Spaces:
Sleeping
Sleeping
eliujl
commited on
Commit
·
eef7615
1
Parent(s):
7ee9dd1
Updated with local LLMs
Browse filesUpdated with options of local Llama2 and Mistral models, using a local embedding model. Requires to pre-download the LLM models to a local folder. To be further improved.
app.py
CHANGED
|
@@ -6,9 +6,12 @@ from langchain.document_loaders import (
|
|
| 6 |
UnstructuredFileLoader,
|
| 7 |
)
|
| 8 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
|
| 9 |
from langchain.chat_models import ChatOpenAI
|
| 10 |
from langchain.vectorstores import Pinecone, Chroma
|
| 11 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
|
|
| 12 |
import os
|
| 13 |
import langchain
|
| 14 |
import pinecone
|
|
@@ -19,6 +22,10 @@ import json
|
|
| 19 |
OPENAI_API_KEY = ''
|
| 20 |
PINECONE_API_KEY = ''
|
| 21 |
PINECONE_API_ENV = ''
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
langchain.verbose = False
|
| 23 |
|
| 24 |
|
|
@@ -112,8 +119,15 @@ def setup_docsearch(use_pinecone, pinecone_index_name, embeddings, chroma_collec
|
|
| 112 |
index_client = pinecone.Index(pinecone_index_name)
|
| 113 |
# Get the index information
|
| 114 |
index_info = index_client.describe_index_stats()
|
| 115 |
-
namespace_name = ''
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
else:
|
| 118 |
raise ValueError('''Cannot find the specified Pinecone index.
|
| 119 |
Create one in pinecone.io or using, e.g.,
|
|
@@ -132,14 +146,69 @@ def get_response(query, chat_history, CRqa):
|
|
| 132 |
result = CRqa({"question": query, "chat_history": chat_history})
|
| 133 |
return result['answer'], result['source_documents']
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
def setup_em_llm(OPENAI_API_KEY, temperature, r_llm):
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
return embeddings, llm
|
| 144 |
|
| 145 |
|
|
@@ -166,38 +235,53 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
| 166 |
latest_chats = []
|
| 167 |
reply = ''
|
| 168 |
source = ''
|
|
|
|
| 169 |
# Get user input of whether to use Pinecone or not
|
| 170 |
col1, col2, col3 = st.columns([1, 1, 1])
|
| 171 |
# create the radio buttons and text input fields
|
| 172 |
with col1:
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
r_ingest = st.radio(
|
| 175 |
'Ingest file(s)?', ('Yes', 'No'))
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
| 179 |
with col2:
|
| 180 |
-
OPENAI_API_KEY = st.text_input(
|
| 181 |
-
"OpenAI API key:", type="password")
|
| 182 |
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
|
| 183 |
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
PINECONE_API_ENV = st.text_input(
|
| 192 |
-
"Pinecone API env:", type="password")
|
| 193 |
-
pinecone_index_name = st.text_input('Pinecone index:')
|
| 194 |
-
pinecone.init(api_key=PINECONE_API_KEY,
|
| 195 |
-
environment=PINECONE_API_ENV)
|
| 196 |
else:
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
if pinecone_index_name or chroma_collection_name:
|
| 203 |
session_name = pinecone_index_name + chroma_collection_name
|
|
@@ -220,8 +304,19 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
| 220 |
# number of sources (split-documents when ingesting files); default is 4
|
| 221 |
k = min([20, n_texts])
|
| 222 |
retriever = setup_retriever(docsearch, k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
CRqa = ConversationalRetrievalChain.from_llm(
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
st.title(':blue[Chatbot]')
|
| 227 |
# Get user input
|
|
@@ -239,6 +334,7 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
| 239 |
chat_history = [(user, bot)
|
| 240 |
for user, bot in chat_history]
|
| 241 |
reply, source = get_response(query, chat_history, CRqa)
|
|
|
|
| 242 |
# Update the chat history with the user input and system response
|
| 243 |
chat_history.append(('User', query))
|
| 244 |
chat_history.append(('Bot', reply))
|
|
|
|
| 6 |
UnstructuredFileLoader,
|
| 7 |
)
|
| 8 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 9 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
| 10 |
from langchain.chat_models import ChatOpenAI
|
| 11 |
from langchain.vectorstores import Pinecone, Chroma
|
| 12 |
from langchain.chains import ConversationalRetrievalChain
|
| 13 |
+
from langchain.prompts import PromptTemplate
|
| 14 |
+
from langchain.memory import ConversationBufferMemory
|
| 15 |
import os
|
| 16 |
import langchain
|
| 17 |
import pinecone
|
|
|
|
| 22 |
OPENAI_API_KEY = ''
|
| 23 |
PINECONE_API_KEY = ''
|
| 24 |
PINECONE_API_ENV = ''
|
| 25 |
+
gpt3p5 = 'gpt-3.5-turbo-1106'
|
| 26 |
+
gpt4 = 'gpt-4-1106-preview'
|
| 27 |
+
gpt_local_mistral = 'mistral_7b'
|
| 28 |
+
gpt_local_llama = 'llama_13b'
|
| 29 |
langchain.verbose = False
|
| 30 |
|
| 31 |
|
|
|
|
| 119 |
index_client = pinecone.Index(pinecone_index_name)
|
| 120 |
# Get the index information
|
| 121 |
index_info = index_client.describe_index_stats()
|
| 122 |
+
# namespace_name = ''
|
| 123 |
+
# if index_info is not None:
|
| 124 |
+
# print(index_info)
|
| 125 |
+
# print(index_info['namespaces'][namespace_name]['vector_count'])
|
| 126 |
+
# print(index_info['total_vector_count'])
|
| 127 |
+
# else:
|
| 128 |
+
# print("Index information is not available.")
|
| 129 |
+
# n_texts = index_info['namespaces'][namespace_name]['vector_count']
|
| 130 |
+
n_texts = index_info['total_vector_count']
|
| 131 |
else:
|
| 132 |
raise ValueError('''Cannot find the specified Pinecone index.
|
| 133 |
Create one in pinecone.io or using, e.g.,
|
|
|
|
| 146 |
result = CRqa({"question": query, "chat_history": chat_history})
|
| 147 |
return result['answer'], result['source_documents']
|
| 148 |
|
| 149 |
+
@st.cache_resource()
|
| 150 |
+
def use_local_llm(r_llm):
|
| 151 |
+
from langchain.llms import LlamaCpp
|
| 152 |
+
from langchain.callbacks.manager import CallbackManager
|
| 153 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 154 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
| 155 |
+
if r_llm == gpt_local_mistral:
|
| 156 |
+
gpt_local = 'openhermes-2-mistral-7b.Q8_0.gguf'
|
| 157 |
+
else:
|
| 158 |
+
gpt_local = 'llama-2-13b-chat.Q8_0.gguf'
|
| 159 |
+
llm = LlamaCpp(
|
| 160 |
+
model_path='~//models//'+gpt_local,
|
| 161 |
+
temperature=0.0,
|
| 162 |
+
n_batch=300,
|
| 163 |
+
n_ctx=4000,
|
| 164 |
+
max_tokens=2000,
|
| 165 |
+
n_gpu_layers=10,
|
| 166 |
+
n_threads=12,
|
| 167 |
+
top_p=1,
|
| 168 |
+
repeat_penalty=1.15,
|
| 169 |
+
verbose=False,
|
| 170 |
+
callback_manager=callback_manager,
|
| 171 |
+
streaming=True,
|
| 172 |
+
# verbose=True, # Verbose is required to pass to the callback manager
|
| 173 |
+
)
|
| 174 |
+
return llm
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def setup_prompt():
|
| 178 |
+
|
| 179 |
+
template = """Answer the question in your own words as truthfully as possible from the context given to you.
|
| 180 |
+
Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
|
| 181 |
+
Think step by step and do not jump to conclusion during your reasoning at the beginning.
|
| 182 |
+
Sometimes user's question may appear to be directly related to the context but may still be indirectly related,
|
| 183 |
+
so try your best to understand the question based on the context and chat history.
|
| 184 |
+
If questions are asked where there is no relevant context available,
|
| 185 |
+
respond using out-of-context knowledge with
|
| 186 |
+
"This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context."
|
| 187 |
+
|
| 188 |
+
Context: {context}
|
| 189 |
+
|
| 190 |
+
{chat_history}
|
| 191 |
+
User: {question}
|
| 192 |
+
Bot:"""
|
| 193 |
+
|
| 194 |
+
prompt = PromptTemplate(
|
| 195 |
+
input_variables=["context", "chat_history", "question"], template=template
|
| 196 |
+
)
|
| 197 |
+
return prompt
|
| 198 |
|
| 199 |
def setup_em_llm(OPENAI_API_KEY, temperature, r_llm):
|
| 200 |
+
if r_llm == gpt3p5 or r_llm == gpt4:
|
| 201 |
+
# Set up OpenAI embeddings
|
| 202 |
+
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
| 203 |
+
# Use Open AI LLM with gpt-3.5-turbo or gpt-4.
|
| 204 |
+
# Set the temperature to be 0 if you do not want it to make up things
|
| 205 |
+
llm = ChatOpenAI(temperature=temperature, model_name=r_llm, streaming=True,
|
| 206 |
+
openai_api_key=OPENAI_API_KEY)
|
| 207 |
+
else:
|
| 208 |
+
#em_model_name = 'hkunlp/instructor-xl'
|
| 209 |
+
em_model_name='sentence-transformers/all-mpnet-base-v2'
|
| 210 |
+
embeddings = HuggingFaceEmbeddings(model_name=em_model_name)
|
| 211 |
+
llm = use_local_llm(r_llm)
|
| 212 |
return embeddings, llm
|
| 213 |
|
| 214 |
|
|
|
|
| 235 |
latest_chats = []
|
| 236 |
reply = ''
|
| 237 |
source = ''
|
| 238 |
+
LLMs = [gpt3p5, gpt4, gpt_local_llama, gpt_local_mistral]
|
| 239 |
# Get user input of whether to use Pinecone or not
|
| 240 |
col1, col2, col3 = st.columns([1, 1, 1])
|
| 241 |
# create the radio buttons and text input fields
|
| 242 |
with col1:
|
| 243 |
+
r_llm = st.multiselect('LLM:', LLMs, gpt3p5)
|
| 244 |
+
if not r_llm:
|
| 245 |
+
r_llm = gpt3p5
|
| 246 |
+
else:
|
| 247 |
+
r_llm = r_llm[0]
|
| 248 |
+
if r_llm == gpt3p5 or r_llm == gpt4:
|
| 249 |
+
use_openai = True
|
| 250 |
+
else:
|
| 251 |
+
use_openai = False
|
| 252 |
+
r_pinecone = st.radio('Vector store:', ('Pinecone (online)', 'Chroma (local)'))
|
| 253 |
r_ingest = st.radio(
|
| 254 |
'Ingest file(s)?', ('Yes', 'No'))
|
| 255 |
+
if r_pinecone == 'Pinecone (online)':
|
| 256 |
+
use_pinecone = True
|
| 257 |
+
else:
|
| 258 |
+
use_pinecone = False
|
| 259 |
with col2:
|
|
|
|
|
|
|
| 260 |
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
|
| 261 |
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
|
| 262 |
+
if use_openai == True:
|
| 263 |
+
OPENAI_API_KEY = st.text_input(
|
| 264 |
+
"OpenAI API key:", type="password")
|
| 265 |
+
else:
|
| 266 |
+
OPENAI_API_KEY = ''
|
| 267 |
+
if use_pinecone == True:
|
| 268 |
+
st.write('Local GPT model (and local embedding model) is selected. Online vector store is selected.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
else:
|
| 270 |
+
st.write('Local GPT model (and local embedding model) and local vector store are selected. All info remains local.')
|
| 271 |
+
embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature, r_llm)
|
| 272 |
+
with col3:
|
| 273 |
+
if use_pinecone == True:
|
| 274 |
+
PINECONE_API_KEY = st.text_input(
|
| 275 |
+
"Pinecone API key:", type="password")
|
| 276 |
+
PINECONE_API_ENV = st.text_input(
|
| 277 |
+
"Pinecone API env:", type="password")
|
| 278 |
+
pinecone_index_name = st.text_input('Pinecone index:')
|
| 279 |
+
pinecone.init(api_key=PINECONE_API_KEY,
|
| 280 |
+
environment=PINECONE_API_ENV)
|
| 281 |
+
else:
|
| 282 |
+
chroma_collection_name = st.text_input(
|
| 283 |
+
'''Chroma collection name of 3-63 characters:''')
|
| 284 |
+
persist_directory = "./vectorstore"
|
| 285 |
|
| 286 |
if pinecone_index_name or chroma_collection_name:
|
| 287 |
session_name = pinecone_index_name + chroma_collection_name
|
|
|
|
| 304 |
# number of sources (split-documents when ingesting files); default is 4
|
| 305 |
k = min([20, n_texts])
|
| 306 |
retriever = setup_retriever(docsearch, k)
|
| 307 |
+
|
| 308 |
+
#prompt = setup_prompt()
|
| 309 |
+
|
| 310 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
|
| 311 |
+
|
| 312 |
CRqa = ConversationalRetrievalChain.from_llm(
|
| 313 |
+
llm,
|
| 314 |
+
chain_type="stuff",
|
| 315 |
+
retriever=retriever,
|
| 316 |
+
memory=memory,
|
| 317 |
+
return_source_documents=True,
|
| 318 |
+
#combine_docs_chain_kwargs={'prompt': prompt},
|
| 319 |
+
)
|
| 320 |
|
| 321 |
st.title(':blue[Chatbot]')
|
| 322 |
# Get user input
|
|
|
|
| 334 |
chat_history = [(user, bot)
|
| 335 |
for user, bot in chat_history]
|
| 336 |
reply, source = get_response(query, chat_history, CRqa)
|
| 337 |
+
|
| 338 |
# Update the chat history with the user input and system response
|
| 339 |
chat_history.append(('User', query))
|
| 340 |
chat_history.append(('Bot', reply))
|