€”"
        lines.append(f"| `{mid}` | {mtype} | {dl_str} |")

    return "\n".join(lines)


def fetch_model_details(model_id: str) -> str:
    """Fetch and display detailed model info."""
    if not model_id.strip():
        return "Enter a model ID"

    info = fetch_model_info(model_id.strip())
    if info.error:
        return f"โŒ {info.error}"

    return f"""### {info.model_id}

| Property | Value |
|----------|-------|
| **Architecture** | `{info.model_type}` |
| **Hidden Size** | {info.hidden_size} |
| **Layers** | {info.num_hidden_layers} |
| **Vocab Size** | {info.vocab_size:,} |
| **Intermediate** | {info.intermediate_size} |
| **Attention Heads** | {info.num_attention_heads} |
| **KV Heads** | {info.num_key_value_heads} |
| **Max Position** | {info.max_position_embeddings:,} |
| **dtype** | {info.torch_dtype} |
| **Downloads** | {info.downloads:,} |
| **Likes** | {info.likes} |
| **Params (est.)** | {info.param_estimate} |
| **RAM for merge** | {info.ram_estimate_gb} GB |
| **Gated** | {'Yes' if info.gated else 'No'} |
| **trust_remote_code** | {'Required' if info.trust_remote_code else 'No'} |"""


def suggest_base(models_text: str, token: str) -> tuple[str, str]:
    """Auto-suggest base model and tokenizer from compatibility check."""
    models = [m.strip() for m in models_text.strip().split("\n") if m.strip()]
    if len(models) < 2:
        return "", ""
    tok = token.strip() if token else None
    report = check_compatibility(models, token=tok)
    return report.suggested_base, report.suggested_tokenizer


# ===== LEADERBOARD DATA =====
# Seeded with your existing merges
LEADERBOARD = [
    {
        "name": "Qwen2.5CMR-7B", "author": "AIencoder",
        "method": "DARE-TIES", "base": "Qwen2.5-7B-Instruct",
        "models": "Coder-7B + Math-7B", "likes": 0,
        "link": "https://huggingface.co/AIencoder/Qwen2.5CMR",
    },
    {
        "name": "Logic-Coder-7B", "author": "AIencoder",
        "method": "DARE-TIES", "base": "Mistral-7B",
        "models": "OpenHermes + CodeInstruct", "likes": 1,
        "link": "https://huggingface.co/AIencoder/Logic-Coder-7B",
    },
    {
        "name": "HermesMath-7B-TIES", "author": "AIencoder",
        "method": "TIES", "base": "Mistral-7B",
        "models": "Hermes + MetaMath", "likes": 1,
        "link": "https://huggingface.co/AIencoder/HermesMath-7B-TIES",
    },
    {
        "name": "Hermes-2-Pro-GodCoder", "author": "AIencoder",
        "method": "DARE-TIES", "base": "Mistral-7B",
        "models": "Hermes-2-Pro + CodeModels", "likes": 1,
        "link": "https://huggingface.co/AIencoder/Hermes-2-Pro-Mistral-7B-GodCoder",
    },
]


def get_leaderboard() -> str:
    """Return leaderboard as markdown table."""
    lines = [
        "| # | Model | Author | Method | Source Models | Likes |",
        "|---|-------|--------|--------|---------------|-------|",
    ]
    sorted_lb = sorted(LEADERBOARD, key=lambda x: -x["likes"])
    for i, entry in enumerate(sorted_lb, 1):
        name = f"[{entry['name']}]({entry['link']})"
        lines.append(
            f"| {i} | {name} | {entry['author']} | {entry['method']} | "
            f"{entry['models']} | {entry['likes']} |"
        )
    return "\n".join(lines)


# ============================================================
# GRADIO APP
# ============================================================

with gr.Blocks(theme=theme, css=CSS, title="ForgeKit โ€” Model Merging Platform") as demo:

    # ===== HEADER =====
    gr.HTML("""
    <div class="forgekit-header">
        <h1>๐Ÿ”ฅ ForgeKit</h1>
        <p>Forge your perfect AI model โ€” no code required</p>
    </div>
    """)

    with gr.Tabs():

        # =====================================================
        # TAB 1: MERGE BUILDER
        # =====================================================
        with gr.Tab("โš’๏ธ Merge Builder", id="builder"):
            gr.Markdown("### Build your merge configuration and generate a ready-to-run Colab notebook")

            with gr.Row():
                # LEFT COLUMN: Inputs
                with gr.Column(scale=3):
                    models_input = gr.Textbox(
                        label="Models to Merge (one per line)",
                        placeholder="Qwen/Qwen2.5-Coder-7B-Instruct\nQwen/Qwen2.5-Math-7B-Instruct",
                        lines=5,
                    )
                    hf_token = gr.Textbox(
                        label="HF Token (optional โ€” for gated models)",
                        type="password",
                        placeholder="hf_...",
                    )

                    with gr.Row():
                        check_btn = gr.Button("๐Ÿ” Check Compatibility", variant="secondary")
                        suggest_btn = gr.Button("๐Ÿ’ก Auto-Suggest Base", variant="secondary")

                    compat_status = gr.Textbox(label="Quick Status", interactive=False, max_lines=2)
                    compat_report = gr.Markdown(label="Compatibility Report")

                # RIGHT COLUMN: Configuration
                with gr.Column(scale=3):
                    method_dd = gr.Dropdown(
                        choices=list(MERGE_METHODS.keys()),
                        value="dare_ties",
                        label="Merge Method",
                    )
                    method_info_md = gr.Markdown(
                        value=f"**DARE-TIES** โ€” {MERGE_METHODS['dare_ties']['description']}"
                    )
                    base_model = gr.Textbox(
                        label="Base Model",
                        placeholder="Qwen/Qwen2.5-7B-Instruct",
                    )
                    tokenizer_src = gr.Textbox(
                        label="Tokenizer Source",
                        placeholder="Same as base model (leave blank to auto-fill)",
                    )

                    with gr.Row():
                        weights_input = gr.Textbox(label="Weights (comma-separated)", placeholder="0.5, 0.5")
                        densities_input = gr.Textbox(label="Densities (comma-separated)", placeholder="0.7, 0.6")

                    with gr.Row():
                        preset_dd = gr.Dropdown(
                            choices=list(PRESETS.keys()),
                            label="Apply Preset",
                            scale=2,
                        )
                        preset_btn = gr.Button("Apply", variant="secondary", scale=1)

                    with gr.Row():
                        dtype_dd = gr.Dropdown(choices=["bfloat16", "float16", "float32"], value="bfloat16", label="dtype")
                        slerp_t = gr.Slider(0, 1, value=0.5, step=0.05, label="SLERP t", visible=False)

                    with gr.Row():
                        int8_mask = gr.Checkbox(label="int8_mask", value=True)
                        normalize_cb = gr.Checkbox(label="normalize", value=True)

            gr.Markdown("---")
            gr.Markdown("### Output")

            with gr.Row():
                with gr.Column(scale=3):
                    yaml_output = gr.Code(label="Generated YAML Config", language="yaml", lines=15)
                    gen_yaml_btn = gr.Button("๐Ÿ“‹ Generate YAML", variant="primary", size="lg")

                with gr.Column(scale=3):
                    gr.Markdown("#### Notebook Settings")
                    output_name = gr.Textbox(label="Model Name", placeholder="My-Merged-7B")
                    hf_username = gr.Textbox(label="HF Username", placeholder="AIencoder")
                    with gr.Row():
                        inc_quant = gr.Checkbox(label="Include GGUF Quantization", value=True)
                        inc_deploy = gr.Checkbox(label="Include HF Deployment", value=True)
                    quant_types = gr.Textbox(label="Quant Types", value="Q5_K_M, Q4_K_M")
                    gen_nb_btn = gr.Button("๐Ÿš€ Generate Colab Notebook", variant="primary", size="lg")
                    nb_file = gr.File(label="Download Notebook")

            # === EVENTS ===
            check_btn.click(
                check_models, [models_input, hf_token], [compat_report, compat_status]
            )
            suggest_btn.click(
                suggest_base, [models_input, hf_token], [base_model, tokenizer_src]
            )
            preset_btn.click(
                apply_preset, [preset_dd, models_input], [weights_input, densities_input]
            )
            gen_yaml_btn.click(
                generate_config,
                [models_input, method_dd, base_model, weights_input, densities_input,
                 tokenizer_src, dtype_dd, slerp_t, int8_mask, normalize_cb],
                yaml_output,
            )
            gen_nb_btn.click(
                generate_notebook_file,
                [models_input, method_dd, base_model, weights_input, densities_input,
                 tokenizer_src, dtype_dd, slerp_t, int8_mask, normalize_cb,
                 output_name, hf_username, inc_quant, inc_deploy, quant_types],
                nb_file,
            )

            # Method change: show/hide SLERP slider + update description
            def on_method_change(m):
                info = MERGE_METHODS.get(m, {})
                desc = f"**{info.get('name', m)}** โ€” {info.get('description', '')}"
                show_slerp = m == "slerp"
                return desc, gr.update(visible=show_slerp)

            method_dd.change(on_method_change, method_dd, [method_info_md, slerp_t])

        # =====================================================
        # TAB 2: MODEL EXPLORER
        # =====================================================
        with gr.Tab("๐Ÿ” Model Explorer", id="explorer"):
            gr.Markdown("### Search and discover models on HuggingFace Hub")

            with gr.Row():
                search_query = gr.Textbox(label="Search", placeholder="qwen coder instruct", scale=3)
                arch_filter = gr.Dropdown(
                    choices=["Any", "llama", "qwen2", "mistral", "gemma2", "phi3", "starcoder2"],
                    value="Any", label="Architecture", scale=1,
                )
                sort_dd = gr.Dropdown(choices=["Downloads", "Likes", "Modified"], value="Downloads", label="Sort", scale=1)
                search_btn = gr.Button("๐Ÿ” Search", variant="primary", scale=1)

            search_results = gr.Markdown(label="Results")

            gr.Markdown("---")
            gr.Markdown("### Model Details")
            with gr.Row():
                detail_input = gr.Textbox(label="Model ID", placeholder="Qwen/Qwen2.5-Coder-7B-Instruct", scale=3)
                detail_btn = gr.Button("๐Ÿ“‹ Fetch Details", variant="secondary", scale=1)
            detail_output = gr.Markdown()

            search_btn.click(search_hf_models, [search_query, arch_filter, sort_dd], search_results)
            detail_btn.click(fetch_model_details, detail_input, detail_output)

        # =====================================================
        # TAB 3: GGUF QUANTIZER
        # =====================================================
        with gr.Tab("๐Ÿ“ฆ GGUF Quantizer", id="quantizer"):
            gr.Markdown("""### Generate a quantization notebook for any HF model
            Convert any HuggingFace model to GGUF format for use with llama.cpp, Ollama, LM Studio, etc.""")

            q_model = gr.Textbox(label="Model ID", placeholder="AIencoder/Qwen2.5CMR-7B")
            q_username = gr.Textbox(label="Your HF Username", placeholder="AIencoder")

            gr.Markdown("#### Quantization Levels")
            gr.Markdown("""
| Type | Size (7B) | Quality | Best For |
|------|----------|---------|----------|
| Q8_0 | ~7.5 GB | Best | Maximum quality |
| Q6_K | ~5.5 GB | Great | Good balance |
| **Q5_K_M** | **~5 GB** | **Good** | **Recommended** |
| Q4_K_M | ~4 GB | Decent | Memory-constrained |
| IQ4_XS | ~3.5 GB | Fair | Extreme compression |
""")
            q_types = gr.Textbox(label="Quant Types (comma-separated)", value="Q8_0, Q5_K_M, Q4_K_M")

            q_btn = gr.Button("๐Ÿ“ฆ Generate Quantization Notebook", variant="primary", size="lg")
            q_file = gr.File(label="Download Notebook")

            def gen_quant_notebook(model_id, username, qtypes_text):
                if not model_id.strip():
                    return None
                qtypes = [q.strip() for q in qtypes_text.split(",") if q.strip()]
                name = model_id.strip().split("/")[-1]
                config = MergeConfig(method="linear", models=[model_id.strip()])
                nb = generate_merge_notebook(
                    config,
                    output_model_name=name,
                    hf_username=username.strip(),
                    include_quantize=True,
                    include_deploy=False,
                    quant_types=qtypes,
                )
                # Remove merge cells, keep only setup + quantize
                path = os.path.join(tempfile.gettempdir(), f"{name}_quantize.ipynb")
                save_notebook(nb, path)
                return path

            q_btn.click(gen_quant_notebook, [q_model, q_username, q_types], q_file)

        # =====================================================
        # TAB 4: DEPLOY
        # =====================================================
        with gr.Tab("๐Ÿš€ Deploy", id="deploy"):
            gr.Markdown("""### Deploy your merged model to a HuggingFace Space

After merging and (optionally) quantizing, deploy a chat interface for your model.""")

            d_model = gr.Textbox(label="Model Repo ID", placeholder="AIencoder/Qwen2.5CMR-7B")
            d_type = gr.Dropdown(
                choices=["Gradio Chat (transformers)", "Docker + llama.cpp (GGUF)"],
                value="Gradio Chat (transformers)", label="Deployment Type",
            )
            d_btn = gr.Button("๐Ÿ“‹ Generate Deployment Files", variant="primary")
            d_output = gr.Code(label="app.py", language="python", lines=20)
            d_readme = gr.Code(label="README.md (Space metadata)", language="markdown", lines=8)

            def gen_deploy(model_id, deploy_type):
                mid = model_id.strip()
                if not mid:
                    return "# Enter a model ID first", ""

                if "Gradio" in deploy_type:
                    app = f'''import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
from threading import Thread

MODEL_ID = "{mid}"

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
)

def chat(message, history):
    messages = []
    for h in history:
        messages.append({{"role": "user", "content": h[0]}})
        if h[1]:
            messages.append({{"role": "assistant", "content": h[1]}})
    messages.append({{"role": "user", "content": message}})

    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(text, return_tensors="pt").to(model.device)
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    thread = Thread(target=model.generate, kwargs={{
        **inputs, "max_new_tokens": 512, "streamer": streamer,
        "do_sample": True, "temperature": 0.7,
    }})
    thread.start()

    response = ""
    for token in streamer:
        response += token
        yield response

demo = gr.ChatInterface(chat, title="{mid.split('/')[-1]}", description="Merged with ForgeKit")
demo.launch()'''
                    readme = f"""---
title: {mid.split('/')[-1]} Chat
emoji: ๐Ÿ”ฅ
colorFrom: amber
colorTo: orange
sdk: gradio
sdk_version: 5.12.0
app_file: app.py
pinned: false
license: apache-2.0
---"""
                else:
                    app = f'''# Docker deployment with llama.cpp
# Dockerfile for serving GGUF models

FROM ghcr.io/ggerganov/llama.cpp:server

# Download the GGUF model
ADD https://huggingface.co/{mid}/resolve/main/*Q5_K_M*.gguf /models/model.gguf

EXPOSE 7860

CMD ["/llama-server", \\
     "--model", "/models/model.gguf", \\
     "--host", "0.0.0.0", \\
     "--port", "7860", \\
     "--ctx-size", "4096", \\
     "--n-gpu-layers", "99"]'''
                    readme = f"""---
title: {mid.split('/')[-1]}
emoji: ๐Ÿ”ฅ
colorFrom: amber
colorTo: orange
sdk: docker
pinned: false
license: apache-2.0
---"""

                return app, readme

            d_btn.click(gen_deploy, [d_model, d_type], [d_output, d_readme])

        # =====================================================
        # TAB 5: AI ADVISOR
        # =====================================================
        with gr.Tab("๐Ÿค– AI Advisor", id="ai"):
            gr.Markdown("""### AI-Powered Merge Intelligence
            Get smart recommendations, capability predictions, and plain-English explanations โ€” powered by **Llama 3.3 70B** on Groq (free, blazing fast).""")

            groq_key = gr.Textbox(
                label="Groq API Key (free at console.groq.com)",
                type="password",
                placeholder="gsk_... (free, no credit card needed)",
            )

            with gr.Tabs():
                # --- Merge Advisor ---
                with gr.Tab("๐Ÿ’ก Merge Advisor"):
                    gr.Markdown("**Tell the AI what models you want to merge and it'll recommend the best strategy.**")
                    ai_models = gr.Textbox(
                        label="Models (one per line)",
                        placeholder="Qwen/Qwen2.5-Coder-7B-Instruct\nQwen/Qwen2.5-Math-7B-Instruct",
                        lines=4,
                    )
                    ai_goal = gr.Textbox(
                        label="What do you want the merged model to do?",
                        placeholder="I want a model that's great at both coding and math reasoning",
                    )
                    ai_advise_btn = gr.Button("๐Ÿ’ก Get Recommendation", variant="primary")
                    ai_advise_out = gr.Markdown()

                    ai_advise_btn.click(
                        merge_advisor, [ai_models, ai_goal, groq_key], ai_advise_out
                    )

                # --- Model Describer ---
                with gr.Tab("๐Ÿ”ฎ Capability Predictor"):
                    gr.Markdown("**Predict what your merged model will be good (and bad) at.**")
                    desc_models = gr.Textbox(
                        label="Models (one per line)",
                        placeholder="Qwen/Qwen2.5-Coder-7B-Instruct\nQwen/Qwen2.5-Math-7B-Instruct",
                        lines=4,
                    )
                    desc_method = gr.Textbox(label="Merge Method", placeholder="dare_ties")
                    desc_weights = gr.Textbox(label="Weights", placeholder="0.5, 0.5")
                    desc_btn = gr.Button("๐Ÿ”ฎ Predict Capabilities", variant="primary")
                    desc_out = gr.Markdown()

                    desc_btn.click(
                        model_describer, [desc_models, desc_method, desc_weights, groq_key], desc_out
                    )

                # --- Config Explainer ---
                with gr.Tab("๐Ÿ“– Config Explainer"):
                    gr.Markdown("**Paste any mergekit YAML config and get a plain-English explanation.**")
                    explain_yaml = gr.Code(
                        label="Paste YAML Config",
                        language="yaml",
                        lines=12,
                        value="""merge_method: dare_ties
base_model: Qwen/Qwen2.5-7B-Instruct
models:
  - model: Qwen/Qwen2.5-Coder-7B-Instruct
    parameters:
      weight: 0.5
      density: 0.7
  - model: Qwen/Qwen2.5-Math-7B-Instruct
    parameters:
      weight: 0.5
      density: 0.6
parameters:
  int8_mask: true
  normalize: true
dtype: bfloat16""",
                    )
                    explain_btn = gr.Button("๐Ÿ“– Explain This Config", variant="primary")
                    explain_out = gr.Markdown()

                    explain_btn.click(
                        config_explainer, [explain_yaml, groq_key], explain_out
                    )

        # =====================================================
        # TAB 6: KAGGLE RUNNER
        # =====================================================
        with gr.Tab("๐Ÿš€ Run on Kaggle", id="kaggle"):
            gr.Markdown("""### Run Your Merge on Kaggle's Free GPU
            Push your merge notebook directly to Kaggle and run it on a free T4 GPU โ€” no local setup needed.

            **You need:** A [Kaggle account](https://www.kaggle.com) with an API token. Go to *Settings > API > Create New Token*.""")

            with gr.Row():
                with gr.Column():
                    kg_username = gr.Textbox(label="Kaggle Username", placeholder="your_kaggle_username")
                    kg_key = gr.Textbox(label="Kaggle API Key", type="password", placeholder="From kaggle.json")
                with gr.Column():
                    kg_hf_note = gr.Markdown("""**Important:** Add your HF token as a Kaggle Secret:
1. Go to your kernel's **Settings** tab
2. Under **Secrets**, add `HF_TOKEN` with your HuggingFace token
3. This lets the kernel download gated models and upload results""")

            gr.Markdown("---")
            gr.Markdown("#### Configure Merge (or use settings from Merge Builder tab)")

            with gr.Row():
                kg_models = gr.Textbox(
                    label="Models (one per line)", lines=4,
                    placeholder="Qwen/Qwen2.5-Coder-7B-Instruct\nQwen/Qwen2.5-Math-7B-Instruct",
                )
                with gr.Column():
                    kg_method = gr.Dropdown(choices=list(MERGE_METHODS.keys()), value="dare_ties", label="Method")
                    kg_base = gr.Textbox(label="Base Model", placeholder="Qwen/Qwen2.5-7B-Instruct")
                    kg_weights = gr.Textbox(label="Weights", placeholder="0.5, 0.5")
                    kg_densities = gr.Textbox(label="Densities", placeholder="0.7, 0.6")

            with gr.Row():
                kg_output_name = gr.Textbox(label="Output Model Name", placeholder="My-Merged-7B", value="ForgeKit-Merge")
                kg_hf_user = gr.Textbox(label="HF Username (for upload)", placeholder="AIencoder")

            kg_run_btn = gr.Button("๐Ÿš€ Push & Run on Kaggle", variant="primary", size="lg")
            kg_status = gr.Markdown()

            def run_on_kaggle(
                username, key, models_text, method, base, weights_text, densities_text,
                output_name, hf_user,
            ):
                # Build config
                models = [m.strip() for m in models_text.strip().split("\n") if m.strip()]
                if len(models) < 2:
                    return "Add at least 2 models."

                weights = []
                if weights_text.strip():
                    try:
                        weights = [float(w.strip()) for w in weights_text.split(",")]
                    except ValueError:
                        return "Invalid weights."

                densities = []
                if densities_text.strip():
                    try:
                        densities = [float(d.strip()) for d in densities_text.split(",")]
                    except ValueError:
                        return "Invalid densities."

                config = MergeConfig(
                    method=method,
                    models=models,
                    base_model=base.strip(),
                    weights=weights,
                    densities=densities,
                )

                name = output_name.strip() or "ForgeKit-Merge"

                # Generate notebook
                nb = generate_merge_notebook(
                    config,
                    output_model_name=name,
                    hf_username=hf_user.strip(),
                    include_quantize=True,
                    include_deploy=False,
                    quant_types=["Q5_K_M", "Q4_K_M"],
                )

                # Adapt for Kaggle
                kaggle_nb_json = generate_kaggle_notebook(nb)

                # Push to Kaggle
                result = push_and_run_kernel(
                    notebook_json=kaggle_nb_json,
                    kernel_title=f"ForgeKit-{name}",
                    kaggle_username=username.strip(),
                    kaggle_key=key.strip(),
                    enable_gpu=True,
                    enable_internet=True,
                )

                if result["success"]:
                    return result["message"]
                else:
                    return result["error"]

            kg_run_btn.click(
                run_on_kaggle,
                [kg_username, kg_key, kg_models, kg_method, kg_base, kg_weights, kg_densities,
                 kg_output_name, kg_hf_user],
                kg_status,
            )

            gr.Markdown("---")
            gr.Markdown("#### Check Kernel Status")
            with gr.Row():
                kg_check_slug = gr.Textbox(label="Kernel Slug", placeholder="username/forgekit-my-merged-7b")
                kg_check_btn = gr.Button("๐Ÿ” Check Status", variant="secondary")
            kg_check_out = gr.Markdown()

            def check_status(slug, username, key):
                if not slug.strip():
                    return "Enter a kernel slug (username/kernel-name)"
                result = check_kernel_status(slug.strip(), username.strip(), key.strip())
                if result["success"]:
                    msg = result["display"]
                    if result.get("failure_message"):
                        msg += f"\n\nError: {result['failure_message']}"
                    return msg
                return result["error"]

            kg_check_btn.click(check_status, [kg_check_slug, kg_username, kg_key], kg_check_out)

        # =====================================================
        # TAB 7: LEADERBOARD
        # =====================================================
        with gr.Tab("๐Ÿ† Leaderboard", id="leaderboard"):
            gr.Markdown("""### Community Merge Leaderboard
            See what others have built with ForgeKit. Submit your own merge to get featured!""")

            lb_md = gr.Markdown(value=get_leaderboard())
            lb_refresh = gr.Button("๐Ÿ”„ Refresh", variant="secondary")
            lb_refresh.click(lambda: get_leaderboard(), outputs=lb_md)

            gr.Markdown("---")
            gr.Markdown("### Submit Your Merge")
            with gr.Row():
                sub_name = gr.Textbox(label="Model Name", placeholder="My-Awesome-Merge-7B")
                sub_author = gr.Textbox(label="Author", placeholder="Your HF username")
                sub_method = gr.Textbox(label="Merge Method", placeholder="DARE-TIES")
            with gr.Row():
                sub_models = gr.Textbox(label="Source Models (short)", placeholder="Coder-7B + Math-7B")
                sub_link = gr.Textbox(label="HF Model Link", placeholder="https://huggingface.co/...")
            sub_btn = gr.Button("๐Ÿ“ค Submit", variant="primary")
            sub_status = gr.Markdown()

            def submit_merge(name, author, method, models, link):
                if not all([name, author, method, models, link]):
                    return "โš ๏ธ Please fill in all fields"
                LEADERBOARD.append({
                    "name": name, "author": author, "method": method,
                    "base": "", "models": models, "likes": 0, "link": link,
                })
                return f"โœ… **{name}** submitted! It will appear on the leaderboard."

            sub_btn.click(submit_merge, [sub_name, sub_author, sub_method, sub_models, sub_link], sub_status)

    # ===== FOOTER =====
    gr.Markdown("""
    ---
    <center>

    **ForgeKit** v0.1.0 โ€” Built by [AIencoder](https://huggingface.co/AIencoder) | [Portfolio](https://aiencoder-portfolio.static.hf.space) | [GitHub](https://github.com/Ary5272)

    </center>
    """)


if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)