File size: 24,837 Bytes
499796e
 
 
 
 
ed1f7cd
 
 
499796e
 
 
ed1f7cd
499796e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed1f7cd
499796e
ed1f7cd
 
499796e
 
 
 
ed1f7cd
 
 
 
 
499796e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed1f7cd
499796e
 
 
 
 
 
 
 
 
 
 
 
ed1f7cd
499796e
 
 
 
 
ed1f7cd
499796e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed1f7cd
499796e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed1f7cd
499796e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed1f7cd
499796e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed1f7cd
499796e
 
 
 
 
 
 
 
 
 
ed1f7cd
 
 
499796e
ed1f7cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499796e
ed1f7cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499796e
ed1f7cd
 
 
 
499796e
ed1f7cd
 
 
499796e
ed1f7cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499796e
ed1f7cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499796e
ed1f7cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499796e
ed1f7cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
"""
MCP Server for Spend Analysis - Core Protocol Implementation
"""
import json
import asyncio
import uvicorn
from fastapi import FastAPI, Request
from typing import Dict, List, Any, Optional, Callable
from dataclasses import dataclass
from enum import Enum
import logging
from spend_analyzer import SpendAnalyzer

# MCP Protocol Types
class MessageType(Enum):
    REQUEST = "request"
    RESPONSE = "response"
    NOTIFICATION = "notification"

@dataclass
class MCPMessage:
    jsonrpc: str = "2.0"
    id: Optional[str] = None
    method: Optional[str] = None
    params: Optional[Dict] = None
    result: Optional[Any] = None
    error: Optional[Dict] = None

class MCPServer:
    def __init__(self):
        self.tools = {}
        self.resources = {}
        self.prompts = {}
        self.logger = logging.getLogger(__name__)
        
    def register_tool(self, name: str, description: str, handler, input_schema=None):
        """Register a tool that Claude can call"""
        if input_schema is None:
            input_schema = {
                "type": "object",
                "properties": {},
                "required": []
            }
            
        self.tools[name] = {
            "description": description,
            "handler": handler,
            "input_schema": input_schema
        }
    
    def register_resource(self, uri: str, name: str, description: str, handler):
        """Register a resource that provides data"""
        self.resources[uri] = {
            "name": name,
            "description": description,
            "handler": handler,
            "mimeType": "application/json"
        }
    
    async def handle_message(self, message: Dict) -> Dict:
        """Handle incoming MCP messages"""
        try:
            method = message.get("method")
            params = message.get("params", {})
            msg_id = message.get("id")
            
            if method == "initialize":
                return self._handle_initialize(msg_id)
            elif method == "tools/list":
                return self._handle_list_tools(msg_id)
            elif method == "tools/call":
                return await self._handle_call_tool(msg_id, params)
            elif method == "resources/list":
                return self._handle_list_resources(msg_id)
            elif method == "resources/read":
                return await self._handle_read_resource(msg_id, params)
            else:
                return self._error_response(msg_id, -32601, f"Method not found: {method}")
                
        except Exception as e:
            self.logger.error(f"Error handling message: {e}")
            return self._error_response(message.get("id"), -32603, str(e))
    
    def _handle_initialize(self, msg_id: Optional[str]) -> Dict:
        """Handle MCP initialization"""
        return {
            "jsonrpc": "2.0",
            "id": msg_id,
            "result": {
                "protocolVersion": "2024-11-05",
                "capabilities": {
                    "tools": {},
                    "resources": {},
                    "prompts": {}
                },
                "serverInfo": {
                    "name": "spend-analyzer-mcp-bmt",
                    "version": "1.0.0"
                }
            }
        }
    
    def _handle_list_tools(self, msg_id: Optional[str]) -> Dict:
        """List available tools"""
        tools_list = []
        for name, tool in self.tools.items():
            tools_list.append({
                "name": name,
                "description": tool["description"],
                "inputSchema": tool["input_schema"]
            })
        
        return {
            "jsonrpc": "2.0",
            "id": msg_id,
            "result": {"tools": tools_list}
        }
    
    async def _handle_call_tool(self, msg_id: Optional[str], params: Dict) -> Dict:
        """Execute a tool call"""
        tool_name = params.get("name")
        arguments = params.get("arguments", {})
        
        if tool_name not in self.tools:
            return self._error_response(msg_id, -32602, f"Tool not found: {tool_name}")
        
        try:
            handler = self.tools[tool_name]["handler"]
            result = await handler(arguments)
            return {
                "jsonrpc": "2.0",
                "id": msg_id,
                "result": {
                    "content": [
                        {
                            "type": "text",
                            "text": json.dumps(result)
                        }
                    ]
                }
            }
        except Exception as e:
            return self._error_response(msg_id, -32603, f"Tool execution failed: {str(e)}")
    
    def _handle_list_resources(self, msg_id: Optional[str]) -> Dict:
        """List available resources"""
        resources_list = []
        for uri, resource in self.resources.items():
            resources_list.append({
                "uri": uri,
                "name": resource["name"],
                "description": resource["description"],
                "mimeType": resource["mimeType"]
            })
        
        return {
            "jsonrpc": "2.0",
            "id": msg_id,
            "result": {"resources": resources_list}
        }
    
    async def _handle_read_resource(self, msg_id: Optional[str], params: Dict) -> Dict:
        """Read a resource"""
        uri = params.get("uri")
        
        if uri not in self.resources:
            return self._error_response(msg_id, -32602, f"Resource not found: {uri}")
        
        try:
            handler = self.resources[uri]["handler"]
            content = await handler()
            return {
                "jsonrpc": "2.0",
                "id": msg_id,
                "result": {
                    "contents": [
                        {
                            "uri": uri,
                            "mimeType": "application/json",
                            "text": json.dumps(content, indent=2)
                        }
                    ]
                }
            }
        except Exception as e:
            return self._error_response(msg_id, -32603, f"Resource read failed: {str(e)}")
    
    def _error_response(self, msg_id: Optional[str], code: int, message: str) -> Dict:
        """Create error response"""
        return {
            "jsonrpc": "2.0",
            "id": msg_id,
            "error": {
                "code": code,
                "message": message
            }
        }

# Register all tools for the MCP server
def register_all_tools(server: MCPServer):
    """Register all tools with the MCP server"""
    
    # Process email statements tool
    async def process_email_statements_tool(args: Dict) -> Dict:
        """Process bank statements from email"""
        from email_processor import EmailProcessor, PDFProcessor
        
        email_config = args.get('email_config', {})
        days_back = args.get('days_back', 30)
        passwords = args.get('passwords', {})
        
        try:
            # Initialize processors
            email_processor = EmailProcessor(email_config)
            pdf_processor = PDFProcessor()
            analyzer = SpendAnalyzer()
            
            # Fetch emails
            emails = await email_processor.fetch_bank_emails(days_back)
            
            all_transactions = []
            processed_statements = []
            
            for email_msg in emails:
                # Extract attachments
                attachments = await email_processor.extract_attachments(email_msg)
                
                for filename, content, file_type in attachments:
                    if file_type == 'pdf':
                        # Try to process PDF
                        password = passwords.get(filename)
                        
                        try:
                            statement_info = await pdf_processor.process_pdf(content, password)
                            all_transactions.extend(statement_info.transactions)
                            processed_statements.append({
                                'filename': filename,
                                'bank': statement_info.bank_name,
                                'account': statement_info.account_number,
                                'transaction_count': len(statement_info.transactions)
                            })
                        except Exception as e:
                            processed_statements.append({
                                'filename': filename,
                                'status': 'error',
                                'error': str(e)
                            })
            
            # Analyze transactions
            if all_transactions:
                analyzer.load_transactions(all_transactions)
                analysis_data = analyzer.export_analysis_data()
            else:
                analysis_data = {'message': 'No transactions found'}
            
            return {
                'processed_statements': processed_statements,
                'total_transactions': len(all_transactions),
                'analysis': analysis_data
            }
            
        except Exception as e:
            return {'error': str(e)}
    
    # Analyze PDF statements tool
    async def analyze_pdf_statements_tool(args: Dict) -> Dict:
        """Analyze uploaded PDF statements"""
        from email_processor import PDFProcessor
        
        pdf_contents = args.get('pdf_contents', {})
        passwords = args.get('passwords', {})
        
        try:
            pdf_processor = PDFProcessor()
            analyzer = SpendAnalyzer()
            
            all_transactions = []
            processed_files = []
            
            for filename, content in pdf_contents.items():
                try:
                    password = passwords.get(filename)
                    statement_info = await pdf_processor.process_pdf(content, password)
                    
                    all_transactions.extend(statement_info.transactions)
                    processed_files.append({
                        'filename': filename,
                        'bank': statement_info.bank_name,
                        'account': statement_info.account_number,
                        'transaction_count': len(statement_info.transactions),
                        'status': 'success'
                    })
                    
                except Exception as e:
                    processed_files.append({
                        'filename': filename,
                        'status': 'error',
                        'error': str(e)
                    })
            
            # Analyze transactions
            if all_transactions:
                analyzer.load_transactions(all_transactions)
                analysis_data = analyzer.export_analysis_data()
            else:
                analysis_data = {'message': 'No transactions found'}
            
            return {
                'processed_files': processed_files,
                'total_transactions': len(all_transactions),
                'analysis': analysis_data
            }
            
        except Exception as e:
            return {'error': str(e)}
    
    # Get AI analysis tool
    async def get_ai_analysis_tool(args: Dict) -> Dict:
        """Get AI financial analysis"""
        import os
        
        analysis_data = args.get('analysis_data', {})
        user_question = args.get('user_question', '')
        provider = args.get('provider', 'claude')
        
        try:
            # Prepare context for AI
            context = f"""
            Financial Analysis Data:
            {json.dumps(analysis_data, indent=2, default=str)}
            
            User Question: {user_question if user_question else "Please provide a comprehensive analysis of my spending patterns and recommendations."}
            """
            
            prompt = f"""
            You are a financial advisor analyzing bank statement data. 
            Based on the provided financial data, give insights about:
            
            1. Spending patterns and trends
            2. Budget adherence and alerts
            3. Unusual transactions that need attention
            4. Specific recommendations for improvement
            5. Answer to the user's specific question if provided
            
            Be specific, actionable, and highlight both positive aspects and areas for improvement.
            
            {context}
            """
            
            if provider.lower() == "claude":
                # Call Claude API
                try:
                    import anthropic
                    
                    client = anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY", ""))
                    
                    response = client.messages.create(
                        model="claude-3-sonnet-20240229",
                        max_tokens=1500,
                        messages=[
                            {
                                "role": "user",
                                "content": prompt
                            }
                        ]
                    )
                    
                    # Handle different response formats
                    try:
                        # Extract text from Claude response
                        if hasattr(response, 'content') and response.content:
                            content_item = response.content[0]
                            # Handle different Claude API versions
                            if isinstance(content_item, dict):
                                if 'text' in content_item:
                                    analysis_text = content_item['text']
                                else:
                                    analysis_text = str(content_item)
                            # Handle object with attributes
                            elif hasattr(content_item, '__dict__'):
                                content_dict = vars(content_item)
                                if 'text' in content_dict:
                                    analysis_text = content_dict['text']
                                else:
                                    analysis_text = str(content_item)
                            else:
                                analysis_text = str(content_item)
                        else:
                            analysis_text = str(response)
                    except Exception as e:
                        analysis_text = f"Error parsing Claude response: {str(e)}"
                    
                    return {
                        'ai_analysis': analysis_text,
                        'provider': 'claude',
                        'model': 'claude-3-sonnet-20240229'
                    }
                    
                except Exception as e:
                    return {'error': f"Claude API error: {str(e)}"}
                    
            elif provider.lower() == "sambanova":
                # Call SambaNova API
                try:
                    import openai
                    
                    # SambaNova uses OpenAI-compatible API
                    client = openai.OpenAI(
                        api_key=os.environ.get("SAMBANOVA_API_KEY", ""),
                        base_url="https://api.sambanova.ai/v1"
                    )
                    
                    response = client.chat.completions.create(
                        model="Meta-Llama-3.1-8B-Instruct",  # SambaNova model
                        messages=[
                            {
                                "role": "user",
                                "content": prompt
                            }
                        ],
                        max_tokens=1500,
                        temperature=0.7
                    )
                    
                    return {
                        'ai_analysis': response.choices[0].message.content,
                        'provider': 'sambanova',
                        'model': 'Meta-Llama-3.1-8B-Instruct'
                    }
                    
                except Exception as e:
                    return {'error': f"SambaNova API error: {str(e)}"}
            else:
                return {'error': f"Unsupported provider: {provider}"}
                
        except Exception as e:
            return {'error': f"AI API error: {str(e)}"}
    
    # Register tools with proper input schemas
    server.register_tool(
        "process_email_statements", 
        "Process bank statements from email", 
        process_email_statements_tool,
        input_schema={
            "type": "object",
            "properties": {
                "email_config": {
                    "type": "object",
                    "properties": {
                        "email": {"type": "string"},
                        "password": {"type": "string"},
                        "imap_server": {"type": "string"}
                    },
                    "required": ["email", "password", "imap_server"]
                },
                "days_back": {"type": "integer", "default": 30},
                "passwords": {
                    "type": "object",
                    "additionalProperties": {"type": "string"}
                }
            },
            "required": ["email_config"]
        }
    )
    
    server.register_tool(
        "analyze_pdf_statements", 
        "Analyze uploaded PDF statements", 
        analyze_pdf_statements_tool,
        input_schema={
            "type": "object",
            "properties": {
                "pdf_contents": {
                    "type": "object",
                    "additionalProperties": {"type": "string", "format": "binary"}
                },
                "passwords": {
                    "type": "object",
                    "additionalProperties": {"type": "string"}
                }
            },
            "required": ["pdf_contents"]
        }
    )
    
    server.register_tool(
        "get_ai_analysis", 
        "Get AI financial analysis (Claude or SambaNova)", 
        get_ai_analysis_tool,
        input_schema={
            "type": "object",
            "properties": {
                "analysis_data": {"type": "object"},
                "user_question": {"type": "string"},
                "provider": {
                    "type": "string",
                    "enum": ["claude", "sambanova"],
                    "default": "claude"
                }
            },
            "required": ["analysis_data"]
        }
    )

# Register all resources for the MCP server
def register_all_resources(server: MCPServer):
    """Register all resources with the MCP server"""
    
    # Spending insights resource
    async def get_spending_insights_resource():
        """Resource handler for spending insights"""
        from dataclasses import asdict
        analyzer = SpendAnalyzer()
        
        # Try to load sample data if available
        try:
            import os
            import json
            
            sample_path = os.path.join(os.path.dirname(__file__), "sample_data", "transactions.json")
            if os.path.exists(sample_path):
                with open(sample_path, 'r') as f:
                    transactions = json.load(f)
                analyzer.load_transactions(transactions)
        except Exception as e:
            logging.warning(f"Could not load sample data: {e}")
            # Return empty insights if no data
            return []
            
        # Convert SpendingInsight objects to dictionaries
        insights = analyzer.analyze_spending_by_category()
        return [asdict(insight) for insight in insights]
    
    # Budget alerts resource
    async def get_budget_alerts_resource():
        """Resource handler for budget alerts"""
        from dataclasses import asdict
        analyzer = SpendAnalyzer()
        
        # Try to load sample data and budgets if available
        try:
            import os
            import json
            
            sample_path = os.path.join(os.path.dirname(__file__), "sample_data", "transactions.json")
            budgets_path = os.path.join(os.path.dirname(__file__), "sample_data", "budgets.json")
            
            if os.path.exists(sample_path) and os.path.exists(budgets_path):
                with open(sample_path, 'r') as f:
                    transactions = json.load(f)
                with open(budgets_path, 'r') as f:
                    budgets = json.load(f)
                    
                analyzer.load_transactions(transactions)
                analyzer.set_budgets(budgets)
        except Exception as e:
            logging.warning(f"Could not load sample data: {e}")
            # Return empty alerts if no data
            return []
            
        # Convert BudgetAlert objects to dictionaries
        alerts = analyzer.check_budget_alerts()
        return [asdict(alert) for alert in alerts]
    
    # Financial summary resource
    async def get_financial_summary_resource():
        """Resource handler for financial summary"""
        from dataclasses import asdict
        analyzer = SpendAnalyzer()
        
        # Try to load sample data if available
        try:
            import os
            import json
            
            sample_path = os.path.join(os.path.dirname(__file__), "sample_data", "transactions.json")
            if os.path.exists(sample_path):
                with open(sample_path, 'r') as f:
                    transactions = json.load(f)
                analyzer.load_transactions(transactions)
        except Exception as e:
            logging.warning(f"Could not load sample data: {e}")
            # Return empty summary if no data
            return {
                "total_income": 0,
                "total_expenses": 0,
                "net_cash_flow": 0,
                "largest_expense": {},
                "most_frequent_category": "",
                "unusual_transactions": [],
                "monthly_trends": {}
            }
            
        # Convert FinancialSummary object to dictionary
        summary = analyzer.generate_financial_summary()
        return asdict(summary)
    
    # Register resources
    server.register_resource(
        uri="spending-insights",
        name="Spending Insights",
        description="Current spending insights by category",
        handler=get_spending_insights_resource
    )
    
    server.register_resource(
        uri="budget-alerts",
        name="Budget Alerts",
        description="Current budget alerts and overspending warnings",
        handler=get_budget_alerts_resource
    )
    
    server.register_resource(
        uri="financial-summary",
        name="Financial Summary",
        description="Comprehensive financial summary and analysis",
        handler=get_financial_summary_resource
    )

# Create FastAPI app for MCP server
def create_mcp_app():
    """Create a FastAPI app for the MCP server"""
    app = FastAPI(title="Spend Analyzer MCP Server")
    server = MCPServer()
    
    # Register tools and resources
    register_all_tools(server)
    register_all_resources(server)
    
    @app.post("/mcp")
    async def handle_mcp_request(request: Request):
        """Handle MCP protocol requests"""
        try:
            data = await request.json()
            return await server.handle_message(data)
        except Exception as e:
            return {
                "jsonrpc": "2.0",
                "id": None,
                "error": {
                    "code": -32700,
                    "message": f"Parse error: {str(e)}"
                }
            }
    
    @app.get("/")
    async def root():
        """Root endpoint with server info"""
        return {
            "name": "Spend Analyzer MCP Server",
            "version": "1.0.0",
            "description": "MCP server for financial analysis",
            "endpoints": {
                "/mcp": "MCP protocol endpoint",
                "/docs": "API documentation"
            }
        }
    
    return app

# Run standalone MCP server
def run_mcp_server(host='0.0.0.0', port=8000):
    """Run a standalone MCP server"""
    app = create_mcp_app()
    uvicorn.run(app, host=host, port=port)

# Example usage and testing
if __name__ == "__main__":
    # Run the standalone MCP server
    print("Starting Spend Analyzer MCP Server...")
    print("MCP endpoint will be available at: http://localhost:8000/mcp")
    print("API documentation will be available at: http://localhost:8000/docs")
    run_mcp_server()