import gradio as gr import os from utils import load_params_from_file from inference import model_chain infer_ragchain = None # Define the main interface logic def echo(message, history, model_name_local, model_name_online, inf_checkbox, embedding_name, splitter_type_dropdown, chunk_size_slider, chunk_overlap_slider, separator_textbox, max_tokens_slider): global infer_ragchain if infer_ragchain is None: gr.Info("Please wait!!! model is loading!!") if inf_checkbox: gr.info("local model is loading!!") infer_ragchain = model_chain(model_name_local, model_name_online, inf_checkbox, embedding_name, splitter_type_dropdown, chunk_size_slider, chunk_overlap_slider, separator_textbox, max_tokens_slider) rag_chain = infer_ragchain.rag_chain_ret() return infer_ragchain.ans_ret(message, rag_chain) # Load saved parameters if available saved_params = load_params_from_file() # Set default values default_embedding_name = saved_params['embedding_name'] if saved_params else "BAAI/bge-base-en-v1.5" default_splitter_type = saved_params['splitter_type_dropdown'] if saved_params else "character" default_chunk_size = saved_params['chunk_size_slider'] if saved_params else 500 default_chunk_overlap = saved_params['chunk_overlap_slider'] if saved_params else 30 default_separator = saved_params['separator_textbox'] if saved_params else "\n" default_max_tokens = saved_params['max_tokens_slider'] if saved_params else 1000 # Initialize the Gradio Interface with gr.Blocks() as demo: with gr.Tab("Inference"): with gr.Row(): embedding_name = gr.Dropdown(choices=["BAAI/bge-base-en-v1.5", "dunzhang/stella_en_1.5B_v5", "dunzhang/stella_en_400M_v5", "nvidia/NV-Embed-v2", "Alibaba-NLP/gte-Qwen2-1.5B-instruct"], value=default_embedding_name, label="Select the Embedding Model") splitter_type_dropdown = gr.Dropdown(choices=["character", "recursive", "token"], value=default_splitter_type, label="Splitter Type", interactive=True) chunk_size_slider = gr.Slider(minimum=100, maximum=2000, value=default_chunk_size, step=50, label="Chunk Size") chunk_overlap_slider = gr.Slider(minimum=0, maximum=500, value=default_chunk_overlap, step=10, label="Chunk Overlap", interactive=True) separator_textbox = gr.Textbox(value=default_separator, label="Separator (e.g., newline '\\n')", interactive=True) max_tokens_slider = gr.Slider(minimum=100, maximum=5000, value=default_max_tokens, step=100, label="Max Tokens", interactive=True) inf_checkbox = gr.Checkbox(label="Do you want to use a fine-tuned model?") model_name_local = gr.Dropdown(visible=False) model_name_online = gr.Dropdown(choices=["Zephyr", "Llama", "Mistral", "Phi", "Flant5"], label="Select the LLM from Huggingface", visible=True) # Function to toggle model selection between local and online based on checkbox def model_online_local_show(inf_checkbox): if inf_checkbox: return [gr.Dropdown(choices=os.listdir("models"), label="Select the local LLM", visible=True), gr.Dropdown(visible=False)] else: return [gr.Dropdown(visible=False), gr.Dropdown(choices=["Zephyr", "Llama", "Mistral", "Phi", "Flant5"], label="Select the LLM from Huggingface", visible=True)] # Event listener to switch between local and online models inf_checkbox.change(model_online_local_show, [inf_checkbox], [model_name_local, model_name_online]) # Chat interface gr.ChatInterface(fn=echo, additional_inputs=[model_name_local, model_name_online, inf_checkbox, embedding_name, splitter_type_dropdown, chunk_size_slider, chunk_overlap_slider, separator_textbox, max_tokens_slider], title="Chatbot") # Launch the demo demo.launch()