Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,277 +1,104 @@
|
|
| 1 |
-
from flask import Flask, render_template, request, jsonify
|
| 2 |
-
from flask_cors import CORS
|
| 3 |
-
from flask_limiter import Limiter
|
| 4 |
-
from flask_limiter.util import get_remote_address
|
| 5 |
from deepface import DeepFace
|
| 6 |
-
from werkzeug.utils import secure_filename
|
| 7 |
import os
|
| 8 |
import tempfile
|
| 9 |
import shutil
|
| 10 |
-
import uuid
|
| 11 |
-
import logging
|
| 12 |
-
import time
|
| 13 |
-
from datetime import datetime
|
| 14 |
-
from functools import wraps
|
| 15 |
-
import numpy as np
|
| 16 |
-
import cv2
|
| 17 |
-
from PIL import Image
|
| 18 |
-
import io
|
| 19 |
-
import threading
|
| 20 |
-
import queue
|
| 21 |
-
import hashlib
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
#
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
"""Démarre le thread de traitement en arrière-plan"""
|
| 69 |
-
def worker():
|
| 70 |
-
while True:
|
| 71 |
-
task = self.task_queue.get()
|
| 72 |
-
if task is None:
|
| 73 |
-
break
|
| 74 |
-
try:
|
| 75 |
-
task()
|
| 76 |
-
except Exception as e:
|
| 77 |
-
logging.error(f"Error in worker thread: {str(e)}")
|
| 78 |
-
finally:
|
| 79 |
-
self.task_queue.task_done()
|
| 80 |
-
|
| 81 |
-
self.worker_thread = threading.Thread(target=worker, daemon=True)
|
| 82 |
-
self.worker_thread.start()
|
| 83 |
-
|
| 84 |
-
def validate_image(self, image_stream):
|
| 85 |
-
"""Valide et optimise l'image"""
|
| 86 |
-
try:
|
| 87 |
-
img = Image.open(image_stream)
|
| 88 |
-
|
| 89 |
-
# Vérification des dimensions
|
| 90 |
-
if img.size[0] > 2000 or img.size[1] > 2000:
|
| 91 |
-
img.thumbnail((2000, 2000), Image.LANCZOS)
|
| 92 |
-
|
| 93 |
-
# Conversion en RGB si nécessaire
|
| 94 |
-
if img.mode not in ('RGB', 'L'):
|
| 95 |
-
img = img.convert('RGB')
|
| 96 |
-
|
| 97 |
-
# Optimisation
|
| 98 |
-
output = io.BytesIO()
|
| 99 |
-
img.save(output, format='JPEG', quality=85, optimize=True)
|
| 100 |
-
output.seek(0)
|
| 101 |
-
|
| 102 |
-
return output
|
| 103 |
-
except Exception as e:
|
| 104 |
-
logging.error(f"Image validation error: {str(e)}")
|
| 105 |
-
raise ValueError("Invalid image format")
|
| 106 |
-
|
| 107 |
-
def process_face_detection(self, image_path):
|
| 108 |
-
"""Détecte les visages avec mise en cache"""
|
| 109 |
-
image_hash = hashlib.md5(open(image_path, 'rb').read()).hexdigest()
|
| 110 |
|
| 111 |
-
if
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
| 114 |
try:
|
| 115 |
-
|
| 116 |
-
img_path=image_path,
|
| 117 |
-
actions=['age', 'gender', 'race', 'emotion'],
|
| 118 |
-
enforce_detection=True
|
| 119 |
-
)
|
| 120 |
-
self.results_cache[image_hash] = result
|
| 121 |
-
return result
|
| 122 |
-
except Exception as e:
|
| 123 |
-
logging.error(f"Face detection error: {str(e)}")
|
| 124 |
-
raise
|
| 125 |
-
|
| 126 |
-
@timing_decorator
|
| 127 |
-
def verify_faces(self, image1_path, image2_path):
|
| 128 |
-
"""Compare deux visages"""
|
| 129 |
-
try:
|
| 130 |
-
# Vérification des images
|
| 131 |
-
face1 = cv2.imread(image1_path)
|
| 132 |
-
face2 = cv2.imread(image2_path)
|
| 133 |
-
if face1 is None or face2 is None:
|
| 134 |
-
raise ValueError("Unable to read one or both images")
|
| 135 |
-
|
| 136 |
-
# Comparaison des visages
|
| 137 |
result = DeepFace.verify(
|
| 138 |
-
img1_path=
|
| 139 |
-
img2_path=
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
-
|
| 144 |
-
# Enrichissement des résultats
|
| 145 |
-
result.update({
|
| 146 |
-
'timestamp': datetime.now().isoformat(),
|
| 147 |
-
'confidence_score': 1 - result.get('distance', 0),
|
| 148 |
-
'processing_time': time.time()
|
| 149 |
-
})
|
| 150 |
-
|
| 151 |
-
return result
|
| 152 |
-
except Exception as e:
|
| 153 |
-
logging.error(f"Face verification error: {str(e)}")
|
| 154 |
-
raise
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
return render_template('index.html')
|
| 162 |
-
|
| 163 |
-
@self.app.route('/verify', methods=['POST'])
|
| 164 |
-
@self.limiter.limit("10 per minute")
|
| 165 |
-
def verify_faces_endpoint():
|
| 166 |
-
try:
|
| 167 |
-
# Vérification des fichiers
|
| 168 |
-
if 'image1' not in request.files or 'image2' not in request.files:
|
| 169 |
-
return jsonify({'error': 'Two images are required'}), 400
|
| 170 |
-
|
| 171 |
-
image1 = request.files['image1']
|
| 172 |
-
image2 = request.files['image2']
|
| 173 |
-
|
| 174 |
-
# Validation des images
|
| 175 |
-
try:
|
| 176 |
-
image1_stream = self.validate_image(image1)
|
| 177 |
-
image2_stream = self.validate_image(image2)
|
| 178 |
-
except ValueError as e:
|
| 179 |
-
return jsonify({'error': str(e)}), 400
|
| 180 |
-
|
| 181 |
-
# Traitement des images
|
| 182 |
-
with tempfile.TemporaryDirectory() as temp_dir:
|
| 183 |
-
# Sauvegarde temporaire
|
| 184 |
-
paths = []
|
| 185 |
-
for img, stream in [(image1, image1_stream), (image2, image2_stream)]:
|
| 186 |
-
path = os.path.join(temp_dir, secure_filename(img.filename))
|
| 187 |
-
with open(path, 'wb') as f:
|
| 188 |
-
f.write(stream.getvalue())
|
| 189 |
-
paths.append(path)
|
| 190 |
-
|
| 191 |
-
# Vérification des visages
|
| 192 |
-
result = self.verify_faces(paths[0], paths[1])
|
| 193 |
-
|
| 194 |
-
# Sauvegarde des résultats positifs
|
| 195 |
-
if result['verified']:
|
| 196 |
-
permanent_dir = os.path.join(self.app.static_folder, 'verified_faces')
|
| 197 |
-
os.makedirs(permanent_dir, exist_ok=True)
|
| 198 |
-
|
| 199 |
-
saved_paths = []
|
| 200 |
-
for i, path in enumerate(paths, 1):
|
| 201 |
-
name = f"face{i}_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}.jpg"
|
| 202 |
-
dest = os.path.join(permanent_dir, name)
|
| 203 |
-
shutil.copy2(path, dest)
|
| 204 |
-
saved_paths.append(f'/static/verified_faces/{name}')
|
| 205 |
-
|
| 206 |
-
result['image1_url'] = saved_paths[0]
|
| 207 |
-
result['image2_url'] = saved_paths[1]
|
| 208 |
-
|
| 209 |
-
return jsonify(result)
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
return jsonify({'error': 'No image provided'}), 400
|
| 221 |
-
|
| 222 |
-
image = request.files['image']
|
| 223 |
-
|
| 224 |
-
# Validation de l'image
|
| 225 |
-
try:
|
| 226 |
-
image_stream = self.validate_image(image)
|
| 227 |
-
except ValueError as e:
|
| 228 |
-
return jsonify({'error': str(e)}), 400
|
| 229 |
-
|
| 230 |
-
# File d'attente pour les résultats
|
| 231 |
-
result_queue = queue.Queue()
|
| 232 |
-
|
| 233 |
-
def process_task():
|
| 234 |
-
try:
|
| 235 |
-
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_file:
|
| 236 |
-
temp_file.write(image_stream.getvalue())
|
| 237 |
-
result = self.process_face_detection(temp_file.name)
|
| 238 |
-
result_queue.put(('success', result))
|
| 239 |
-
except Exception as e:
|
| 240 |
-
result_queue.put(('error', str(e)))
|
| 241 |
-
finally:
|
| 242 |
-
try:
|
| 243 |
-
os.unlink(temp_file.name)
|
| 244 |
-
except:
|
| 245 |
-
pass
|
| 246 |
-
|
| 247 |
-
# Ajout de la tâche à la file d'attente
|
| 248 |
-
self.task_queue.put(process_task)
|
| 249 |
-
|
| 250 |
-
# Attente du résultat
|
| 251 |
-
try:
|
| 252 |
-
status, result = result_queue.get(timeout=30)
|
| 253 |
-
if status == 'error':
|
| 254 |
-
return jsonify({'error': result}), 500
|
| 255 |
-
return jsonify(result)
|
| 256 |
-
except queue.Empty:
|
| 257 |
-
return jsonify({'error': 'Processing timeout'}), 408
|
| 258 |
-
|
| 259 |
-
except Exception as e:
|
| 260 |
-
logging.error(f"Analysis endpoint error: {str(e)}")
|
| 261 |
-
return jsonify({'error': 'An internal error occurred'}), 500
|
| 262 |
-
|
| 263 |
-
@self.app.errorhandler(413)
|
| 264 |
-
def request_entity_too_large(error):
|
| 265 |
-
return jsonify({'error': 'File too large'}), 413
|
| 266 |
-
|
| 267 |
-
@self.app.errorhandler(429)
|
| 268 |
-
def ratelimit_handler(e):
|
| 269 |
-
return jsonify({'error': 'Rate limit exceeded'}), 429
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
self.app.run(host=host, port=port, debug=debug)
|
| 274 |
|
| 275 |
if __name__ == '__main__':
|
| 276 |
-
|
| 277 |
-
app.
|
|
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request, jsonify
|
|
|
|
|
|
|
|
|
|
| 2 |
from deepface import DeepFace
|
|
|
|
| 3 |
import os
|
| 4 |
import tempfile
|
| 5 |
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
app = Flask(__name__)
|
| 8 |
+
|
| 9 |
+
# Configuration pour l'upload des images (facultatif, pour stocker les images temporairement)
|
| 10 |
+
UPLOAD_FOLDER = 'uploads'
|
| 11 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 12 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
| 13 |
+
|
| 14 |
+
def allowed_file(filename):
|
| 15 |
+
return '.' in filename and \
|
| 16 |
+
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 17 |
+
|
| 18 |
+
def process_image(image_path):
|
| 19 |
+
"""
|
| 20 |
+
Traite une image avec DeepFace (détection, alignement, etc.).
|
| 21 |
+
Vous pouvez personnaliser cette fonction en fonction de vos besoins.
|
| 22 |
+
"""
|
| 23 |
+
try:
|
| 24 |
+
# Exemple d'extraction des visages avec alignement et détection
|
| 25 |
+
faces = DeepFace.extract_faces(img_path=image_path, detector_backend='retinaface', align=True)
|
| 26 |
+
if len(faces) > 0 :
|
| 27 |
+
return faces[0]['facial_area']
|
| 28 |
+
else:
|
| 29 |
+
return None
|
| 30 |
+
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Erreur lors du traitement de l'image : {e}")
|
| 33 |
+
return None
|
| 34 |
+
|
| 35 |
+
@app.route('/')
|
| 36 |
+
def index():
|
| 37 |
+
return render_template('index.html')
|
| 38 |
+
|
| 39 |
+
@app.route('/compare', methods=['POST'])
|
| 40 |
+
def compare():
|
| 41 |
+
|
| 42 |
+
# Gestion des fichiers uploadés
|
| 43 |
+
if 'file1' not in request.files or 'file2' not in request.files:
|
| 44 |
+
return jsonify({'error': 'Aucun fichier sélectionné'}), 400
|
| 45 |
+
|
| 46 |
+
file1 = request.files['file1']
|
| 47 |
+
file2 = request.files['file2']
|
| 48 |
+
|
| 49 |
+
if file1.filename == '' or file2.filename == '':
|
| 50 |
+
return jsonify({'error': 'Aucun fichier sélectionné'}), 400
|
| 51 |
+
|
| 52 |
+
if file1 and allowed_file(file1.filename) and file2 and allowed_file(file2.filename):
|
| 53 |
+
# Créer un dossier temporaire pour stocker les images
|
| 54 |
+
temp_dir = tempfile.mkdtemp(prefix="face_compare_", dir=app.config['UPLOAD_FOLDER'])
|
| 55 |
|
| 56 |
+
# Enregistre les fichiers dans le dossier temporaire
|
| 57 |
+
file1_path = os.path.join(temp_dir, file1.filename)
|
| 58 |
+
file2_path = os.path.join(temp_dir, file2.filename)
|
| 59 |
+
file1.save(file1_path)
|
| 60 |
+
file2.save(file2_path)
|
| 61 |
+
|
| 62 |
+
# Traitement des images (vous pouvez personnaliser cette partie)
|
| 63 |
+
processed_img1 = process_image(file1_path)
|
| 64 |
+
processed_img2 = process_image(file2_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
if processed_img1 is None or processed_img2 is None:
|
| 67 |
+
# Supprimer le dossier temporaire et son contenu
|
| 68 |
+
shutil.rmtree(temp_dir)
|
| 69 |
+
return jsonify({'error': 'Aucun visage détecté dans une ou plusieurs images'}), 400
|
| 70 |
+
|
| 71 |
try:
|
| 72 |
+
# Comparaison des visages avec DeepFace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
result = DeepFace.verify(
|
| 74 |
+
img1_path=file1_path,
|
| 75 |
+
img2_path=file2_path,
|
| 76 |
+
model_name="VGG-Face",
|
| 77 |
+
detector_backend="retinaface",
|
| 78 |
+
distance_metric="cosine",
|
| 79 |
+
enforce_detection=False
|
| 80 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# Formater la réponse
|
| 83 |
+
response_data = {
|
| 84 |
+
'verified': result['verified'],
|
| 85 |
+
'similarity': round((1 - result['distance']) * 100, 1) if result['verified'] else round((1 - result['distance']) * 100, 1)
|
| 86 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
# Supprimer le dossier temporaire et son contenu
|
| 89 |
+
shutil.rmtree(temp_dir)
|
| 90 |
+
return jsonify(response_data)
|
| 91 |
|
| 92 |
+
except Exception as e:
|
| 93 |
+
# Supprimer le dossier temporaire et son contenu
|
| 94 |
+
shutil.rmtree(temp_dir)
|
| 95 |
+
print(f"Erreur lors de la comparaison des visages : {e}")
|
| 96 |
+
return jsonify({'error': str(e)}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
else:
|
| 99 |
+
return jsonify({'error': 'Type de fichier non autorisé'}), 400
|
|
|
|
| 100 |
|
| 101 |
if __name__ == '__main__':
|
| 102 |
+
# Créer le dossier d'upload si nécessaire
|
| 103 |
+
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
| 104 |
+
app.run(debug=True) # Mettre debug=False en production
|