Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,9 +20,17 @@ from diffusers import (
|
|
| 20 |
DPMSolverMultistepScheduler,
|
| 21 |
EulerDiscreteScheduler
|
| 22 |
)
|
| 23 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
| 24 |
from huggingface_hub import hf_hub_download
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# ============================================================================
|
| 28 |
# MODEL LOADING
|
|
@@ -38,7 +46,10 @@ class FlowMatchingPipeline:
|
|
| 38 |
tokenizer: CLIPTokenizer,
|
| 39 |
unet: UNet2DConditionModel,
|
| 40 |
scheduler,
|
| 41 |
-
device: str = "cuda"
|
|
|
|
|
|
|
|
|
|
| 42 |
):
|
| 43 |
self.vae = vae
|
| 44 |
self.text_encoder = text_encoder
|
|
@@ -47,6 +58,11 @@ class FlowMatchingPipeline:
|
|
| 47 |
self.scheduler = scheduler
|
| 48 |
self.device = device
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
# VAE scaling factor
|
| 51 |
self.vae_scale_factor = 0.18215
|
| 52 |
|
|
@@ -83,6 +99,90 @@ class FlowMatchingPipeline:
|
|
| 83 |
|
| 84 |
return prompt_embeds, negative_prompt_embeds
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
@torch.no_grad()
|
| 87 |
def __call__(
|
| 88 |
self,
|
|
@@ -96,6 +196,7 @@ class FlowMatchingPipeline:
|
|
| 96 |
use_flow_matching: bool = True,
|
| 97 |
prediction_type: str = "epsilon",
|
| 98 |
seed: Optional[int] = None,
|
|
|
|
| 99 |
progress_callback=None
|
| 100 |
):
|
| 101 |
"""Generate image using flow matching or standard diffusion."""
|
|
@@ -106,10 +207,15 @@ class FlowMatchingPipeline:
|
|
| 106 |
else:
|
| 107 |
generator = None
|
| 108 |
|
| 109 |
-
# Encode prompts
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# Prepare latents
|
| 115 |
latent_channels = 4
|
|
@@ -257,12 +363,94 @@ def load_lune_checkpoint(repo_id: str, filename: str, device: str = "cuda"):
|
|
| 257 |
return unet.to(device)
|
| 258 |
|
| 259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
def initialize_pipeline(model_choice: str, device: str = "cuda"):
|
| 261 |
"""Initialize the complete pipeline."""
|
| 262 |
|
| 263 |
print(f"🚀 Initializing {model_choice} pipeline...")
|
| 264 |
|
| 265 |
is_lune = "Lune" in model_choice
|
|
|
|
| 266 |
|
| 267 |
# Load base components
|
| 268 |
print("Loading VAE...")
|
|
@@ -272,7 +460,7 @@ def initialize_pipeline(model_choice: str, device: str = "cuda"):
|
|
| 272 |
torch_dtype=torch.float32
|
| 273 |
).to(device)
|
| 274 |
|
| 275 |
-
print("Loading text encoder...")
|
| 276 |
text_encoder = CLIPTextModel.from_pretrained(
|
| 277 |
"openai/clip-vit-large-patch14",
|
| 278 |
torch_dtype=torch.float32
|
|
@@ -282,6 +470,26 @@ def initialize_pipeline(model_choice: str, device: str = "cuda"):
|
|
| 282 |
"openai/clip-vit-large-patch14"
|
| 283 |
)
|
| 284 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
# Load UNet based on model choice
|
| 286 |
if is_lune:
|
| 287 |
# Load latest checkpoint from repo
|
|
@@ -290,7 +498,8 @@ def initialize_pipeline(model_choice: str, device: str = "cuda"):
|
|
| 290 |
filename = "sd15_flow_lune_e34_s34000.pt"
|
| 291 |
unet = load_lune_checkpoint(repo_id, filename, device)
|
| 292 |
|
| 293 |
-
elif model_choice == "SD1.5 Base":
|
|
|
|
| 294 |
print("Loading SD1.5 base UNet...")
|
| 295 |
unet = UNet2DConditionModel.from_pretrained(
|
| 296 |
"runwayml/stable-diffusion-v1-5",
|
|
@@ -315,7 +524,10 @@ def initialize_pipeline(model_choice: str, device: str = "cuda"):
|
|
| 315 |
tokenizer=tokenizer,
|
| 316 |
unet=unet,
|
| 317 |
scheduler=scheduler,
|
| 318 |
-
device=device
|
|
|
|
|
|
|
|
|
|
| 319 |
)
|
| 320 |
|
| 321 |
# Set flag for Lune-specific VAE scaling
|
|
@@ -393,6 +605,9 @@ def generate_image(
|
|
| 393 |
# Get pipeline
|
| 394 |
pipeline = get_pipeline(model_choice)
|
| 395 |
|
|
|
|
|
|
|
|
|
|
| 396 |
# Generate
|
| 397 |
progress(0.05, desc="Starting generation...")
|
| 398 |
|
|
@@ -407,6 +622,7 @@ def generate_image(
|
|
| 407 |
use_flow_matching=use_flow_matching,
|
| 408 |
prediction_type=prediction_type,
|
| 409 |
seed=seed,
|
|
|
|
| 410 |
progress_callback=progress_callback
|
| 411 |
)
|
| 412 |
|
|
@@ -432,7 +648,11 @@ def create_demo():
|
|
| 432 |
|
| 433 |
**Geometric crystalline diffusion with flow matching** by [AbstractPhil](https://huggingface.co/AbstractPhil)
|
| 434 |
|
| 435 |
-
Generate images using SD1.5-based
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
Achieves high quality with dramatically reduced step counts through geometric efficiency.
|
| 437 |
""")
|
| 438 |
|
|
@@ -457,6 +677,7 @@ def create_demo():
|
|
| 457 |
label="Model",
|
| 458 |
choices=[
|
| 459 |
"Flow-Lune (Latest)",
|
|
|
|
| 460 |
"SD1.5 Base"
|
| 461 |
],
|
| 462 |
value="Flow-Lune (Latest)"
|
|
@@ -554,11 +775,13 @@ def create_demo():
|
|
| 554 |
- **Shift** controls the flow trajectory (2.0-2.5 recommended for Lune)
|
| 555 |
- Lower shift = more direct path, higher shift = more exploration
|
| 556 |
- **Lune** uses v_prediction by default for optimal results
|
|
|
|
| 557 |
- **SD1.5 Base** uses epsilon (standard diffusion)
|
| 558 |
- Lune operates in a scaled latent space (5.52x) for geometric efficiency
|
| 559 |
|
| 560 |
### Model Info:
|
| 561 |
- **Flow-Lune**: Trained with flow matching on 500k SD1.5 distillation pairs
|
|
|
|
| 562 |
- **SD1.5 Base**: Standard Stable Diffusion 1.5 for comparison
|
| 563 |
|
| 564 |
[📚 Learn more about geometric deep learning](https://github.com/AbstractEyes/lattice_vocabulary)
|
|
@@ -584,14 +807,14 @@ def create_demo():
|
|
| 584 |
[
|
| 585 |
"A futuristic cyberpunk city at night, neon lights, rain-slicked streets, highly detailed",
|
| 586 |
"low quality, blurry",
|
| 587 |
-
"
|
| 588 |
-
|
| 589 |
-
|
| 590 |
512,
|
| 591 |
512,
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
"
|
| 595 |
123,
|
| 596 |
False
|
| 597 |
],
|
|
@@ -631,6 +854,12 @@ def create_demo():
|
|
| 631 |
use_flow_matching: gr.update(value=False),
|
| 632 |
prediction_type: gr.update(value="epsilon")
|
| 633 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 634 |
else:
|
| 635 |
# Lune: enable flow matching, use v_prediction
|
| 636 |
return {
|
|
|
|
| 20 |
DPMSolverMultistepScheduler,
|
| 21 |
EulerDiscreteScheduler
|
| 22 |
)
|
| 23 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
| 24 |
from huggingface_hub import hf_hub_download
|
| 25 |
|
| 26 |
+
# Import Lyra VAE from geovocab2
|
| 27 |
+
try:
|
| 28 |
+
from geovocab2.train.model.vae.vae_lyra import MultiModalVAE, MultiModalVAEConfig
|
| 29 |
+
LYRA_AVAILABLE = True
|
| 30 |
+
except ImportError:
|
| 31 |
+
print("⚠️ Lyra VAE not available - install geovocab2")
|
| 32 |
+
LYRA_AVAILABLE = False
|
| 33 |
+
|
| 34 |
|
| 35 |
# ============================================================================
|
| 36 |
# MODEL LOADING
|
|
|
|
| 46 |
tokenizer: CLIPTokenizer,
|
| 47 |
unet: UNet2DConditionModel,
|
| 48 |
scheduler,
|
| 49 |
+
device: str = "cuda",
|
| 50 |
+
t5_encoder: Optional[T5EncoderModel] = None,
|
| 51 |
+
t5_tokenizer: Optional[T5Tokenizer] = None,
|
| 52 |
+
lyra_model: Optional[any] = None
|
| 53 |
):
|
| 54 |
self.vae = vae
|
| 55 |
self.text_encoder = text_encoder
|
|
|
|
| 58 |
self.scheduler = scheduler
|
| 59 |
self.device = device
|
| 60 |
|
| 61 |
+
# Lyra-specific components
|
| 62 |
+
self.t5_encoder = t5_encoder
|
| 63 |
+
self.t5_tokenizer = t5_tokenizer
|
| 64 |
+
self.lyra_model = lyra_model
|
| 65 |
+
|
| 66 |
# VAE scaling factor
|
| 67 |
self.vae_scale_factor = 0.18215
|
| 68 |
|
|
|
|
| 99 |
|
| 100 |
return prompt_embeds, negative_prompt_embeds
|
| 101 |
|
| 102 |
+
def encode_prompt_lyra(self, prompt: str, negative_prompt: str = ""):
|
| 103 |
+
"""Encode text prompts using Lyra VAE (CLIP + T5 fusion)."""
|
| 104 |
+
if self.lyra_model is None or self.t5_encoder is None:
|
| 105 |
+
raise ValueError("Lyra VAE components not initialized")
|
| 106 |
+
|
| 107 |
+
# Get CLIP embeddings
|
| 108 |
+
text_inputs = self.tokenizer(
|
| 109 |
+
prompt,
|
| 110 |
+
padding="max_length",
|
| 111 |
+
max_length=self.tokenizer.model_max_length,
|
| 112 |
+
truncation=True,
|
| 113 |
+
return_tensors="pt",
|
| 114 |
+
)
|
| 115 |
+
text_input_ids = text_inputs.input_ids.to(self.device)
|
| 116 |
+
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
clip_embeds = self.text_encoder(text_input_ids)[0]
|
| 119 |
+
|
| 120 |
+
# Get T5 embeddings
|
| 121 |
+
t5_inputs = self.t5_tokenizer(
|
| 122 |
+
prompt,
|
| 123 |
+
max_length=77,
|
| 124 |
+
padding='max_length',
|
| 125 |
+
truncation=True,
|
| 126 |
+
return_tensors='pt'
|
| 127 |
+
).to(self.device)
|
| 128 |
+
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
t5_embeds = self.t5_encoder(**t5_inputs).last_hidden_state
|
| 131 |
+
|
| 132 |
+
# Fuse through Lyra VAE
|
| 133 |
+
modality_inputs = {
|
| 134 |
+
'clip': clip_embeds,
|
| 135 |
+
't5': t5_embeds
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
with torch.no_grad():
|
| 139 |
+
reconstructions, mu, logvar = self.lyra_model(
|
| 140 |
+
modality_inputs,
|
| 141 |
+
target_modalities=['clip']
|
| 142 |
+
)
|
| 143 |
+
prompt_embeds = reconstructions['clip']
|
| 144 |
+
|
| 145 |
+
# Process negative prompt
|
| 146 |
+
if negative_prompt:
|
| 147 |
+
uncond_inputs = self.tokenizer(
|
| 148 |
+
negative_prompt,
|
| 149 |
+
padding="max_length",
|
| 150 |
+
max_length=self.tokenizer.model_max_length,
|
| 151 |
+
truncation=True,
|
| 152 |
+
return_tensors="pt",
|
| 153 |
+
)
|
| 154 |
+
uncond_input_ids = uncond_inputs.input_ids.to(self.device)
|
| 155 |
+
|
| 156 |
+
with torch.no_grad():
|
| 157 |
+
clip_embeds_uncond = self.text_encoder(uncond_input_ids)[0]
|
| 158 |
+
|
| 159 |
+
t5_inputs_uncond = self.t5_tokenizer(
|
| 160 |
+
negative_prompt,
|
| 161 |
+
max_length=77,
|
| 162 |
+
padding='max_length',
|
| 163 |
+
truncation=True,
|
| 164 |
+
return_tensors='pt'
|
| 165 |
+
).to(self.device)
|
| 166 |
+
|
| 167 |
+
with torch.no_grad():
|
| 168 |
+
t5_embeds_uncond = self.t5_encoder(**t5_inputs_uncond).last_hidden_state
|
| 169 |
+
|
| 170 |
+
modality_inputs_uncond = {
|
| 171 |
+
'clip': clip_embeds_uncond,
|
| 172 |
+
't5': t5_embeds_uncond
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
with torch.no_grad():
|
| 176 |
+
reconstructions_uncond, _, _ = self.lyra_model(
|
| 177 |
+
modality_inputs_uncond,
|
| 178 |
+
target_modalities=['clip']
|
| 179 |
+
)
|
| 180 |
+
negative_prompt_embeds = reconstructions_uncond['clip']
|
| 181 |
+
else:
|
| 182 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
| 183 |
+
|
| 184 |
+
return prompt_embeds, negative_prompt_embeds
|
| 185 |
+
|
| 186 |
@torch.no_grad()
|
| 187 |
def __call__(
|
| 188 |
self,
|
|
|
|
| 196 |
use_flow_matching: bool = True,
|
| 197 |
prediction_type: str = "epsilon",
|
| 198 |
seed: Optional[int] = None,
|
| 199 |
+
use_lyra: bool = False,
|
| 200 |
progress_callback=None
|
| 201 |
):
|
| 202 |
"""Generate image using flow matching or standard diffusion."""
|
|
|
|
| 207 |
else:
|
| 208 |
generator = None
|
| 209 |
|
| 210 |
+
# Encode prompts - use Lyra if specified
|
| 211 |
+
if use_lyra and self.lyra_model is not None:
|
| 212 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt_lyra(
|
| 213 |
+
prompt, negative_prompt
|
| 214 |
+
)
|
| 215 |
+
else:
|
| 216 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 217 |
+
prompt, negative_prompt
|
| 218 |
+
)
|
| 219 |
|
| 220 |
# Prepare latents
|
| 221 |
latent_channels = 4
|
|
|
|
| 363 |
return unet.to(device)
|
| 364 |
|
| 365 |
|
| 366 |
+
def load_lyra_vae(repo_id: str = "AbstractPhil/vae-lyra", device: str = "cuda"):
|
| 367 |
+
"""Load Lyra VAE from HuggingFace."""
|
| 368 |
+
if not LYRA_AVAILABLE:
|
| 369 |
+
print("⚠️ Lyra VAE not available - geovocab2 not installed")
|
| 370 |
+
return None
|
| 371 |
+
|
| 372 |
+
print(f"🎵 Loading Lyra VAE from {repo_id}...")
|
| 373 |
+
|
| 374 |
+
try:
|
| 375 |
+
# Download checkpoint
|
| 376 |
+
checkpoint_path = hf_hub_download(
|
| 377 |
+
repo_id=repo_id,
|
| 378 |
+
filename="best_model.pt",
|
| 379 |
+
repo_type="model"
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
print(f"✓ Downloaded checkpoint: {checkpoint_path}")
|
| 383 |
+
|
| 384 |
+
# Load checkpoint
|
| 385 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 386 |
+
|
| 387 |
+
# Extract config
|
| 388 |
+
if 'config' in checkpoint:
|
| 389 |
+
config_dict = checkpoint['config']
|
| 390 |
+
else:
|
| 391 |
+
# Use default config
|
| 392 |
+
config_dict = {
|
| 393 |
+
'modality_dims': {"clip": 768, "t5": 768},
|
| 394 |
+
'latent_dim': 768,
|
| 395 |
+
'seq_len': 77,
|
| 396 |
+
'encoder_layers': 3,
|
| 397 |
+
'decoder_layers': 3,
|
| 398 |
+
'hidden_dim': 1024,
|
| 399 |
+
'dropout': 0.1,
|
| 400 |
+
'fusion_strategy': 'cantor',
|
| 401 |
+
'fusion_heads': 8,
|
| 402 |
+
'fusion_dropout': 0.1
|
| 403 |
+
}
|
| 404 |
+
|
| 405 |
+
# Create VAE config
|
| 406 |
+
vae_config = MultiModalVAEConfig(
|
| 407 |
+
modality_dims=config_dict.get('modality_dims', {"clip": 768, "t5": 768}),
|
| 408 |
+
latent_dim=config_dict.get('latent_dim', 768),
|
| 409 |
+
seq_len=config_dict.get('seq_len', 77),
|
| 410 |
+
encoder_layers=config_dict.get('encoder_layers', 3),
|
| 411 |
+
decoder_layers=config_dict.get('decoder_layers', 3),
|
| 412 |
+
hidden_dim=config_dict.get('hidden_dim', 1024),
|
| 413 |
+
dropout=config_dict.get('dropout', 0.1),
|
| 414 |
+
fusion_strategy=config_dict.get('fusion_strategy', 'cantor'),
|
| 415 |
+
fusion_heads=config_dict.get('fusion_heads', 8),
|
| 416 |
+
fusion_dropout=config_dict.get('fusion_dropout', 0.1)
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
# Create model
|
| 420 |
+
lyra_model = MultiModalVAE(vae_config)
|
| 421 |
+
|
| 422 |
+
# Load weights
|
| 423 |
+
if 'model_state_dict' in checkpoint:
|
| 424 |
+
lyra_model.load_state_dict(checkpoint['model_state_dict'])
|
| 425 |
+
else:
|
| 426 |
+
lyra_model.load_state_dict(checkpoint)
|
| 427 |
+
|
| 428 |
+
lyra_model.to(device)
|
| 429 |
+
lyra_model.eval()
|
| 430 |
+
|
| 431 |
+
# Print info
|
| 432 |
+
print(f"✅ Lyra VAE loaded successfully")
|
| 433 |
+
if 'global_step' in checkpoint:
|
| 434 |
+
print(f" Training step: {checkpoint['global_step']:,}")
|
| 435 |
+
if 'best_loss' in checkpoint:
|
| 436 |
+
print(f" Best loss: {checkpoint['best_loss']:.4f}")
|
| 437 |
+
print(f" Fusion strategy: {vae_config.fusion_strategy}")
|
| 438 |
+
print(f" Latent dim: {vae_config.latent_dim}")
|
| 439 |
+
|
| 440 |
+
return lyra_model
|
| 441 |
+
|
| 442 |
+
except Exception as e:
|
| 443 |
+
print(f"❌ Failed to load Lyra VAE: {e}")
|
| 444 |
+
return None
|
| 445 |
+
|
| 446 |
+
|
| 447 |
def initialize_pipeline(model_choice: str, device: str = "cuda"):
|
| 448 |
"""Initialize the complete pipeline."""
|
| 449 |
|
| 450 |
print(f"🚀 Initializing {model_choice} pipeline...")
|
| 451 |
|
| 452 |
is_lune = "Lune" in model_choice
|
| 453 |
+
is_lyra = "Lyra" in model_choice
|
| 454 |
|
| 455 |
# Load base components
|
| 456 |
print("Loading VAE...")
|
|
|
|
| 460 |
torch_dtype=torch.float32
|
| 461 |
).to(device)
|
| 462 |
|
| 463 |
+
print("Loading CLIP text encoder...")
|
| 464 |
text_encoder = CLIPTextModel.from_pretrained(
|
| 465 |
"openai/clip-vit-large-patch14",
|
| 466 |
torch_dtype=torch.float32
|
|
|
|
| 470 |
"openai/clip-vit-large-patch14"
|
| 471 |
)
|
| 472 |
|
| 473 |
+
# Load T5 and Lyra if needed
|
| 474 |
+
t5_encoder = None
|
| 475 |
+
t5_tokenizer = None
|
| 476 |
+
lyra_model = None
|
| 477 |
+
|
| 478 |
+
if is_lyra:
|
| 479 |
+
print("Loading T5-base encoder...")
|
| 480 |
+
t5_tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
| 481 |
+
t5_encoder = T5EncoderModel.from_pretrained(
|
| 482 |
+
"t5-base",
|
| 483 |
+
torch_dtype=torch.float32
|
| 484 |
+
).to(device)
|
| 485 |
+
t5_encoder.eval()
|
| 486 |
+
print("✓ T5 loaded")
|
| 487 |
+
|
| 488 |
+
print("Loading Lyra VAE...")
|
| 489 |
+
lyra_model = load_lyra_vae(device=device)
|
| 490 |
+
if lyra_model is None:
|
| 491 |
+
raise ValueError("Failed to load Lyra VAE")
|
| 492 |
+
|
| 493 |
# Load UNet based on model choice
|
| 494 |
if is_lune:
|
| 495 |
# Load latest checkpoint from repo
|
|
|
|
| 498 |
filename = "sd15_flow_lune_e34_s34000.pt"
|
| 499 |
unet = load_lune_checkpoint(repo_id, filename, device)
|
| 500 |
|
| 501 |
+
elif is_lyra or model_choice == "SD1.5 Base":
|
| 502 |
+
# Use standard SD1.5 UNet for both Lyra and base
|
| 503 |
print("Loading SD1.5 base UNet...")
|
| 504 |
unet = UNet2DConditionModel.from_pretrained(
|
| 505 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
| 524 |
tokenizer=tokenizer,
|
| 525 |
unet=unet,
|
| 526 |
scheduler=scheduler,
|
| 527 |
+
device=device,
|
| 528 |
+
t5_encoder=t5_encoder,
|
| 529 |
+
t5_tokenizer=t5_tokenizer,
|
| 530 |
+
lyra_model=lyra_model
|
| 531 |
)
|
| 532 |
|
| 533 |
# Set flag for Lune-specific VAE scaling
|
|
|
|
| 605 |
# Get pipeline
|
| 606 |
pipeline = get_pipeline(model_choice)
|
| 607 |
|
| 608 |
+
# Determine if we should use Lyra encoding
|
| 609 |
+
use_lyra = "Lyra" in model_choice
|
| 610 |
+
|
| 611 |
# Generate
|
| 612 |
progress(0.05, desc="Starting generation...")
|
| 613 |
|
|
|
|
| 622 |
use_flow_matching=use_flow_matching,
|
| 623 |
prediction_type=prediction_type,
|
| 624 |
seed=seed,
|
| 625 |
+
use_lyra=use_lyra,
|
| 626 |
progress_callback=progress_callback
|
| 627 |
)
|
| 628 |
|
|
|
|
| 648 |
|
| 649 |
**Geometric crystalline diffusion with flow matching** by [AbstractPhil](https://huggingface.co/AbstractPhil)
|
| 650 |
|
| 651 |
+
Generate images using SD1.5-based models with geometric deep learning approaches:
|
| 652 |
+
- **Flow-Lune**: Flow matching with pentachoron geometric structures
|
| 653 |
+
- **Lyra-VAE**: Multi-modal fusion (CLIP+T5) via geometric attention
|
| 654 |
+
- **SD1.5 Base**: Standard baseline for comparison
|
| 655 |
+
|
| 656 |
Achieves high quality with dramatically reduced step counts through geometric efficiency.
|
| 657 |
""")
|
| 658 |
|
|
|
|
| 677 |
label="Model",
|
| 678 |
choices=[
|
| 679 |
"Flow-Lune (Latest)",
|
| 680 |
+
"Lyra-VAE (Geometric Fusion)",
|
| 681 |
"SD1.5 Base"
|
| 682 |
],
|
| 683 |
value="Flow-Lune (Latest)"
|
|
|
|
| 775 |
- **Shift** controls the flow trajectory (2.0-2.5 recommended for Lune)
|
| 776 |
- Lower shift = more direct path, higher shift = more exploration
|
| 777 |
- **Lune** uses v_prediction by default for optimal results
|
| 778 |
+
- **Lyra** fuses CLIP+T5 encoders through geometric VAE for richer embeddings
|
| 779 |
- **SD1.5 Base** uses epsilon (standard diffusion)
|
| 780 |
- Lune operates in a scaled latent space (5.52x) for geometric efficiency
|
| 781 |
|
| 782 |
### Model Info:
|
| 783 |
- **Flow-Lune**: Trained with flow matching on 500k SD1.5 distillation pairs
|
| 784 |
+
- **Lyra-VAE**: Multi-modal fusion (CLIP+T5) via Cantor geometric attention
|
| 785 |
- **SD1.5 Base**: Standard Stable Diffusion 1.5 for comparison
|
| 786 |
|
| 787 |
[📚 Learn more about geometric deep learning](https://github.com/AbstractEyes/lattice_vocabulary)
|
|
|
|
| 807 |
[
|
| 808 |
"A futuristic cyberpunk city at night, neon lights, rain-slicked streets, highly detailed",
|
| 809 |
"low quality, blurry",
|
| 810 |
+
"Lyra-VAE (Geometric Fusion)",
|
| 811 |
+
30,
|
| 812 |
+
7.5,
|
| 813 |
512,
|
| 814 |
512,
|
| 815 |
+
0.0,
|
| 816 |
+
False,
|
| 817 |
+
"epsilon",
|
| 818 |
123,
|
| 819 |
False
|
| 820 |
],
|
|
|
|
| 854 |
use_flow_matching: gr.update(value=False),
|
| 855 |
prediction_type: gr.update(value="epsilon")
|
| 856 |
}
|
| 857 |
+
elif model_name == "Lyra-VAE (Geometric Fusion)":
|
| 858 |
+
# Lyra: disable flow matching (uses standard diffusion), use epsilon
|
| 859 |
+
return {
|
| 860 |
+
use_flow_matching: gr.update(value=False),
|
| 861 |
+
prediction_type: gr.update(value="epsilon")
|
| 862 |
+
}
|
| 863 |
else:
|
| 864 |
# Lune: enable flow matching, use v_prediction
|
| 865 |
return {
|