Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from torch.utils.data import Dataset | |
| class BilingualDataset(Dataset): | |
| def __init__(self, ds, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len): | |
| super().__init__() | |
| self.seq_len = seq_len | |
| self.ds = ds | |
| self.tokenizer_src = tokenizer_src | |
| self.tokenizer_tgt = tokenizer_tgt | |
| self.src_lang = src_lang | |
| self.tgt_lang = tgt_lang | |
| self.sos_token = torch.tensor([tokenizer_tgt.token_to_id("[SOS]")], dtype=torch.int64) | |
| self.eos_token = torch.tensor([tokenizer_tgt.token_to_id("[EOS]")], dtype=torch.int64) | |
| self.pad_token = torch.tensor([tokenizer_tgt.token_to_id("[PAD]")], dtype=torch.int64) | |
| def __len__(self): | |
| return len(self.ds) | |
| def __getitem__(self, idx): | |
| src_target_pair = self.ds[idx] | |
| src_text = src_target_pair['translation'][self.src_lang] | |
| tgt_text = src_target_pair['translation'][self.tgt_lang] | |
| # Transform the text into tokens | |
| enc_input_tokens = self.tokenizer_src.encode(src_text).ids | |
| dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids | |
| # Add sos, eos and padding to each sentence | |
| enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2 # We will add <s> and </s> | |
| # We will only add <s>, and </s> only on the label | |
| dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1 | |
| # Make sure the number of padding tokens is not negative. If it is, the sentence is too long | |
| if enc_num_padding_tokens < 0 or dec_num_padding_tokens < 0: | |
| raise ValueError("Sentence is too long") | |
| # Add <s> and </s> token | |
| encoder_input = torch.cat( | |
| [ | |
| self.sos_token, | |
| torch.tensor(enc_input_tokens, dtype=torch.int64), | |
| self.eos_token, | |
| torch.tensor([self.pad_token] * enc_num_padding_tokens, dtype=torch.int64), | |
| ], | |
| dim=0, | |
| ) | |
| # Add only <s> token | |
| decoder_input = torch.cat( | |
| [ | |
| self.sos_token, | |
| torch.tensor(dec_input_tokens, dtype=torch.int64), | |
| torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), | |
| ], | |
| dim=0, | |
| ) | |
| # Add only </s> token | |
| label = torch.cat( | |
| [ | |
| torch.tensor(dec_input_tokens, dtype=torch.int64), | |
| self.eos_token, | |
| torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), | |
| ], | |
| dim=0, | |
| ) | |
| # Double check the size of the tensors to make sure they are all seq_len long | |
| assert encoder_input.size(0) == self.seq_len | |
| assert decoder_input.size(0) == self.seq_len | |
| assert label.size(0) == self.seq_len | |
| return { | |
| "encoder_input": encoder_input, # (seq_len) | |
| "decoder_input": decoder_input, # (seq_len) | |
| "encoder_mask": (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), # (1, 1, seq_len) | |
| "decoder_mask": (decoder_input != self.pad_token).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), # (1, seq_len) & (1, seq_len, seq_len), | |
| "label": label, # (seq_len) | |
| "src_text": src_text, | |
| "tgt_text": tgt_text, | |
| } | |
| def causal_mask(size): | |
| mask = torch.triu(torch.ones((1, size, size)), diagonal=1).type(torch.int) | |
| return mask == 0 |