Spaces:
Running
Running
| # -------------------------------------------------------- | |
| # Based on BEiT, timm, DINO DeiT and MAE-priv code bases | |
| # https://github.com/microsoft/unilm/tree/master/beit | |
| # https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
| # https://github.com/facebookresearch/deit | |
| # https://github.com/facebookresearch/dino | |
| # https://github.com/BUPT-PRIV/MAE-priv | |
| # -------------------------------------------------------- | |
| import json | |
| import torch | |
| from torch import optim as optim | |
| try: | |
| from apex.optimizers import FusedAdam, FusedLAMB, FusedNovoGrad, FusedSGD | |
| has_apex = True | |
| except ImportError: | |
| has_apex = False | |
| def get_num_layer_for_vit(var_name, num_max_layer): | |
| if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"): | |
| return 0 | |
| elif var_name.startswith("patch_embed"): | |
| return 0 | |
| elif var_name.startswith("input_adapters"): | |
| return 0 | |
| elif var_name.startswith("rel_pos_bias"): | |
| return num_max_layer - 1 | |
| elif var_name.startswith("blocks") or var_name.startswith("encoder"): | |
| layer_id = int(var_name.split('.')[1]) | |
| return layer_id + 1 | |
| else: | |
| return num_max_layer - 1 | |
| class LayerDecayValueAssigner(object): | |
| def __init__(self, values): | |
| self.values = values | |
| def get_scale(self, layer_id): | |
| return self.values[layer_id] | |
| def get_layer_id(self, var_name): | |
| return get_num_layer_for_vit(var_name, len(self.values)) | |
| def get_parameter_groups( | |
| model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None, | |
| decoder_decay=None, decoder_list=(), no_lr_scale_list=[]): | |
| parameter_group_names = {} | |
| parameter_group_vars = {} | |
| for name, param in model.named_parameters(): | |
| if not param.requires_grad: | |
| continue # frozen weights | |
| # Assign weight decay values | |
| if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: | |
| group_name = "no_decay" | |
| this_weight_decay = 0. | |
| elif decoder_decay is not None and (name.startswith("decoder.") or name in decoder_list): | |
| group_name = "decoder_decay" | |
| this_weight_decay = decoder_decay | |
| else: | |
| group_name = "decay" | |
| this_weight_decay = weight_decay | |
| # Assign layer ID for LR scaling | |
| skip_scale = False | |
| if get_num_layer is not None: | |
| layer_id = get_num_layer(name) | |
| group_name = "layer_%d_%s" % (layer_id, group_name) | |
| if name in no_lr_scale_list: | |
| skip_scale = True | |
| group_name = f'{group_name}_no_lr_scale' | |
| else: | |
| layer_id = None | |
| if group_name not in parameter_group_names: | |
| if get_layer_scale is not None and not skip_scale: | |
| scale = get_layer_scale(layer_id) | |
| else: | |
| scale = 1. | |
| parameter_group_names[group_name] = { | |
| "weight_decay": this_weight_decay, | |
| "params": [], | |
| "lr_scale": scale | |
| } | |
| parameter_group_vars[group_name] = { | |
| "weight_decay": this_weight_decay, | |
| "params": [], | |
| "lr_scale": scale | |
| } | |
| parameter_group_vars[group_name]["params"].append(param) | |
| parameter_group_names[group_name]["params"].append(name) | |
| print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
| return list(parameter_group_vars.values()) | |
| def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): | |
| ''' | |
| Model can either be a single nn.Module, or a dictionary with {'model': model, 'balancer': balancer}. | |
| ''' | |
| opt_lower = args.opt.lower() | |
| weight_decay = args.weight_decay | |
| try: | |
| decoder_decay = args.decoder_decay | |
| except: | |
| decoder_decay = None | |
| try: | |
| no_lr_scale_list = args.no_lr_scale_list.split('-') | |
| except: | |
| no_lr_scale_list = [] | |
| def get_parameters(m): | |
| if weight_decay and filter_bias_and_bn: | |
| skip = {} | |
| if skip_list is not None: | |
| skip = skip_list | |
| elif hasattr(m, 'no_weight_decay'): | |
| skip = m.no_weight_decay() | |
| decoder={} | |
| if hasattr(m, 'decoder_weight_decay'): | |
| decoder = m.decoder_weight_decay() | |
| parameters = get_parameter_groups(m, weight_decay, skip, get_num_layer, get_layer_scale, decoder_decay, decoder, no_lr_scale_list) | |
| wd = 0. | |
| else: | |
| parameters = m.parameters() | |
| wd = weight_decay | |
| return parameters, wd | |
| if isinstance(model, torch.nn.Module): | |
| parameters, weight_decay = get_parameters(model) | |
| elif isinstance(model, dict): | |
| parameters = [ | |
| { | |
| "params": [p for n, p in model['model'].named_parameters() | |
| if p.requires_grad], | |
| "lr_scale": 1., | |
| }, | |
| { | |
| "params": [p for n, p in model['balancer'].named_parameters() | |
| if p.requires_grad], | |
| "lr_scale": args.balancer_lr_scale, | |
| }, | |
| ] | |
| if 'fused' in opt_lower: | |
| assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' | |
| opt_args = dict(lr=args.lr, weight_decay=weight_decay) | |
| if hasattr(args, 'opt_eps') and args.opt_eps is not None: | |
| opt_args['eps'] = args.opt_eps | |
| if hasattr(args, 'opt_betas') and args.opt_betas is not None: | |
| opt_args['betas'] = args.opt_betas | |
| print("optimizer settings:", opt_args) | |
| opt_split = opt_lower.split('_') | |
| opt_lower = opt_split[-1] | |
| if opt_lower == 'sgd' or opt_lower == 'nesterov': | |
| opt_args.pop('eps', None) | |
| optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) | |
| elif opt_lower == 'momentum': | |
| opt_args.pop('eps', None) | |
| optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) | |
| elif opt_lower == 'adam': | |
| optimizer = optim.Adam(parameters, **opt_args) | |
| elif opt_lower == 'adamw': | |
| optimizer = optim.AdamW(parameters, **opt_args) | |
| else: | |
| assert False and "Invalid optimizer" | |
| raise ValueError | |
| return optimizer | |