Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
| 6 |
import gradio as gr
|
|
@@ -25,272 +36,113 @@ from sklearn.feature_selection import SelectFromModel
|
|
| 25 |
import tempfile
|
| 26 |
import matplotlib.pyplot as plt
|
| 27 |
import seaborn as sns
|
| 28 |
-
#------------------------------------------GRUModel-------------------------------------
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
scaler = MinMaxScaler()
|
| 36 |
trainX_scaled = scaler.fit_transform(trainX)
|
| 37 |
testX_scaled = scaler.transform(testX) if testX is not None else None
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
trainy_scaled = target_scaler.fit_transform(trainy.reshape(-1, 1))
|
| 42 |
-
|
| 43 |
-
# Model definition
|
| 44 |
-
model = Sequential()
|
| 45 |
-
|
| 46 |
-
# Input Layer
|
| 47 |
-
model.add(Dense(512, input_shape=(trainX.shape[1],), kernel_initializer='he_normal',
|
| 48 |
-
kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 49 |
-
model.add(BatchNormalization())
|
| 50 |
-
model.add(Dropout(dropout_rate))
|
| 51 |
-
model.add(LeakyReLU(alpha=0.1))
|
| 52 |
-
|
| 53 |
-
# Hidden Layers
|
| 54 |
-
model.add(Dense(256, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 55 |
-
model.add(BatchNormalization())
|
| 56 |
-
model.add(Dropout(dropout_rate))
|
| 57 |
-
model.add(LeakyReLU(alpha=0.1))
|
| 58 |
-
|
| 59 |
-
model.add(Dense(128, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 60 |
-
model.add(BatchNormalization())
|
| 61 |
-
model.add(Dropout(dropout_rate))
|
| 62 |
-
model.add(LeakyReLU(alpha=0.1))
|
| 63 |
-
|
| 64 |
-
model.add(Dense(64, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 65 |
-
model.add(BatchNormalization())
|
| 66 |
-
model.add(Dropout(dropout_rate))
|
| 67 |
-
model.add(LeakyReLU(alpha=0.1))
|
| 68 |
-
|
| 69 |
-
model.add(Dense(32, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 70 |
-
model.add(BatchNormalization())
|
| 71 |
-
model.add(Dropout(dropout_rate))
|
| 72 |
-
model.add(LeakyReLU(alpha=0.1))
|
| 73 |
-
|
| 74 |
-
# Output Layer
|
| 75 |
-
model.add(Dense(1, activation="relu"))
|
| 76 |
-
|
| 77 |
-
# Compile Model
|
| 78 |
-
model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
|
| 79 |
-
|
| 80 |
-
# Callbacks
|
| 81 |
-
callbacks = [
|
| 82 |
-
ReduceLROnPlateau(monitor='val_loss', patience=10, verbose=1, factor=0.5, min_lr=1e-6),
|
| 83 |
-
EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
|
| 84 |
-
]
|
| 85 |
-
|
| 86 |
-
# Train model
|
| 87 |
-
history = model.fit(trainX_scaled, trainy_scaled, epochs=epochs, batch_size=batch_size, validation_split=0.1,
|
| 88 |
-
verbose=1, callbacks=callbacks)
|
| 89 |
-
|
| 90 |
-
# Predictions
|
| 91 |
-
predicted_train = model.predict(trainX_scaled).flatten()
|
| 92 |
-
predicted_test = model.predict(testX_scaled).flatten() if testX is not None else None
|
| 93 |
-
|
| 94 |
-
# Inverse transform predictions
|
| 95 |
-
predicted_train = target_scaler.inverse_transform(predicted_train.reshape(-1, 1)).flatten()
|
| 96 |
-
if predicted_test is not None:
|
| 97 |
-
predicted_test = target_scaler.inverse_transform(predicted_test.reshape(-1, 1)).flatten()
|
| 98 |
-
|
| 99 |
-
return predicted_train, predicted_test, history
|
| 100 |
-
|
| 101 |
-
#def GRUModel(trainX, trainy, testX=None, testy=None, epochs=1000, batch_size=64, learning_rate=0.0001,
|
| 102 |
-
# l1_reg=0.001, l2_reg=0.001, dropout_rate=0.2, feature_selection=True, top_k=10):
|
| 103 |
-
|
| 104 |
-
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
#
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
# testX_scaled = scaler.transform(testX) if testX is not None else None
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
#if testX is not None:
|
| 119 |
-
# testX = testX_scaled.reshape((testX.shape[0], 1, testX.shape[1]))
|
| 120 |
-
|
| 121 |
-
# Model definition
|
| 122 |
-
#model = Sequential()
|
| 123 |
-
#model.add(GRU(512, input_shape=(trainX.shape[1], trainX.shape[2]), return_sequences=False,
|
| 124 |
-
#kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
#model.add(Dense(512, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 128 |
-
#model.add(BatchNormalization())
|
| 129 |
-
#model.add(Dropout(dropout_rate))
|
| 130 |
-
#model.add(LeakyReLU(alpha=0.1))
|
| 131 |
-
|
| 132 |
-
#model.add(Dense(256, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 133 |
-
#model.add(BatchNormalization())
|
| 134 |
-
#model.add(Dropout(dropout_rate))
|
| 135 |
-
#model.add(LeakyReLU(alpha=0.1))
|
| 136 |
-
|
| 137 |
-
#model.add(Dense(128, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 138 |
-
#model.add(BatchNormalization())
|
| 139 |
-
#model.add(Dropout(dropout_rate))
|
| 140 |
-
#model.add(LeakyReLU(alpha=0.1))
|
| 141 |
-
|
| 142 |
-
#model.add(Dense(64, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 143 |
-
#model.add(BatchNormalization())
|
| 144 |
-
#model.add(Dropout(dropout_rate))
|
| 145 |
-
#model.add(LeakyReLU(alpha=0.1))
|
| 146 |
-
|
| 147 |
-
#model.add(Dense(32, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 148 |
-
#model.add(BatchNormalization())
|
| 149 |
-
#model.add(Dropout(dropout_rate))
|
| 150 |
-
#model.add(LeakyReLU(alpha=0.1))
|
| 151 |
-
|
| 152 |
-
#model.add(Dense(1, activation="relu")) # Output layer
|
| 153 |
-
|
| 154 |
-
#model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
|
| 155 |
|
| 156 |
# Callbacks
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
# EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
|
| 160 |
-
#]
|
| 161 |
|
| 162 |
-
# Train
|
| 163 |
-
|
|
|
|
| 164 |
|
| 165 |
# Predictions
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
# Inverse transform predictions
|
| 170 |
-
# predicted_train = target_scaler.inverse_transform(predicted_train.reshape(-1, 1)).flatten()
|
| 171 |
-
# if predicted_test is not None:
|
| 172 |
-
# predicted_test = target_scaler.inverse_transform(predicted_test.reshape(-1, 1)).flatten()
|
| 173 |
-
|
| 174 |
-
#return predicted_train, predicted_test, history
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
#--------------------------------------------------CNNModel-------------------------------------------
|
| 180 |
-
def CNNModel(trainX, trainy, testX, testy, epochs=1000, batch_size=64, learning_rate=0.0001, l1_reg=0.0001, l2_reg=0.0001, dropout_rate=0.3,feature_selection=True):
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
# Scaling the inputs
|
| 185 |
-
scaler = MinMaxScaler()
|
| 186 |
-
trainX_scaled = scaler.fit_transform(trainX)
|
| 187 |
-
if testX is not None:
|
| 188 |
-
testX_scaled = scaler.transform(testX)
|
| 189 |
-
|
| 190 |
-
# Reshape for CNN input (samples, features, channels)
|
| 191 |
-
trainX = trainX_scaled.reshape((trainX.shape[0], trainX.shape[1], 1))
|
| 192 |
-
if testX is not None:
|
| 193 |
-
testX = testX_scaled.reshape((testX.shape[0], testX.shape[1], 1))
|
| 194 |
-
|
| 195 |
-
model = Sequential()
|
| 196 |
-
|
| 197 |
-
# Convolutional layers
|
| 198 |
-
model.add(Conv1D(512, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 199 |
-
model.add(MaxPooling1D(pool_size=2))
|
| 200 |
-
model.add(Dropout(dropout_rate))
|
| 201 |
-
|
| 202 |
-
model.add(Conv1D(256, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 203 |
-
model.add(MaxPooling1D(pool_size=2))
|
| 204 |
-
model.add(Dropout(dropout_rate))
|
| 205 |
-
|
| 206 |
-
model.add(Conv1D(128, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 207 |
-
model.add(MaxPooling1D(pool_size=2))
|
| 208 |
-
model.add(Dropout(dropout_rate))
|
| 209 |
-
|
| 210 |
-
# Flatten and Dense layers
|
| 211 |
-
model.add(Flatten())
|
| 212 |
-
model.add(Dense(64, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
|
| 213 |
-
model.add(LeakyReLU(alpha=0.1))
|
| 214 |
-
model.add(Dropout(dropout_rate))
|
| 215 |
-
|
| 216 |
-
model.add(Dense(1, activation='linear'))
|
| 217 |
|
| 218 |
-
# Compile the model
|
| 219 |
-
model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
|
| 220 |
-
|
| 221 |
-
# Callbacks
|
| 222 |
-
learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=5, verbose=1, factor=0.5, min_lr=1e-6)
|
| 223 |
-
early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
|
| 224 |
-
|
| 225 |
-
# Train the model
|
| 226 |
-
history = model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1,
|
| 227 |
-
callbacks=[learning_rate_reduction, early_stopping])
|
| 228 |
-
|
| 229 |
-
predicted_train = model.predict(trainX).flatten()
|
| 230 |
-
predicted_test = model.predict(testX).flatten() if testX is not None else None
|
| 231 |
-
|
| 232 |
return predicted_train, predicted_test, history
|
| 233 |
-
#------------------------------------------RFModel---------------------------------------------------
|
| 234 |
-
def RFModel(trainX, trainy, testX, testy, n_estimators=100, max_depth=None,feature_selection=True):
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
# Log transformation of the target variable
|
| 238 |
-
|
| 239 |
-
# Scaling the feature data
|
| 240 |
-
scaler = MinMaxScaler()
|
| 241 |
-
trainX_scaled = scaler.fit_transform(trainX)
|
| 242 |
-
if testX is not None:
|
| 243 |
-
testX_scaled = scaler.transform(testX)
|
| 244 |
-
|
| 245 |
-
# Define and train the RandomForest model
|
| 246 |
-
rf_model = RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
|
| 247 |
-
history=rf_model.fit(trainX_scaled, trainy)
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
# Predictions
|
| 251 |
-
predicted_train = rf_model.predict(trainX_scaled)
|
| 252 |
-
predicted_test = rf_model.predict(testX_scaled) if testX is not None else None
|
| 253 |
-
|
| 254 |
-
return predicted_train, predicted_test,history
|
| 255 |
-
#-------------------------------------------------XGBoost--------------------------------------------
|
| 256 |
-
def XGBoostModel(trainX, trainy, testX, testy,learning_rate,min_child_weight,feature_selection=True, n_estimators=100, max_depth=None):
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
# Scale the features
|
| 261 |
-
scaler = MinMaxScaler()
|
| 262 |
-
trainX_scaled = scaler.fit_transform(trainX)
|
| 263 |
-
if testX is not None:
|
| 264 |
-
testX_scaled = scaler.transform(testX)
|
| 265 |
|
| 266 |
-
|
| 267 |
-
xgb_model=XGBRegressor(objective="reg:squarederror",random_state=42)
|
| 268 |
-
history=xgb_model.fit(trainX, trainy)
|
| 269 |
-
#param_grid={
|
| 270 |
-
#"learning_rate":0.01,
|
| 271 |
-
#"max_depth" : 10,
|
| 272 |
-
#"n_estimators": 100,
|
| 273 |
-
#"min_child_weight": 10
|
| 274 |
-
# }
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
# Predictions
|
| 278 |
-
predicted_train = xgb_model.predict(trainX_scaled)
|
| 279 |
-
predicted_test = xgb_model.predict(testX_scaled) if testX is not None else None
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
return predicted_train, predicted_test,history
|
| 283 |
-
#------------------------------------------------------------------File--------------------------------------------
|
| 284 |
-
def read_csv_file(uploaded_file):
|
| 285 |
-
if uploaded_file is not None:
|
| 286 |
-
if hasattr(uploaded_file, 'data'): # For NamedBytes
|
| 287 |
-
return pd.read_csv(io.BytesIO(uploaded_file.data))
|
| 288 |
-
elif hasattr(uploaded_file, 'name'): # For NamedString
|
| 289 |
-
return pd.read_csv(uploaded_file.name)
|
| 290 |
-
return None
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
#_-------------------------------------------------------------NestedKFold Cross Validation---------------------
|
| 294 |
def calculate_topsis_score(df):
|
| 295 |
# Normalize the data
|
| 296 |
norm_df = (df.iloc[:, 1:] - df.iloc[:, 1:].min()) / (df.iloc[:, 1:].max() - df.iloc[:, 1:].min())
|
|
@@ -310,7 +162,6 @@ def calculate_topsis_score(df):
|
|
| 310 |
df['TOPSIS_Score'] = topsis_score
|
| 311 |
|
| 312 |
return df
|
| 313 |
-
#_-------------------------------------------------------------NestedKFold Cross Validation---------------------
|
| 314 |
def NestedKFoldCrossValidation(training_data, training_additive, testing_data, testing_additive,
|
| 315 |
training_dominance, testing_dominance, epochs, learning_rate, min_child_weight, batch_size=64,
|
| 316 |
outer_n_splits=2, output_file='cross_validation_results.csv',
|
|
@@ -353,10 +204,8 @@ def NestedKFoldCrossValidation(training_data, training_additive, testing_data, t
|
|
| 353 |
return mse, rmse, r2, corr
|
| 354 |
|
| 355 |
models = [
|
| 356 |
-
|
| 357 |
-
('
|
| 358 |
-
('RFModel', RFModel),
|
| 359 |
-
('XGBoostModel', XGBoostModel)
|
| 360 |
]
|
| 361 |
|
| 362 |
for outer_fold, (outer_train_index, outer_test_index) in enumerate(outer_kf.split(phenotypic_info), 1):
|
|
@@ -383,10 +232,10 @@ def NestedKFoldCrossValidation(training_data, training_additive, testing_data, t
|
|
| 383 |
|
| 384 |
for model_name, model_func in models:
|
| 385 |
print(f"Running model: {model_name} for fold {outer_fold}")
|
| 386 |
-
if model_name in ['
|
| 387 |
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, epochs=epochs, batch_size=batch_size)
|
| 388 |
-
elif model_name in ['RFModel']:
|
| 389 |
-
|
| 390 |
else:
|
| 391 |
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, learning_rate, min_child_weight)
|
| 392 |
|
|
@@ -547,5 +396,4 @@ with gr.Blocks() as interface:
|
|
| 547 |
)
|
| 548 |
|
| 549 |
# Launch the interface
|
| 550 |
-
interface.launch()
|
| 551 |
-
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Fri Jan 31 13:24:37 2025
|
| 4 |
|
| 5 |
+
@author: Ashmitha
|
| 6 |
+
"""
|
| 7 |
|
| 8 |
+
import tensorflow as tf
|
| 9 |
+
from tensorflow.keras.layers import Input, Dense, Dropout, LayerNormalization
|
| 10 |
+
from tensorflow.keras.optimizers import Adam
|
| 11 |
+
from tensorflow.keras.models import Model
|
| 12 |
+
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
|
| 13 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 14 |
+
import pandas as pd
|
| 15 |
import pandas as pd
|
| 16 |
import numpy as np
|
| 17 |
import gradio as gr
|
|
|
|
| 36 |
import tempfile
|
| 37 |
import matplotlib.pyplot as plt
|
| 38 |
import seaborn as sns
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# Positional Encoding Function
|
| 41 |
+
def positional_encoding(seq_len, d_model):
|
| 42 |
+
pos = tf.range(seq_len, dtype=tf.float32)[:, tf.newaxis]
|
| 43 |
+
div_term = tf.exp(tf.range(0, d_model, 2, dtype=tf.float32) * (-tf.math.log(10000.0) / d_model))
|
| 44 |
+
pos_encoding = tf.concat([tf.sin(pos * div_term), tf.cos(pos * div_term)], axis=-1)
|
| 45 |
+
return pos_encoding[tf.newaxis, ...]
|
| 46 |
+
|
| 47 |
+
# Multi-Head Self-Attention Layer
|
| 48 |
+
class MultiHeadSelfAttention(tf.keras.layers.Layer):
|
| 49 |
+
def __init__(self, embed_dim, num_heads):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.num_heads = num_heads
|
| 52 |
+
self.embed_dim = embed_dim
|
| 53 |
+
assert embed_dim % num_heads == 0, "Embedding dimension must be divisible by number of heads"
|
| 54 |
+
|
| 55 |
+
self.depth = embed_dim // num_heads
|
| 56 |
+
self.wq = Dense(embed_dim)
|
| 57 |
+
self.wk = Dense(embed_dim)
|
| 58 |
+
self.wv = Dense(embed_dim)
|
| 59 |
+
self.dense = Dense(embed_dim)
|
| 60 |
+
|
| 61 |
+
def split_heads(self, x, batch_size):
|
| 62 |
+
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
|
| 63 |
+
return tf.transpose(x, perm=[0, 2, 1, 3]) # (batch_size, num_heads, seq_length, depth)
|
| 64 |
+
|
| 65 |
+
def call(self, inputs):
|
| 66 |
+
batch_size = tf.shape(inputs)[0]
|
| 67 |
+
q = self.split_heads(self.wq(inputs), batch_size)
|
| 68 |
+
k = self.split_heads(self.wk(inputs), batch_size)
|
| 69 |
+
v = self.split_heads(self.wv(inputs), batch_size)
|
| 70 |
+
|
| 71 |
+
attention_scores = tf.matmul(q, k, transpose_b=True) / tf.math.sqrt(float(self.depth))
|
| 72 |
+
attention_weights = tf.nn.softmax(attention_scores, axis=-1)
|
| 73 |
+
attention_output = tf.matmul(attention_weights, v)
|
| 74 |
+
|
| 75 |
+
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
|
| 76 |
+
concat_attention = tf.reshape(attention_output, (batch_size, -1, self.embed_dim))
|
| 77 |
+
output = self.dense(concat_attention)
|
| 78 |
+
return output
|
| 79 |
+
|
| 80 |
+
# Transformer Block
|
| 81 |
+
class TransformerBlock(tf.keras.layers.Layer):
|
| 82 |
+
def __init__(self, embed_dim, num_heads, ff_dim, dropout_rate=0.1):
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.att = MultiHeadSelfAttention(embed_dim, num_heads)
|
| 85 |
+
self.norm1 = LayerNormalization(epsilon=1e-6)
|
| 86 |
+
self.norm2 = LayerNormalization(epsilon=1e-6)
|
| 87 |
+
self.ffn = tf.keras.Sequential([
|
| 88 |
+
Dense(ff_dim, activation="relu"),
|
| 89 |
+
Dense(embed_dim),
|
| 90 |
+
])
|
| 91 |
+
self.dropout1 = Dropout(dropout_rate)
|
| 92 |
+
self.dropout2 = Dropout(dropout_rate)
|
| 93 |
+
|
| 94 |
+
def call(self, inputs, training):
|
| 95 |
+
attn_output = self.att(inputs)
|
| 96 |
+
attn_output = self.dropout1(attn_output, training=training)
|
| 97 |
+
out1 = self.norm1(inputs + attn_output)
|
| 98 |
+
|
| 99 |
+
ffn_output = self.ffn(out1)
|
| 100 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
| 101 |
+
return self.norm2(out1 + ffn_output)
|
| 102 |
+
|
| 103 |
+
# Transformer Model
|
| 104 |
+
def TransformerModel(trainX, trainy, testX, testy, embed_dim=128, num_heads=8, ff_dim=256,
|
| 105 |
+
epochs=100, batch_size=64, learning_rate=0.0001, dropout_rate=0.3):
|
| 106 |
+
|
| 107 |
+
# Feature Scaling
|
| 108 |
scaler = MinMaxScaler()
|
| 109 |
trainX_scaled = scaler.fit_transform(trainX)
|
| 110 |
testX_scaled = scaler.transform(testX) if testX is not None else None
|
| 111 |
|
| 112 |
+
# Ensure correct input shape
|
| 113 |
+
seq_len = trainX.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
# Define Model
|
| 116 |
+
inputs = Input(shape=(seq_len, 1)) # Input reshaped to (batch, seq_len, 1)
|
| 117 |
+
x = Dense(embed_dim)(inputs) # Feature projection
|
| 118 |
+
pos_encoding = positional_encoding(seq_len, embed_dim)
|
| 119 |
+
x += tf.broadcast_to(pos_encoding, tf.shape(x)) # Ensure shape compatibility
|
| 120 |
|
| 121 |
+
# Transformer Blocks
|
| 122 |
+
for _ in range(3):
|
| 123 |
+
x = TransformerBlock(embed_dim, num_heads, ff_dim, dropout_rate)(x)
|
|
|
|
| 124 |
|
| 125 |
+
x = Dense(64, activation="relu")(x)
|
| 126 |
+
x = Dropout(dropout_rate)(x)
|
| 127 |
+
outputs = Dense(1, activation="linear")(tf.reduce_mean(x, axis=1)) # Reduce along sequence length
|
| 128 |
|
| 129 |
+
model = Model(inputs, outputs)
|
| 130 |
+
model.compile(loss="mse", optimizer=Adam(learning_rate=learning_rate), metrics=["mse"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
# Callbacks
|
| 133 |
+
lr_reduction = ReduceLROnPlateau(monitor="val_loss", patience=5, factor=0.5, min_lr=1e-6, verbose=1)
|
| 134 |
+
early_stopping = EarlyStopping(monitor="val_loss", patience=10, restore_best_weights=True, verbose=1)
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
# Train Model
|
| 137 |
+
history = model.fit(trainX_scaled[..., np.newaxis], trainy, validation_split=0.1,
|
| 138 |
+
epochs=epochs, batch_size=batch_size, callbacks=[lr_reduction, early_stopping], verbose=1)
|
| 139 |
|
| 140 |
# Predictions
|
| 141 |
+
predicted_train = model.predict(trainX_scaled[..., np.newaxis]).flatten()
|
| 142 |
+
predicted_test = model.predict(testX_scaled[..., np.newaxis]).flatten() if testX is not None else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
return predicted_train, predicted_test, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
def calculate_topsis_score(df):
|
| 147 |
# Normalize the data
|
| 148 |
norm_df = (df.iloc[:, 1:] - df.iloc[:, 1:].min()) / (df.iloc[:, 1:].max() - df.iloc[:, 1:].min())
|
|
|
|
| 162 |
df['TOPSIS_Score'] = topsis_score
|
| 163 |
|
| 164 |
return df
|
|
|
|
| 165 |
def NestedKFoldCrossValidation(training_data, training_additive, testing_data, testing_additive,
|
| 166 |
training_dominance, testing_dominance, epochs, learning_rate, min_child_weight, batch_size=64,
|
| 167 |
outer_n_splits=2, output_file='cross_validation_results.csv',
|
|
|
|
| 204 |
return mse, rmse, r2, corr
|
| 205 |
|
| 206 |
models = [
|
| 207 |
+
|
| 208 |
+
('TransformerModel', TransformerModel)
|
|
|
|
|
|
|
| 209 |
]
|
| 210 |
|
| 211 |
for outer_fold, (outer_train_index, outer_test_index) in enumerate(outer_kf.split(phenotypic_info), 1):
|
|
|
|
| 232 |
|
| 233 |
for model_name, model_func in models:
|
| 234 |
print(f"Running model: {model_name} for fold {outer_fold}")
|
| 235 |
+
if model_name in ['TransformerModel' ]:
|
| 236 |
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, epochs=epochs, batch_size=batch_size)
|
| 237 |
+
#elif model_name in ['RFModel']:
|
| 238 |
+
# predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy)
|
| 239 |
else:
|
| 240 |
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, learning_rate, min_child_weight)
|
| 241 |
|
|
|
|
| 396 |
)
|
| 397 |
|
| 398 |
# Launch the interface
|
| 399 |
+
interface.launch()
|
|
|